| Step | Hyp | Ref
| Expression |
| 1 | | updjud.f |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| 2 | | updjud.g |
. . . . 5
⊢ (𝜑 → 𝐺:𝐵⟶𝐶) |
| 3 | | updjudhf.h |
. . . . 5
⊢ 𝐻 = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥)))) |
| 4 | 1, 2, 3 | updjudhf 7145 |
. . . 4
⊢ (𝜑 → 𝐻:(𝐴 ⊔ 𝐵)⟶𝐶) |
| 5 | | ffn 5407 |
. . . 4
⊢ (𝐻:(𝐴 ⊔ 𝐵)⟶𝐶 → 𝐻 Fn (𝐴 ⊔ 𝐵)) |
| 6 | 4, 5 | syl 14 |
. . 3
⊢ (𝜑 → 𝐻 Fn (𝐴 ⊔ 𝐵)) |
| 7 | | inlresf1 7127 |
. . . 4
⊢ (inl
↾ 𝐴):𝐴–1-1→(𝐴 ⊔ 𝐵) |
| 8 | | f1fn 5465 |
. . . 4
⊢ ((inl
↾ 𝐴):𝐴–1-1→(𝐴 ⊔ 𝐵) → (inl ↾ 𝐴) Fn 𝐴) |
| 9 | 7, 8 | mp1i 10 |
. . 3
⊢ (𝜑 → (inl ↾ 𝐴) Fn 𝐴) |
| 10 | | f1f 5463 |
. . . . 5
⊢ ((inl
↾ 𝐴):𝐴–1-1→(𝐴 ⊔ 𝐵) → (inl ↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵)) |
| 11 | 7, 10 | ax-mp 5 |
. . . 4
⊢ (inl
↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) |
| 12 | | frn 5416 |
. . . 4
⊢ ((inl
↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) → ran (inl ↾ 𝐴) ⊆ (𝐴 ⊔ 𝐵)) |
| 13 | 11, 12 | mp1i 10 |
. . 3
⊢ (𝜑 → ran (inl ↾ 𝐴) ⊆ (𝐴 ⊔ 𝐵)) |
| 14 | | fnco 5366 |
. . 3
⊢ ((𝐻 Fn (𝐴 ⊔ 𝐵) ∧ (inl ↾ 𝐴) Fn 𝐴 ∧ ran (inl ↾ 𝐴) ⊆ (𝐴 ⊔ 𝐵)) → (𝐻 ∘ (inl ↾ 𝐴)) Fn 𝐴) |
| 15 | 6, 9, 13, 14 | syl3anc 1249 |
. 2
⊢ (𝜑 → (𝐻 ∘ (inl ↾ 𝐴)) Fn 𝐴) |
| 16 | | ffn 5407 |
. . 3
⊢ (𝐹:𝐴⟶𝐶 → 𝐹 Fn 𝐴) |
| 17 | 1, 16 | syl 14 |
. 2
⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 18 | | fvco2 5630 |
. . . 4
⊢ (((inl
↾ 𝐴) Fn 𝐴 ∧ 𝑎 ∈ 𝐴) → ((𝐻 ∘ (inl ↾ 𝐴))‘𝑎) = (𝐻‘((inl ↾ 𝐴)‘𝑎))) |
| 19 | 9, 18 | sylan 283 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ((𝐻 ∘ (inl ↾ 𝐴))‘𝑎) = (𝐻‘((inl ↾ 𝐴)‘𝑎))) |
| 20 | | fvres 5582 |
. . . . . 6
⊢ (𝑎 ∈ 𝐴 → ((inl ↾ 𝐴)‘𝑎) = (inl‘𝑎)) |
| 21 | 20 | adantl 277 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ((inl ↾ 𝐴)‘𝑎) = (inl‘𝑎)) |
| 22 | 21 | fveq2d 5562 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝐻‘((inl ↾ 𝐴)‘𝑎)) = (𝐻‘(inl‘𝑎))) |
| 23 | 3 | a1i 9 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐻 = (𝑥 ∈ (𝐴 ⊔ 𝐵) ↦ if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))))) |
| 24 | | fveq2 5558 |
. . . . . . . . 9
⊢ (𝑥 = (inl‘𝑎) → (1st ‘𝑥) = (1st
‘(inl‘𝑎))) |
| 25 | 24 | eqeq1d 2205 |
. . . . . . . 8
⊢ (𝑥 = (inl‘𝑎) → ((1st ‘𝑥) = ∅ ↔
(1st ‘(inl‘𝑎)) = ∅)) |
| 26 | | fveq2 5558 |
. . . . . . . . 9
⊢ (𝑥 = (inl‘𝑎) → (2nd ‘𝑥) = (2nd
‘(inl‘𝑎))) |
| 27 | 26 | fveq2d 5562 |
. . . . . . . 8
⊢ (𝑥 = (inl‘𝑎) → (𝐹‘(2nd ‘𝑥)) = (𝐹‘(2nd
‘(inl‘𝑎)))) |
| 28 | 26 | fveq2d 5562 |
. . . . . . . 8
⊢ (𝑥 = (inl‘𝑎) → (𝐺‘(2nd ‘𝑥)) = (𝐺‘(2nd
‘(inl‘𝑎)))) |
| 29 | 25, 27, 28 | ifbieq12d 3587 |
. . . . . . 7
⊢ (𝑥 = (inl‘𝑎) → if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))) = if((1st
‘(inl‘𝑎)) =
∅, (𝐹‘(2nd
‘(inl‘𝑎))),
(𝐺‘(2nd
‘(inl‘𝑎))))) |
| 30 | 29 | adantl 277 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑎)) → if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))) = if((1st
‘(inl‘𝑎)) =
∅, (𝐹‘(2nd
‘(inl‘𝑎))),
(𝐺‘(2nd
‘(inl‘𝑎))))) |
| 31 | | 1stinl 7140 |
. . . . . . . . 9
⊢ (𝑎 ∈ 𝐴 → (1st
‘(inl‘𝑎)) =
∅) |
| 32 | 31 | adantl 277 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (1st
‘(inl‘𝑎)) =
∅) |
| 33 | 32 | adantr 276 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑎)) → (1st
‘(inl‘𝑎)) =
∅) |
| 34 | 33 | iftrued 3568 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑎)) → if((1st
‘(inl‘𝑎)) =
∅, (𝐹‘(2nd
‘(inl‘𝑎))),
(𝐺‘(2nd
‘(inl‘𝑎)))) =
(𝐹‘(2nd
‘(inl‘𝑎)))) |
| 35 | 30, 34 | eqtrd 2229 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐴) ∧ 𝑥 = (inl‘𝑎)) → if((1st ‘𝑥) = ∅, (𝐹‘(2nd ‘𝑥)), (𝐺‘(2nd ‘𝑥))) = (𝐹‘(2nd
‘(inl‘𝑎)))) |
| 36 | | djulcl 7117 |
. . . . . 6
⊢ (𝑎 ∈ 𝐴 → (inl‘𝑎) ∈ (𝐴 ⊔ 𝐵)) |
| 37 | 36 | adantl 277 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (inl‘𝑎) ∈ (𝐴 ⊔ 𝐵)) |
| 38 | 1 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐹:𝐴⟶𝐶) |
| 39 | | 2ndinl 7141 |
. . . . . . . 8
⊢ (𝑎 ∈ 𝐴 → (2nd
‘(inl‘𝑎)) =
𝑎) |
| 40 | 39 | adantl 277 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (2nd
‘(inl‘𝑎)) =
𝑎) |
| 41 | | simpr 110 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐴) |
| 42 | 40, 41 | eqeltrd 2273 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (2nd
‘(inl‘𝑎))
∈ 𝐴) |
| 43 | 38, 42 | ffvelcdmd 5698 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝐹‘(2nd
‘(inl‘𝑎)))
∈ 𝐶) |
| 44 | 23, 35, 37, 43 | fvmptd 5642 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝐻‘(inl‘𝑎)) = (𝐹‘(2nd
‘(inl‘𝑎)))) |
| 45 | 22, 44 | eqtrd 2229 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝐻‘((inl ↾ 𝐴)‘𝑎)) = (𝐹‘(2nd
‘(inl‘𝑎)))) |
| 46 | 40 | fveq2d 5562 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝐹‘(2nd
‘(inl‘𝑎))) =
(𝐹‘𝑎)) |
| 47 | 19, 45, 46 | 3eqtrd 2233 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ((𝐻 ∘ (inl ↾ 𝐴))‘𝑎) = (𝐹‘𝑎)) |
| 48 | 15, 17, 47 | eqfnfvd 5662 |
1
⊢ (𝜑 → (𝐻 ∘ (inl ↾ 𝐴)) = 𝐹) |