ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fihashf1rn GIF version

Theorem fihashf1rn 10955
Description: The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Jim Kingdon, 21-Feb-2022.)
Assertion
Ref Expression
fihashf1rn ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → (♯‘𝐹) = (♯‘ran 𝐹))

Proof of Theorem fihashf1rn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1fn 5495 . . 3 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
2 simpl 109 . . 3 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴 ∈ Fin)
3 fnfi 7053 . . 3 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐹 ∈ Fin)
41, 2, 3syl2an2 594 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ Fin)
5 f1o2ndf1 6327 . . . 4 (𝐹:𝐴1-1𝐵 → (2nd𝐹):𝐹1-1-onto→ran 𝐹)
6 df-2nd 6240 . . . . . . . . 9 2nd = (𝑥 ∈ V ↦ ran {𝑥})
76funmpt2 5319 . . . . . . . 8 Fun 2nd
8 f1f 5493 . . . . . . . . . . 11 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
98anim2i 342 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → (𝐴 ∈ Fin ∧ 𝐹:𝐴𝐵))
109ancomd 267 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → (𝐹:𝐴𝐵𝐴 ∈ Fin))
11 fex 5826 . . . . . . . . 9 ((𝐹:𝐴𝐵𝐴 ∈ Fin) → 𝐹 ∈ V)
1210, 11syl 14 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ V)
13 resfunexg 5818 . . . . . . . 8 ((Fun 2nd𝐹 ∈ V) → (2nd𝐹) ∈ V)
147, 12, 13sylancr 414 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → (2nd𝐹) ∈ V)
15 f1oeq1 5522 . . . . . . . . . 10 ((2nd𝐹) = 𝑓 → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1615biimpd 144 . . . . . . . . 9 ((2nd𝐹) = 𝑓 → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1716eqcoms 2209 . . . . . . . 8 (𝑓 = (2nd𝐹) → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1817adantl 277 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑓 = (2nd𝐹)) → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1914, 18spcimedv 2863 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → ((2nd𝐹):𝐹1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹))
2019ex 115 . . . . 5 (𝐴 ∈ Fin → (𝐹:𝐴1-1𝐵 → ((2nd𝐹):𝐹1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹)))
2120com13 80 . . . 4 ((2nd𝐹):𝐹1-1-onto→ran 𝐹 → (𝐹:𝐴1-1𝐵 → (𝐴 ∈ Fin → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹)))
225, 21mpcom 36 . . 3 (𝐹:𝐴1-1𝐵 → (𝐴 ∈ Fin → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹))
2322impcom 125 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹)
24 fihasheqf1oi 10954 . . . 4 ((𝐹 ∈ Fin ∧ 𝑓:𝐹1-1-onto→ran 𝐹) → (♯‘𝐹) = (♯‘ran 𝐹))
2524ex 115 . . 3 (𝐹 ∈ Fin → (𝑓:𝐹1-1-onto→ran 𝐹 → (♯‘𝐹) = (♯‘ran 𝐹)))
2625exlimdv 1843 . 2 (𝐹 ∈ Fin → (∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹 → (♯‘𝐹) = (♯‘ran 𝐹)))
274, 23, 26sylc 62 1 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → (♯‘𝐹) = (♯‘ran 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wex 1516  wcel 2177  Vcvv 2773  {csn 3638   cuni 3856  ran crn 4684  cres 4685  Fun wfun 5274   Fn wfn 5275  wf 5276  1-1wf1 5277  1-1-ontowf1o 5279  cfv 5280  2nd c2nd 6238  Fincfn 6840  chash 10942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-2nd 6240  df-recs 6404  df-frec 6490  df-1o 6515  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669  df-ihash 10943
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator