ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fihashf1rn GIF version

Theorem fihashf1rn 10770
Description: The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Jim Kingdon, 21-Feb-2022.)
Assertion
Ref Expression
fihashf1rn ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐡) β†’ (β™―β€˜πΉ) = (β™―β€˜ran 𝐹))

Proof of Theorem fihashf1rn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1fn 5425 . . 3 (𝐹:𝐴–1-1→𝐡 β†’ 𝐹 Fn 𝐴)
2 simpl 109 . . 3 ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐡) β†’ 𝐴 ∈ Fin)
3 fnfi 6938 . . 3 ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) β†’ 𝐹 ∈ Fin)
41, 2, 3syl2an2 594 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐡) β†’ 𝐹 ∈ Fin)
5 f1o2ndf1 6231 . . . 4 (𝐹:𝐴–1-1→𝐡 β†’ (2nd β†Ύ 𝐹):𝐹–1-1-ontoβ†’ran 𝐹)
6 df-2nd 6144 . . . . . . . . 9 2nd = (π‘₯ ∈ V ↦ βˆͺ ran {π‘₯})
76funmpt2 5257 . . . . . . . 8 Fun 2nd
8 f1f 5423 . . . . . . . . . . 11 (𝐹:𝐴–1-1→𝐡 β†’ 𝐹:𝐴⟢𝐡)
98anim2i 342 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐡) β†’ (𝐴 ∈ Fin ∧ 𝐹:𝐴⟢𝐡))
109ancomd 267 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐡) β†’ (𝐹:𝐴⟢𝐡 ∧ 𝐴 ∈ Fin))
11 fex 5747 . . . . . . . . 9 ((𝐹:𝐴⟢𝐡 ∧ 𝐴 ∈ Fin) β†’ 𝐹 ∈ V)
1210, 11syl 14 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐡) β†’ 𝐹 ∈ V)
13 resfunexg 5739 . . . . . . . 8 ((Fun 2nd ∧ 𝐹 ∈ V) β†’ (2nd β†Ύ 𝐹) ∈ V)
147, 12, 13sylancr 414 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐡) β†’ (2nd β†Ύ 𝐹) ∈ V)
15 f1oeq1 5451 . . . . . . . . . 10 ((2nd β†Ύ 𝐹) = 𝑓 β†’ ((2nd β†Ύ 𝐹):𝐹–1-1-ontoβ†’ran 𝐹 ↔ 𝑓:𝐹–1-1-ontoβ†’ran 𝐹))
1615biimpd 144 . . . . . . . . 9 ((2nd β†Ύ 𝐹) = 𝑓 β†’ ((2nd β†Ύ 𝐹):𝐹–1-1-ontoβ†’ran 𝐹 β†’ 𝑓:𝐹–1-1-ontoβ†’ran 𝐹))
1716eqcoms 2180 . . . . . . . 8 (𝑓 = (2nd β†Ύ 𝐹) β†’ ((2nd β†Ύ 𝐹):𝐹–1-1-ontoβ†’ran 𝐹 β†’ 𝑓:𝐹–1-1-ontoβ†’ran 𝐹))
1817adantl 277 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐡) ∧ 𝑓 = (2nd β†Ύ 𝐹)) β†’ ((2nd β†Ύ 𝐹):𝐹–1-1-ontoβ†’ran 𝐹 β†’ 𝑓:𝐹–1-1-ontoβ†’ran 𝐹))
1914, 18spcimedv 2825 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐡) β†’ ((2nd β†Ύ 𝐹):𝐹–1-1-ontoβ†’ran 𝐹 β†’ βˆƒπ‘“ 𝑓:𝐹–1-1-ontoβ†’ran 𝐹))
2019ex 115 . . . . 5 (𝐴 ∈ Fin β†’ (𝐹:𝐴–1-1→𝐡 β†’ ((2nd β†Ύ 𝐹):𝐹–1-1-ontoβ†’ran 𝐹 β†’ βˆƒπ‘“ 𝑓:𝐹–1-1-ontoβ†’ran 𝐹)))
2120com13 80 . . . 4 ((2nd β†Ύ 𝐹):𝐹–1-1-ontoβ†’ran 𝐹 β†’ (𝐹:𝐴–1-1→𝐡 β†’ (𝐴 ∈ Fin β†’ βˆƒπ‘“ 𝑓:𝐹–1-1-ontoβ†’ran 𝐹)))
225, 21mpcom 36 . . 3 (𝐹:𝐴–1-1→𝐡 β†’ (𝐴 ∈ Fin β†’ βˆƒπ‘“ 𝑓:𝐹–1-1-ontoβ†’ran 𝐹))
2322impcom 125 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐡) β†’ βˆƒπ‘“ 𝑓:𝐹–1-1-ontoβ†’ran 𝐹)
24 fihasheqf1oi 10769 . . . 4 ((𝐹 ∈ Fin ∧ 𝑓:𝐹–1-1-ontoβ†’ran 𝐹) β†’ (β™―β€˜πΉ) = (β™―β€˜ran 𝐹))
2524ex 115 . . 3 (𝐹 ∈ Fin β†’ (𝑓:𝐹–1-1-ontoβ†’ran 𝐹 β†’ (β™―β€˜πΉ) = (β™―β€˜ran 𝐹)))
2625exlimdv 1819 . 2 (𝐹 ∈ Fin β†’ (βˆƒπ‘“ 𝑓:𝐹–1-1-ontoβ†’ran 𝐹 β†’ (β™―β€˜πΉ) = (β™―β€˜ran 𝐹)))
274, 23, 26sylc 62 1 ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐡) β†’ (β™―β€˜πΉ) = (β™―β€˜ran 𝐹))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   = wceq 1353  βˆƒwex 1492   ∈ wcel 2148  Vcvv 2739  {csn 3594  βˆͺ cuni 3811  ran crn 4629   β†Ύ cres 4630  Fun wfun 5212   Fn wfn 5213  βŸΆwf 5214  β€“1-1β†’wf1 5215  β€“1-1-ontoβ†’wf1o 5217  β€˜cfv 5218  2nd c2nd 6142  Fincfn 6742  β™―chash 10757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-2nd 6144  df-recs 6308  df-frec 6394  df-1o 6419  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-ihash 10758
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator