ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fihashf1rn GIF version

Theorem fihashf1rn 10931
Description: The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Jim Kingdon, 21-Feb-2022.)
Assertion
Ref Expression
fihashf1rn ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → (♯‘𝐹) = (♯‘ran 𝐹))

Proof of Theorem fihashf1rn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1fn 5482 . . 3 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
2 simpl 109 . . 3 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴 ∈ Fin)
3 fnfi 7037 . . 3 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐹 ∈ Fin)
41, 2, 3syl2an2 594 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ Fin)
5 f1o2ndf1 6313 . . . 4 (𝐹:𝐴1-1𝐵 → (2nd𝐹):𝐹1-1-onto→ran 𝐹)
6 df-2nd 6226 . . . . . . . . 9 2nd = (𝑥 ∈ V ↦ ran {𝑥})
76funmpt2 5309 . . . . . . . 8 Fun 2nd
8 f1f 5480 . . . . . . . . . . 11 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
98anim2i 342 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → (𝐴 ∈ Fin ∧ 𝐹:𝐴𝐵))
109ancomd 267 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → (𝐹:𝐴𝐵𝐴 ∈ Fin))
11 fex 5812 . . . . . . . . 9 ((𝐹:𝐴𝐵𝐴 ∈ Fin) → 𝐹 ∈ V)
1210, 11syl 14 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ V)
13 resfunexg 5804 . . . . . . . 8 ((Fun 2nd𝐹 ∈ V) → (2nd𝐹) ∈ V)
147, 12, 13sylancr 414 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → (2nd𝐹) ∈ V)
15 f1oeq1 5509 . . . . . . . . . 10 ((2nd𝐹) = 𝑓 → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1615biimpd 144 . . . . . . . . 9 ((2nd𝐹) = 𝑓 → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1716eqcoms 2207 . . . . . . . 8 (𝑓 = (2nd𝐹) → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1817adantl 277 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑓 = (2nd𝐹)) → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1914, 18spcimedv 2858 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → ((2nd𝐹):𝐹1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹))
2019ex 115 . . . . 5 (𝐴 ∈ Fin → (𝐹:𝐴1-1𝐵 → ((2nd𝐹):𝐹1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹)))
2120com13 80 . . . 4 ((2nd𝐹):𝐹1-1-onto→ran 𝐹 → (𝐹:𝐴1-1𝐵 → (𝐴 ∈ Fin → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹)))
225, 21mpcom 36 . . 3 (𝐹:𝐴1-1𝐵 → (𝐴 ∈ Fin → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹))
2322impcom 125 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹)
24 fihasheqf1oi 10930 . . . 4 ((𝐹 ∈ Fin ∧ 𝑓:𝐹1-1-onto→ran 𝐹) → (♯‘𝐹) = (♯‘ran 𝐹))
2524ex 115 . . 3 (𝐹 ∈ Fin → (𝑓:𝐹1-1-onto→ran 𝐹 → (♯‘𝐹) = (♯‘ran 𝐹)))
2625exlimdv 1841 . 2 (𝐹 ∈ Fin → (∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹 → (♯‘𝐹) = (♯‘ran 𝐹)))
274, 23, 26sylc 62 1 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → (♯‘𝐹) = (♯‘ran 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wex 1514  wcel 2175  Vcvv 2771  {csn 3632   cuni 3849  ran crn 4675  cres 4676  Fun wfun 5264   Fn wfn 5265  wf 5266  1-1wf1 5267  1-1-ontowf1o 5269  cfv 5270  2nd c2nd 6224  Fincfn 6826  chash 10918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-2nd 6226  df-recs 6390  df-frec 6476  df-1o 6501  df-er 6619  df-en 6827  df-dom 6828  df-fin 6829  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-n0 9295  df-z 9372  df-uz 9648  df-ihash 10919
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator