ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  updjudhcoinlf GIF version

Theorem updjudhcoinlf 7141
Description: The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the left injection equals the first function. (Contributed by AV, 27-Jun-2022.)
Hypotheses
Ref Expression
updjud.f (𝜑𝐹:𝐴𝐶)
updjud.g (𝜑𝐺:𝐵𝐶)
updjudhf.h 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
Assertion
Ref Expression
updjudhcoinlf (𝜑 → (𝐻 ∘ (inl ↾ 𝐴)) = 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥   𝑥,𝐹
Allowed substitution hints:   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem updjudhcoinlf
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 updjud.f . . . . 5 (𝜑𝐹:𝐴𝐶)
2 updjud.g . . . . 5 (𝜑𝐺:𝐵𝐶)
3 updjudhf.h . . . . 5 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
41, 2, 3updjudhf 7140 . . . 4 (𝜑𝐻:(𝐴𝐵)⟶𝐶)
5 ffn 5404 . . . 4 (𝐻:(𝐴𝐵)⟶𝐶𝐻 Fn (𝐴𝐵))
64, 5syl 14 . . 3 (𝜑𝐻 Fn (𝐴𝐵))
7 inlresf1 7122 . . . 4 (inl ↾ 𝐴):𝐴1-1→(𝐴𝐵)
8 f1fn 5462 . . . 4 ((inl ↾ 𝐴):𝐴1-1→(𝐴𝐵) → (inl ↾ 𝐴) Fn 𝐴)
97, 8mp1i 10 . . 3 (𝜑 → (inl ↾ 𝐴) Fn 𝐴)
10 f1f 5460 . . . . 5 ((inl ↾ 𝐴):𝐴1-1→(𝐴𝐵) → (inl ↾ 𝐴):𝐴⟶(𝐴𝐵))
117, 10ax-mp 5 . . . 4 (inl ↾ 𝐴):𝐴⟶(𝐴𝐵)
12 frn 5413 . . . 4 ((inl ↾ 𝐴):𝐴⟶(𝐴𝐵) → ran (inl ↾ 𝐴) ⊆ (𝐴𝐵))
1311, 12mp1i 10 . . 3 (𝜑 → ran (inl ↾ 𝐴) ⊆ (𝐴𝐵))
14 fnco 5363 . . 3 ((𝐻 Fn (𝐴𝐵) ∧ (inl ↾ 𝐴) Fn 𝐴 ∧ ran (inl ↾ 𝐴) ⊆ (𝐴𝐵)) → (𝐻 ∘ (inl ↾ 𝐴)) Fn 𝐴)
156, 9, 13, 14syl3anc 1249 . 2 (𝜑 → (𝐻 ∘ (inl ↾ 𝐴)) Fn 𝐴)
16 ffn 5404 . . 3 (𝐹:𝐴𝐶𝐹 Fn 𝐴)
171, 16syl 14 . 2 (𝜑𝐹 Fn 𝐴)
18 fvco2 5627 . . . 4 (((inl ↾ 𝐴) Fn 𝐴𝑎𝐴) → ((𝐻 ∘ (inl ↾ 𝐴))‘𝑎) = (𝐻‘((inl ↾ 𝐴)‘𝑎)))
199, 18sylan 283 . . 3 ((𝜑𝑎𝐴) → ((𝐻 ∘ (inl ↾ 𝐴))‘𝑎) = (𝐻‘((inl ↾ 𝐴)‘𝑎)))
20 fvres 5579 . . . . . 6 (𝑎𝐴 → ((inl ↾ 𝐴)‘𝑎) = (inl‘𝑎))
2120adantl 277 . . . . 5 ((𝜑𝑎𝐴) → ((inl ↾ 𝐴)‘𝑎) = (inl‘𝑎))
2221fveq2d 5559 . . . 4 ((𝜑𝑎𝐴) → (𝐻‘((inl ↾ 𝐴)‘𝑎)) = (𝐻‘(inl‘𝑎)))
233a1i 9 . . . . 5 ((𝜑𝑎𝐴) → 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))))
24 fveq2 5555 . . . . . . . . 9 (𝑥 = (inl‘𝑎) → (1st𝑥) = (1st ‘(inl‘𝑎)))
2524eqeq1d 2202 . . . . . . . 8 (𝑥 = (inl‘𝑎) → ((1st𝑥) = ∅ ↔ (1st ‘(inl‘𝑎)) = ∅))
26 fveq2 5555 . . . . . . . . 9 (𝑥 = (inl‘𝑎) → (2nd𝑥) = (2nd ‘(inl‘𝑎)))
2726fveq2d 5559 . . . . . . . 8 (𝑥 = (inl‘𝑎) → (𝐹‘(2nd𝑥)) = (𝐹‘(2nd ‘(inl‘𝑎))))
2826fveq2d 5559 . . . . . . . 8 (𝑥 = (inl‘𝑎) → (𝐺‘(2nd𝑥)) = (𝐺‘(2nd ‘(inl‘𝑎))))
2925, 27, 28ifbieq12d 3584 . . . . . . 7 (𝑥 = (inl‘𝑎) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) = if((1st ‘(inl‘𝑎)) = ∅, (𝐹‘(2nd ‘(inl‘𝑎))), (𝐺‘(2nd ‘(inl‘𝑎)))))
3029adantl 277 . . . . . 6 (((𝜑𝑎𝐴) ∧ 𝑥 = (inl‘𝑎)) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) = if((1st ‘(inl‘𝑎)) = ∅, (𝐹‘(2nd ‘(inl‘𝑎))), (𝐺‘(2nd ‘(inl‘𝑎)))))
31 1stinl 7135 . . . . . . . . 9 (𝑎𝐴 → (1st ‘(inl‘𝑎)) = ∅)
3231adantl 277 . . . . . . . 8 ((𝜑𝑎𝐴) → (1st ‘(inl‘𝑎)) = ∅)
3332adantr 276 . . . . . . 7 (((𝜑𝑎𝐴) ∧ 𝑥 = (inl‘𝑎)) → (1st ‘(inl‘𝑎)) = ∅)
3433iftrued 3565 . . . . . 6 (((𝜑𝑎𝐴) ∧ 𝑥 = (inl‘𝑎)) → if((1st ‘(inl‘𝑎)) = ∅, (𝐹‘(2nd ‘(inl‘𝑎))), (𝐺‘(2nd ‘(inl‘𝑎)))) = (𝐹‘(2nd ‘(inl‘𝑎))))
3530, 34eqtrd 2226 . . . . 5 (((𝜑𝑎𝐴) ∧ 𝑥 = (inl‘𝑎)) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) = (𝐹‘(2nd ‘(inl‘𝑎))))
36 djulcl 7112 . . . . . 6 (𝑎𝐴 → (inl‘𝑎) ∈ (𝐴𝐵))
3736adantl 277 . . . . 5 ((𝜑𝑎𝐴) → (inl‘𝑎) ∈ (𝐴𝐵))
381adantr 276 . . . . . 6 ((𝜑𝑎𝐴) → 𝐹:𝐴𝐶)
39 2ndinl 7136 . . . . . . . 8 (𝑎𝐴 → (2nd ‘(inl‘𝑎)) = 𝑎)
4039adantl 277 . . . . . . 7 ((𝜑𝑎𝐴) → (2nd ‘(inl‘𝑎)) = 𝑎)
41 simpr 110 . . . . . . 7 ((𝜑𝑎𝐴) → 𝑎𝐴)
4240, 41eqeltrd 2270 . . . . . 6 ((𝜑𝑎𝐴) → (2nd ‘(inl‘𝑎)) ∈ 𝐴)
4338, 42ffvelcdmd 5695 . . . . 5 ((𝜑𝑎𝐴) → (𝐹‘(2nd ‘(inl‘𝑎))) ∈ 𝐶)
4423, 35, 37, 43fvmptd 5639 . . . 4 ((𝜑𝑎𝐴) → (𝐻‘(inl‘𝑎)) = (𝐹‘(2nd ‘(inl‘𝑎))))
4522, 44eqtrd 2226 . . 3 ((𝜑𝑎𝐴) → (𝐻‘((inl ↾ 𝐴)‘𝑎)) = (𝐹‘(2nd ‘(inl‘𝑎))))
4640fveq2d 5559 . . 3 ((𝜑𝑎𝐴) → (𝐹‘(2nd ‘(inl‘𝑎))) = (𝐹𝑎))
4719, 45, 463eqtrd 2230 . 2 ((𝜑𝑎𝐴) → ((𝐻 ∘ (inl ↾ 𝐴))‘𝑎) = (𝐹𝑎))
4815, 17, 47eqfnfvd 5659 1 (𝜑 → (𝐻 ∘ (inl ↾ 𝐴)) = 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wss 3154  c0 3447  ifcif 3558  cmpt 4091  ran crn 4661  cres 4662  ccom 4664   Fn wfn 5250  wf 5251  1-1wf1 5252  cfv 5255  1st c1st 6193  2nd c2nd 6194  cdju 7098  inlcinl 7106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-1o 6471  df-dju 7099  df-inl 7108  df-inr 7109
This theorem is referenced by:  updjud  7143
  Copyright terms: Public domain W3C validator