| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fihashf1rn | GIF version | ||
| Description: The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Jim Kingdon, 21-Feb-2022.) |
| Ref | Expression |
|---|---|
| fihashf1rn | ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → (♯‘𝐹) = (♯‘ran 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn 5465 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | simpl 109 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ∈ Fin) | |
| 3 | fnfi 7002 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → 𝐹 ∈ Fin) | |
| 4 | 1, 2, 3 | syl2an2 594 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹 ∈ Fin) |
| 5 | f1o2ndf1 6286 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → (2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹) | |
| 6 | df-2nd 6199 | . . . . . . . . 9 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
| 7 | 6 | funmpt2 5297 | . . . . . . . 8 ⊢ Fun 2nd |
| 8 | f1f 5463 | . . . . . . . . . . 11 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 9 | 8 | anim2i 342 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → (𝐴 ∈ Fin ∧ 𝐹:𝐴⟶𝐵)) |
| 10 | 9 | ancomd 267 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ Fin)) |
| 11 | fex 5791 | . . . . . . . . 9 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ Fin) → 𝐹 ∈ V) | |
| 12 | 10, 11 | syl 14 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹 ∈ V) |
| 13 | resfunexg 5783 | . . . . . . . 8 ⊢ ((Fun 2nd ∧ 𝐹 ∈ V) → (2nd ↾ 𝐹) ∈ V) | |
| 14 | 7, 12, 13 | sylancr 414 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → (2nd ↾ 𝐹) ∈ V) |
| 15 | f1oeq1 5492 | . . . . . . . . . 10 ⊢ ((2nd ↾ 𝐹) = 𝑓 → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 ↔ 𝑓:𝐹–1-1-onto→ran 𝐹)) | |
| 16 | 15 | biimpd 144 | . . . . . . . . 9 ⊢ ((2nd ↾ 𝐹) = 𝑓 → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → 𝑓:𝐹–1-1-onto→ran 𝐹)) |
| 17 | 16 | eqcoms 2199 | . . . . . . . 8 ⊢ (𝑓 = (2nd ↾ 𝐹) → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → 𝑓:𝐹–1-1-onto→ran 𝐹)) |
| 18 | 17 | adantl 277 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑓 = (2nd ↾ 𝐹)) → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → 𝑓:𝐹–1-1-onto→ran 𝐹)) |
| 19 | 14, 18 | spcimedv 2850 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹)) |
| 20 | 19 | ex 115 | . . . . 5 ⊢ (𝐴 ∈ Fin → (𝐹:𝐴–1-1→𝐵 → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹))) |
| 21 | 20 | com13 80 | . . . 4 ⊢ ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → (𝐹:𝐴–1-1→𝐵 → (𝐴 ∈ Fin → ∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹))) |
| 22 | 5, 21 | mpcom 36 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐴 ∈ Fin → ∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹)) |
| 23 | 22 | impcom 125 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → ∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹) |
| 24 | fihasheqf1oi 10879 | . . . 4 ⊢ ((𝐹 ∈ Fin ∧ 𝑓:𝐹–1-1-onto→ran 𝐹) → (♯‘𝐹) = (♯‘ran 𝐹)) | |
| 25 | 24 | ex 115 | . . 3 ⊢ (𝐹 ∈ Fin → (𝑓:𝐹–1-1-onto→ran 𝐹 → (♯‘𝐹) = (♯‘ran 𝐹))) |
| 26 | 25 | exlimdv 1833 | . 2 ⊢ (𝐹 ∈ Fin → (∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹 → (♯‘𝐹) = (♯‘ran 𝐹))) |
| 27 | 4, 23, 26 | sylc 62 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → (♯‘𝐹) = (♯‘ran 𝐹)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 {csn 3622 ∪ cuni 3839 ran crn 4664 ↾ cres 4665 Fun wfun 5252 Fn wfn 5253 ⟶wf 5254 –1-1→wf1 5255 –1-1-onto→wf1o 5257 ‘cfv 5258 2nd c2nd 6197 Fincfn 6799 ♯chash 10867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-2nd 6199 df-recs 6363 df-frec 6449 df-1o 6474 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-ihash 10868 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |