![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fihashf1rn | GIF version |
Description: The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Jim Kingdon, 21-Feb-2022.) |
Ref | Expression |
---|---|
fihashf1rn | ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → (♯‘𝐹) = (♯‘ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 5462 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
2 | simpl 109 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ∈ Fin) | |
3 | fnfi 6997 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → 𝐹 ∈ Fin) | |
4 | 1, 2, 3 | syl2an2 594 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹 ∈ Fin) |
5 | f1o2ndf1 6283 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → (2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹) | |
6 | df-2nd 6196 | . . . . . . . . 9 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
7 | 6 | funmpt2 5294 | . . . . . . . 8 ⊢ Fun 2nd |
8 | f1f 5460 | . . . . . . . . . . 11 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
9 | 8 | anim2i 342 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → (𝐴 ∈ Fin ∧ 𝐹:𝐴⟶𝐵)) |
10 | 9 | ancomd 267 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ Fin)) |
11 | fex 5788 | . . . . . . . . 9 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ Fin) → 𝐹 ∈ V) | |
12 | 10, 11 | syl 14 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹 ∈ V) |
13 | resfunexg 5780 | . . . . . . . 8 ⊢ ((Fun 2nd ∧ 𝐹 ∈ V) → (2nd ↾ 𝐹) ∈ V) | |
14 | 7, 12, 13 | sylancr 414 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → (2nd ↾ 𝐹) ∈ V) |
15 | f1oeq1 5489 | . . . . . . . . . 10 ⊢ ((2nd ↾ 𝐹) = 𝑓 → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 ↔ 𝑓:𝐹–1-1-onto→ran 𝐹)) | |
16 | 15 | biimpd 144 | . . . . . . . . 9 ⊢ ((2nd ↾ 𝐹) = 𝑓 → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → 𝑓:𝐹–1-1-onto→ran 𝐹)) |
17 | 16 | eqcoms 2196 | . . . . . . . 8 ⊢ (𝑓 = (2nd ↾ 𝐹) → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → 𝑓:𝐹–1-1-onto→ran 𝐹)) |
18 | 17 | adantl 277 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑓 = (2nd ↾ 𝐹)) → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → 𝑓:𝐹–1-1-onto→ran 𝐹)) |
19 | 14, 18 | spcimedv 2847 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹)) |
20 | 19 | ex 115 | . . . . 5 ⊢ (𝐴 ∈ Fin → (𝐹:𝐴–1-1→𝐵 → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹))) |
21 | 20 | com13 80 | . . . 4 ⊢ ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → (𝐹:𝐴–1-1→𝐵 → (𝐴 ∈ Fin → ∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹))) |
22 | 5, 21 | mpcom 36 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐴 ∈ Fin → ∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹)) |
23 | 22 | impcom 125 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → ∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹) |
24 | fihasheqf1oi 10861 | . . . 4 ⊢ ((𝐹 ∈ Fin ∧ 𝑓:𝐹–1-1-onto→ran 𝐹) → (♯‘𝐹) = (♯‘ran 𝐹)) | |
25 | 24 | ex 115 | . . 3 ⊢ (𝐹 ∈ Fin → (𝑓:𝐹–1-1-onto→ran 𝐹 → (♯‘𝐹) = (♯‘ran 𝐹))) |
26 | 25 | exlimdv 1830 | . 2 ⊢ (𝐹 ∈ Fin → (∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹 → (♯‘𝐹) = (♯‘ran 𝐹))) |
27 | 4, 23, 26 | sylc 62 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → (♯‘𝐹) = (♯‘ran 𝐹)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 {csn 3619 ∪ cuni 3836 ran crn 4661 ↾ cres 4662 Fun wfun 5249 Fn wfn 5250 ⟶wf 5251 –1-1→wf1 5252 –1-1-onto→wf1o 5254 ‘cfv 5255 2nd c2nd 6194 Fincfn 6796 ♯chash 10849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-2nd 6196 df-recs 6360 df-frec 6446 df-1o 6471 df-er 6589 df-en 6797 df-dom 6798 df-fin 6799 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 df-uz 9596 df-ihash 10850 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |