ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fihashf1rn GIF version

Theorem fihashf1rn 10503
Description: The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Jim Kingdon, 21-Feb-2022.)
Assertion
Ref Expression
fihashf1rn ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → (♯‘𝐹) = (♯‘ran 𝐹))

Proof of Theorem fihashf1rn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1fn 5300 . . 3 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
2 simpl 108 . . 3 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐴 ∈ Fin)
3 fnfi 6793 . . 3 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐹 ∈ Fin)
41, 2, 3syl2an2 568 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ Fin)
5 f1o2ndf1 6093 . . . 4 (𝐹:𝐴1-1𝐵 → (2nd𝐹):𝐹1-1-onto→ran 𝐹)
6 df-2nd 6007 . . . . . . . . 9 2nd = (𝑥 ∈ V ↦ ran {𝑥})
76funmpt2 5132 . . . . . . . 8 Fun 2nd
8 f1f 5298 . . . . . . . . . . 11 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
98anim2i 339 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → (𝐴 ∈ Fin ∧ 𝐹:𝐴𝐵))
109ancomd 265 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → (𝐹:𝐴𝐵𝐴 ∈ Fin))
11 fex 5615 . . . . . . . . 9 ((𝐹:𝐴𝐵𝐴 ∈ Fin) → 𝐹 ∈ V)
1210, 11syl 14 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ V)
13 resfunexg 5609 . . . . . . . 8 ((Fun 2nd𝐹 ∈ V) → (2nd𝐹) ∈ V)
147, 12, 13sylancr 410 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → (2nd𝐹) ∈ V)
15 f1oeq1 5326 . . . . . . . . . 10 ((2nd𝐹) = 𝑓 → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1615biimpd 143 . . . . . . . . 9 ((2nd𝐹) = 𝑓 → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1716eqcoms 2120 . . . . . . . 8 (𝑓 = (2nd𝐹) → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1817adantl 275 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑓 = (2nd𝐹)) → ((2nd𝐹):𝐹1-1-onto→ran 𝐹𝑓:𝐹1-1-onto→ran 𝐹))
1914, 18spcimedv 2746 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → ((2nd𝐹):𝐹1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹))
2019ex 114 . . . . 5 (𝐴 ∈ Fin → (𝐹:𝐴1-1𝐵 → ((2nd𝐹):𝐹1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹)))
2120com13 80 . . . 4 ((2nd𝐹):𝐹1-1-onto→ran 𝐹 → (𝐹:𝐴1-1𝐵 → (𝐴 ∈ Fin → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹)))
225, 21mpcom 36 . . 3 (𝐹:𝐴1-1𝐵 → (𝐴 ∈ Fin → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹))
2322impcom 124 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → ∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹)
24 fihasheqf1oi 10502 . . . 4 ((𝐹 ∈ Fin ∧ 𝑓:𝐹1-1-onto→ran 𝐹) → (♯‘𝐹) = (♯‘ran 𝐹))
2524ex 114 . . 3 (𝐹 ∈ Fin → (𝑓:𝐹1-1-onto→ran 𝐹 → (♯‘𝐹) = (♯‘ran 𝐹)))
2625exlimdv 1775 . 2 (𝐹 ∈ Fin → (∃𝑓 𝑓:𝐹1-1-onto→ran 𝐹 → (♯‘𝐹) = (♯‘ran 𝐹)))
274, 23, 26sylc 62 1 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1𝐵) → (♯‘𝐹) = (♯‘ran 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1316  wex 1453  wcel 1465  Vcvv 2660  {csn 3497   cuni 3706  ran crn 4510  cres 4511  Fun wfun 5087   Fn wfn 5088  wf 5089  1-1wf1 5090  1-1-ontowf1o 5092  cfv 5093  2nd c2nd 6005  Fincfn 6602  chash 10489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-2nd 6007  df-recs 6170  df-frec 6256  df-1o 6281  df-er 6397  df-en 6603  df-dom 6604  df-fin 6605  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8689  df-n0 8946  df-z 9023  df-uz 9295  df-ihash 10490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator