ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  updjudhcoinlf GIF version

Theorem updjudhcoinlf 7203
Description: The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the left injection equals the first function. (Contributed by AV, 27-Jun-2022.)
Hypotheses
Ref Expression
updjud.f (𝜑𝐹:𝐴𝐶)
updjud.g (𝜑𝐺:𝐵𝐶)
updjudhf.h 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
Assertion
Ref Expression
updjudhcoinlf (𝜑 → (𝐻 ∘ (inl ↾ 𝐴)) = 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥   𝑥,𝐹
Allowed substitution hints:   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem updjudhcoinlf
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 updjud.f . . . . 5 (𝜑𝐹:𝐴𝐶)
2 updjud.g . . . . 5 (𝜑𝐺:𝐵𝐶)
3 updjudhf.h . . . . 5 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
41, 2, 3updjudhf 7202 . . . 4 (𝜑𝐻:(𝐴𝐵)⟶𝐶)
5 ffn 5440 . . . 4 (𝐻:(𝐴𝐵)⟶𝐶𝐻 Fn (𝐴𝐵))
64, 5syl 14 . . 3 (𝜑𝐻 Fn (𝐴𝐵))
7 inlresf1 7184 . . . 4 (inl ↾ 𝐴):𝐴1-1→(𝐴𝐵)
8 f1fn 5500 . . . 4 ((inl ↾ 𝐴):𝐴1-1→(𝐴𝐵) → (inl ↾ 𝐴) Fn 𝐴)
97, 8mp1i 10 . . 3 (𝜑 → (inl ↾ 𝐴) Fn 𝐴)
10 f1f 5498 . . . . 5 ((inl ↾ 𝐴):𝐴1-1→(𝐴𝐵) → (inl ↾ 𝐴):𝐴⟶(𝐴𝐵))
117, 10ax-mp 5 . . . 4 (inl ↾ 𝐴):𝐴⟶(𝐴𝐵)
12 frn 5449 . . . 4 ((inl ↾ 𝐴):𝐴⟶(𝐴𝐵) → ran (inl ↾ 𝐴) ⊆ (𝐴𝐵))
1311, 12mp1i 10 . . 3 (𝜑 → ran (inl ↾ 𝐴) ⊆ (𝐴𝐵))
14 fnco 5398 . . 3 ((𝐻 Fn (𝐴𝐵) ∧ (inl ↾ 𝐴) Fn 𝐴 ∧ ran (inl ↾ 𝐴) ⊆ (𝐴𝐵)) → (𝐻 ∘ (inl ↾ 𝐴)) Fn 𝐴)
156, 9, 13, 14syl3anc 1250 . 2 (𝜑 → (𝐻 ∘ (inl ↾ 𝐴)) Fn 𝐴)
16 ffn 5440 . . 3 (𝐹:𝐴𝐶𝐹 Fn 𝐴)
171, 16syl 14 . 2 (𝜑𝐹 Fn 𝐴)
18 fvco2 5666 . . . 4 (((inl ↾ 𝐴) Fn 𝐴𝑎𝐴) → ((𝐻 ∘ (inl ↾ 𝐴))‘𝑎) = (𝐻‘((inl ↾ 𝐴)‘𝑎)))
199, 18sylan 283 . . 3 ((𝜑𝑎𝐴) → ((𝐻 ∘ (inl ↾ 𝐴))‘𝑎) = (𝐻‘((inl ↾ 𝐴)‘𝑎)))
20 fvres 5618 . . . . . 6 (𝑎𝐴 → ((inl ↾ 𝐴)‘𝑎) = (inl‘𝑎))
2120adantl 277 . . . . 5 ((𝜑𝑎𝐴) → ((inl ↾ 𝐴)‘𝑎) = (inl‘𝑎))
2221fveq2d 5598 . . . 4 ((𝜑𝑎𝐴) → (𝐻‘((inl ↾ 𝐴)‘𝑎)) = (𝐻‘(inl‘𝑎)))
233a1i 9 . . . . 5 ((𝜑𝑎𝐴) → 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))))
24 fveq2 5594 . . . . . . . . 9 (𝑥 = (inl‘𝑎) → (1st𝑥) = (1st ‘(inl‘𝑎)))
2524eqeq1d 2215 . . . . . . . 8 (𝑥 = (inl‘𝑎) → ((1st𝑥) = ∅ ↔ (1st ‘(inl‘𝑎)) = ∅))
26 fveq2 5594 . . . . . . . . 9 (𝑥 = (inl‘𝑎) → (2nd𝑥) = (2nd ‘(inl‘𝑎)))
2726fveq2d 5598 . . . . . . . 8 (𝑥 = (inl‘𝑎) → (𝐹‘(2nd𝑥)) = (𝐹‘(2nd ‘(inl‘𝑎))))
2826fveq2d 5598 . . . . . . . 8 (𝑥 = (inl‘𝑎) → (𝐺‘(2nd𝑥)) = (𝐺‘(2nd ‘(inl‘𝑎))))
2925, 27, 28ifbieq12d 3602 . . . . . . 7 (𝑥 = (inl‘𝑎) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) = if((1st ‘(inl‘𝑎)) = ∅, (𝐹‘(2nd ‘(inl‘𝑎))), (𝐺‘(2nd ‘(inl‘𝑎)))))
3029adantl 277 . . . . . 6 (((𝜑𝑎𝐴) ∧ 𝑥 = (inl‘𝑎)) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) = if((1st ‘(inl‘𝑎)) = ∅, (𝐹‘(2nd ‘(inl‘𝑎))), (𝐺‘(2nd ‘(inl‘𝑎)))))
31 1stinl 7197 . . . . . . . . 9 (𝑎𝐴 → (1st ‘(inl‘𝑎)) = ∅)
3231adantl 277 . . . . . . . 8 ((𝜑𝑎𝐴) → (1st ‘(inl‘𝑎)) = ∅)
3332adantr 276 . . . . . . 7 (((𝜑𝑎𝐴) ∧ 𝑥 = (inl‘𝑎)) → (1st ‘(inl‘𝑎)) = ∅)
3433iftrued 3582 . . . . . 6 (((𝜑𝑎𝐴) ∧ 𝑥 = (inl‘𝑎)) → if((1st ‘(inl‘𝑎)) = ∅, (𝐹‘(2nd ‘(inl‘𝑎))), (𝐺‘(2nd ‘(inl‘𝑎)))) = (𝐹‘(2nd ‘(inl‘𝑎))))
3530, 34eqtrd 2239 . . . . 5 (((𝜑𝑎𝐴) ∧ 𝑥 = (inl‘𝑎)) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) = (𝐹‘(2nd ‘(inl‘𝑎))))
36 djulcl 7174 . . . . . 6 (𝑎𝐴 → (inl‘𝑎) ∈ (𝐴𝐵))
3736adantl 277 . . . . 5 ((𝜑𝑎𝐴) → (inl‘𝑎) ∈ (𝐴𝐵))
381adantr 276 . . . . . 6 ((𝜑𝑎𝐴) → 𝐹:𝐴𝐶)
39 2ndinl 7198 . . . . . . . 8 (𝑎𝐴 → (2nd ‘(inl‘𝑎)) = 𝑎)
4039adantl 277 . . . . . . 7 ((𝜑𝑎𝐴) → (2nd ‘(inl‘𝑎)) = 𝑎)
41 simpr 110 . . . . . . 7 ((𝜑𝑎𝐴) → 𝑎𝐴)
4240, 41eqeltrd 2283 . . . . . 6 ((𝜑𝑎𝐴) → (2nd ‘(inl‘𝑎)) ∈ 𝐴)
4338, 42ffvelcdmd 5734 . . . . 5 ((𝜑𝑎𝐴) → (𝐹‘(2nd ‘(inl‘𝑎))) ∈ 𝐶)
4423, 35, 37, 43fvmptd 5678 . . . 4 ((𝜑𝑎𝐴) → (𝐻‘(inl‘𝑎)) = (𝐹‘(2nd ‘(inl‘𝑎))))
4522, 44eqtrd 2239 . . 3 ((𝜑𝑎𝐴) → (𝐻‘((inl ↾ 𝐴)‘𝑎)) = (𝐹‘(2nd ‘(inl‘𝑎))))
4640fveq2d 5598 . . 3 ((𝜑𝑎𝐴) → (𝐹‘(2nd ‘(inl‘𝑎))) = (𝐹𝑎))
4719, 45, 463eqtrd 2243 . 2 ((𝜑𝑎𝐴) → ((𝐻 ∘ (inl ↾ 𝐴))‘𝑎) = (𝐹𝑎))
4815, 17, 47eqfnfvd 5698 1 (𝜑 → (𝐻 ∘ (inl ↾ 𝐴)) = 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wss 3170  c0 3464  ifcif 3575  cmpt 4116  ran crn 4689  cres 4690  ccom 4692   Fn wfn 5280  wf 5281  1-1wf1 5282  cfv 5285  1st c1st 6242  2nd c2nd 6243  cdju 7160  inlcinl 7168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-1st 6244  df-2nd 6245  df-1o 6520  df-dju 7161  df-inl 7170  df-inr 7171
This theorem is referenced by:  updjud  7205
  Copyright terms: Public domain W3C validator