| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fihashf1rn | GIF version | ||
| Description: The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Jim Kingdon, 21-Feb-2022.) |
| Ref | Expression |
|---|---|
| fihashf1rn | ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → (♯‘𝐹) = (♯‘ran 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn 5482 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | simpl 109 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ∈ Fin) | |
| 3 | fnfi 7037 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → 𝐹 ∈ Fin) | |
| 4 | 1, 2, 3 | syl2an2 594 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹 ∈ Fin) |
| 5 | f1o2ndf1 6313 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → (2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹) | |
| 6 | df-2nd 6226 | . . . . . . . . 9 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
| 7 | 6 | funmpt2 5309 | . . . . . . . 8 ⊢ Fun 2nd |
| 8 | f1f 5480 | . . . . . . . . . . 11 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 9 | 8 | anim2i 342 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → (𝐴 ∈ Fin ∧ 𝐹:𝐴⟶𝐵)) |
| 10 | 9 | ancomd 267 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ Fin)) |
| 11 | fex 5812 | . . . . . . . . 9 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ Fin) → 𝐹 ∈ V) | |
| 12 | 10, 11 | syl 14 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹 ∈ V) |
| 13 | resfunexg 5804 | . . . . . . . 8 ⊢ ((Fun 2nd ∧ 𝐹 ∈ V) → (2nd ↾ 𝐹) ∈ V) | |
| 14 | 7, 12, 13 | sylancr 414 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → (2nd ↾ 𝐹) ∈ V) |
| 15 | f1oeq1 5509 | . . . . . . . . . 10 ⊢ ((2nd ↾ 𝐹) = 𝑓 → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 ↔ 𝑓:𝐹–1-1-onto→ran 𝐹)) | |
| 16 | 15 | biimpd 144 | . . . . . . . . 9 ⊢ ((2nd ↾ 𝐹) = 𝑓 → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → 𝑓:𝐹–1-1-onto→ran 𝐹)) |
| 17 | 16 | eqcoms 2207 | . . . . . . . 8 ⊢ (𝑓 = (2nd ↾ 𝐹) → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → 𝑓:𝐹–1-1-onto→ran 𝐹)) |
| 18 | 17 | adantl 277 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑓 = (2nd ↾ 𝐹)) → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → 𝑓:𝐹–1-1-onto→ran 𝐹)) |
| 19 | 14, 18 | spcimedv 2858 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹)) |
| 20 | 19 | ex 115 | . . . . 5 ⊢ (𝐴 ∈ Fin → (𝐹:𝐴–1-1→𝐵 → ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → ∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹))) |
| 21 | 20 | com13 80 | . . . 4 ⊢ ((2nd ↾ 𝐹):𝐹–1-1-onto→ran 𝐹 → (𝐹:𝐴–1-1→𝐵 → (𝐴 ∈ Fin → ∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹))) |
| 22 | 5, 21 | mpcom 36 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐴 ∈ Fin → ∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹)) |
| 23 | 22 | impcom 125 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → ∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹) |
| 24 | fihasheqf1oi 10930 | . . . 4 ⊢ ((𝐹 ∈ Fin ∧ 𝑓:𝐹–1-1-onto→ran 𝐹) → (♯‘𝐹) = (♯‘ran 𝐹)) | |
| 25 | 24 | ex 115 | . . 3 ⊢ (𝐹 ∈ Fin → (𝑓:𝐹–1-1-onto→ran 𝐹 → (♯‘𝐹) = (♯‘ran 𝐹))) |
| 26 | 25 | exlimdv 1841 | . 2 ⊢ (𝐹 ∈ Fin → (∃𝑓 𝑓:𝐹–1-1-onto→ran 𝐹 → (♯‘𝐹) = (♯‘ran 𝐹))) |
| 27 | 4, 23, 26 | sylc 62 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → (♯‘𝐹) = (♯‘ran 𝐹)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∃wex 1514 ∈ wcel 2175 Vcvv 2771 {csn 3632 ∪ cuni 3849 ran crn 4675 ↾ cres 4676 Fun wfun 5264 Fn wfn 5265 ⟶wf 5266 –1-1→wf1 5267 –1-1-onto→wf1o 5269 ‘cfv 5270 2nd c2nd 6224 Fincfn 6826 ♯chash 10918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-2nd 6226 df-recs 6390 df-frec 6476 df-1o 6501 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 df-uz 9648 df-ihash 10919 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |