Step | Hyp | Ref
| Expression |
1 | | f1fn 5425 |
. . 3
β’ (πΉ:π΄β1-1βπ΅ β πΉ Fn π΄) |
2 | | simpl 109 |
. . 3
β’ ((π΄ β Fin β§ πΉ:π΄β1-1βπ΅) β π΄ β Fin) |
3 | | fnfi 6938 |
. . 3
β’ ((πΉ Fn π΄ β§ π΄ β Fin) β πΉ β Fin) |
4 | 1, 2, 3 | syl2an2 594 |
. 2
β’ ((π΄ β Fin β§ πΉ:π΄β1-1βπ΅) β πΉ β Fin) |
5 | | f1o2ndf1 6231 |
. . . 4
β’ (πΉ:π΄β1-1βπ΅ β (2nd βΎ πΉ):πΉβ1-1-ontoβran
πΉ) |
6 | | df-2nd 6144 |
. . . . . . . . 9
β’
2nd = (π₯
β V β¦ βͺ ran {π₯}) |
7 | 6 | funmpt2 5257 |
. . . . . . . 8
β’ Fun
2nd |
8 | | f1f 5423 |
. . . . . . . . . . 11
β’ (πΉ:π΄β1-1βπ΅ β πΉ:π΄βΆπ΅) |
9 | 8 | anim2i 342 |
. . . . . . . . . 10
β’ ((π΄ β Fin β§ πΉ:π΄β1-1βπ΅) β (π΄ β Fin β§ πΉ:π΄βΆπ΅)) |
10 | 9 | ancomd 267 |
. . . . . . . . 9
β’ ((π΄ β Fin β§ πΉ:π΄β1-1βπ΅) β (πΉ:π΄βΆπ΅ β§ π΄ β Fin)) |
11 | | fex 5747 |
. . . . . . . . 9
β’ ((πΉ:π΄βΆπ΅ β§ π΄ β Fin) β πΉ β V) |
12 | 10, 11 | syl 14 |
. . . . . . . 8
β’ ((π΄ β Fin β§ πΉ:π΄β1-1βπ΅) β πΉ β V) |
13 | | resfunexg 5739 |
. . . . . . . 8
β’ ((Fun
2nd β§ πΉ
β V) β (2nd βΎ πΉ) β V) |
14 | 7, 12, 13 | sylancr 414 |
. . . . . . 7
β’ ((π΄ β Fin β§ πΉ:π΄β1-1βπ΅) β (2nd βΎ πΉ) β V) |
15 | | f1oeq1 5451 |
. . . . . . . . . 10
β’
((2nd βΎ πΉ) = π β ((2nd βΎ πΉ):πΉβ1-1-ontoβran
πΉ β π:πΉβ1-1-ontoβran
πΉ)) |
16 | 15 | biimpd 144 |
. . . . . . . . 9
β’
((2nd βΎ πΉ) = π β ((2nd βΎ πΉ):πΉβ1-1-ontoβran
πΉ β π:πΉβ1-1-ontoβran
πΉ)) |
17 | 16 | eqcoms 2180 |
. . . . . . . 8
β’ (π = (2nd βΎ πΉ) β ((2nd
βΎ πΉ):πΉβ1-1-ontoβran
πΉ β π:πΉβ1-1-ontoβran
πΉ)) |
18 | 17 | adantl 277 |
. . . . . . 7
β’ (((π΄ β Fin β§ πΉ:π΄β1-1βπ΅) β§ π = (2nd βΎ πΉ)) β ((2nd βΎ πΉ):πΉβ1-1-ontoβran
πΉ β π:πΉβ1-1-ontoβran
πΉ)) |
19 | 14, 18 | spcimedv 2825 |
. . . . . 6
β’ ((π΄ β Fin β§ πΉ:π΄β1-1βπ΅) β ((2nd βΎ πΉ):πΉβ1-1-ontoβran
πΉ β βπ π:πΉβ1-1-ontoβran
πΉ)) |
20 | 19 | ex 115 |
. . . . 5
β’ (π΄ β Fin β (πΉ:π΄β1-1βπ΅ β ((2nd βΎ πΉ):πΉβ1-1-ontoβran
πΉ β βπ π:πΉβ1-1-ontoβran
πΉ))) |
21 | 20 | com13 80 |
. . . 4
β’
((2nd βΎ πΉ):πΉβ1-1-ontoβran
πΉ β (πΉ:π΄β1-1βπ΅ β (π΄ β Fin β βπ π:πΉβ1-1-ontoβran
πΉ))) |
22 | 5, 21 | mpcom 36 |
. . 3
β’ (πΉ:π΄β1-1βπ΅ β (π΄ β Fin β βπ π:πΉβ1-1-ontoβran
πΉ)) |
23 | 22 | impcom 125 |
. 2
β’ ((π΄ β Fin β§ πΉ:π΄β1-1βπ΅) β βπ π:πΉβ1-1-ontoβran
πΉ) |
24 | | fihasheqf1oi 10769 |
. . . 4
β’ ((πΉ β Fin β§ π:πΉβ1-1-ontoβran
πΉ) β
(β―βπΉ) =
(β―βran πΉ)) |
25 | 24 | ex 115 |
. . 3
β’ (πΉ β Fin β (π:πΉβ1-1-ontoβran
πΉ β
(β―βπΉ) =
(β―βran πΉ))) |
26 | 25 | exlimdv 1819 |
. 2
β’ (πΉ β Fin β (βπ π:πΉβ1-1-ontoβran
πΉ β
(β―βπΉ) =
(β―βran πΉ))) |
27 | 4, 23, 26 | sylc 62 |
1
β’ ((π΄ β Fin β§ πΉ:π΄β1-1βπ΅) β (β―βπΉ) = (β―βran πΉ)) |