ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  updjudhcoinlf GIF version

Theorem updjudhcoinlf 6825
Description: The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the left injection equals the first function. (Contributed by AV, 27-Jun-2022.)
Hypotheses
Ref Expression
updjud.f (𝜑𝐹:𝐴𝐶)
updjud.g (𝜑𝐺:𝐵𝐶)
updjudhf.h 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
Assertion
Ref Expression
updjudhcoinlf (𝜑 → (𝐻 ∘ (inl ↾ 𝐴)) = 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥   𝑥,𝐹
Allowed substitution hints:   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem updjudhcoinlf
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 updjud.f . . . . 5 (𝜑𝐹:𝐴𝐶)
2 updjud.g . . . . 5 (𝜑𝐺:𝐵𝐶)
3 updjudhf.h . . . . 5 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
41, 2, 3updjudhf 6824 . . . 4 (𝜑𝐻:(𝐴𝐵)⟶𝐶)
5 ffn 5174 . . . 4 (𝐻:(𝐴𝐵)⟶𝐶𝐻 Fn (𝐴𝐵))
64, 5syl 14 . . 3 (𝜑𝐻 Fn (𝐴𝐵))
7 inlresf1 6807 . . . 4 (inl ↾ 𝐴):𝐴1-1→(𝐴𝐵)
8 f1fn 5231 . . . 4 ((inl ↾ 𝐴):𝐴1-1→(𝐴𝐵) → (inl ↾ 𝐴) Fn 𝐴)
97, 8mp1i 10 . . 3 (𝜑 → (inl ↾ 𝐴) Fn 𝐴)
10 f1f 5229 . . . . 5 ((inl ↾ 𝐴):𝐴1-1→(𝐴𝐵) → (inl ↾ 𝐴):𝐴⟶(𝐴𝐵))
117, 10ax-mp 7 . . . 4 (inl ↾ 𝐴):𝐴⟶(𝐴𝐵)
12 frn 5182 . . . 4 ((inl ↾ 𝐴):𝐴⟶(𝐴𝐵) → ran (inl ↾ 𝐴) ⊆ (𝐴𝐵))
1311, 12mp1i 10 . . 3 (𝜑 → ran (inl ↾ 𝐴) ⊆ (𝐴𝐵))
14 fnco 5135 . . 3 ((𝐻 Fn (𝐴𝐵) ∧ (inl ↾ 𝐴) Fn 𝐴 ∧ ran (inl ↾ 𝐴) ⊆ (𝐴𝐵)) → (𝐻 ∘ (inl ↾ 𝐴)) Fn 𝐴)
156, 9, 13, 14syl3anc 1175 . 2 (𝜑 → (𝐻 ∘ (inl ↾ 𝐴)) Fn 𝐴)
16 ffn 5174 . . 3 (𝐹:𝐴𝐶𝐹 Fn 𝐴)
171, 16syl 14 . 2 (𝜑𝐹 Fn 𝐴)
18 fvco2 5386 . . . 4 (((inl ↾ 𝐴) Fn 𝐴𝑎𝐴) → ((𝐻 ∘ (inl ↾ 𝐴))‘𝑎) = (𝐻‘((inl ↾ 𝐴)‘𝑎)))
199, 18sylan 278 . . 3 ((𝜑𝑎𝐴) → ((𝐻 ∘ (inl ↾ 𝐴))‘𝑎) = (𝐻‘((inl ↾ 𝐴)‘𝑎)))
20 fvres 5342 . . . . . 6 (𝑎𝐴 → ((inl ↾ 𝐴)‘𝑎) = (inl‘𝑎))
2120adantl 272 . . . . 5 ((𝜑𝑎𝐴) → ((inl ↾ 𝐴)‘𝑎) = (inl‘𝑎))
2221fveq2d 5322 . . . 4 ((𝜑𝑎𝐴) → (𝐻‘((inl ↾ 𝐴)‘𝑎)) = (𝐻‘(inl‘𝑎)))
233a1i 9 . . . . 5 ((𝜑𝑎𝐴) → 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))))
24 fveq2 5318 . . . . . . . . 9 (𝑥 = (inl‘𝑎) → (1st𝑥) = (1st ‘(inl‘𝑎)))
2524eqeq1d 2097 . . . . . . . 8 (𝑥 = (inl‘𝑎) → ((1st𝑥) = ∅ ↔ (1st ‘(inl‘𝑎)) = ∅))
26 fveq2 5318 . . . . . . . . 9 (𝑥 = (inl‘𝑎) → (2nd𝑥) = (2nd ‘(inl‘𝑎)))
2726fveq2d 5322 . . . . . . . 8 (𝑥 = (inl‘𝑎) → (𝐹‘(2nd𝑥)) = (𝐹‘(2nd ‘(inl‘𝑎))))
2826fveq2d 5322 . . . . . . . 8 (𝑥 = (inl‘𝑎) → (𝐺‘(2nd𝑥)) = (𝐺‘(2nd ‘(inl‘𝑎))))
2925, 27, 28ifbieq12d 3421 . . . . . . 7 (𝑥 = (inl‘𝑎) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) = if((1st ‘(inl‘𝑎)) = ∅, (𝐹‘(2nd ‘(inl‘𝑎))), (𝐺‘(2nd ‘(inl‘𝑎)))))
3029adantl 272 . . . . . 6 (((𝜑𝑎𝐴) ∧ 𝑥 = (inl‘𝑎)) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) = if((1st ‘(inl‘𝑎)) = ∅, (𝐹‘(2nd ‘(inl‘𝑎))), (𝐺‘(2nd ‘(inl‘𝑎)))))
31 1stinl 6819 . . . . . . . . 9 (𝑎𝐴 → (1st ‘(inl‘𝑎)) = ∅)
3231adantl 272 . . . . . . . 8 ((𝜑𝑎𝐴) → (1st ‘(inl‘𝑎)) = ∅)
3332adantr 271 . . . . . . 7 (((𝜑𝑎𝐴) ∧ 𝑥 = (inl‘𝑎)) → (1st ‘(inl‘𝑎)) = ∅)
3433iftrued 3404 . . . . . 6 (((𝜑𝑎𝐴) ∧ 𝑥 = (inl‘𝑎)) → if((1st ‘(inl‘𝑎)) = ∅, (𝐹‘(2nd ‘(inl‘𝑎))), (𝐺‘(2nd ‘(inl‘𝑎)))) = (𝐹‘(2nd ‘(inl‘𝑎))))
3530, 34eqtrd 2121 . . . . 5 (((𝜑𝑎𝐴) ∧ 𝑥 = (inl‘𝑎)) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) = (𝐹‘(2nd ‘(inl‘𝑎))))
36 djulcl 6797 . . . . . 6 (𝑎𝐴 → (inl‘𝑎) ∈ (𝐴𝐵))
3736adantl 272 . . . . 5 ((𝜑𝑎𝐴) → (inl‘𝑎) ∈ (𝐴𝐵))
381adantr 271 . . . . . 6 ((𝜑𝑎𝐴) → 𝐹:𝐴𝐶)
39 2ndinl 6820 . . . . . . . 8 (𝑎𝐴 → (2nd ‘(inl‘𝑎)) = 𝑎)
4039adantl 272 . . . . . . 7 ((𝜑𝑎𝐴) → (2nd ‘(inl‘𝑎)) = 𝑎)
41 simpr 109 . . . . . . 7 ((𝜑𝑎𝐴) → 𝑎𝐴)
4240, 41eqeltrd 2165 . . . . . 6 ((𝜑𝑎𝐴) → (2nd ‘(inl‘𝑎)) ∈ 𝐴)
4338, 42ffvelrnd 5449 . . . . 5 ((𝜑𝑎𝐴) → (𝐹‘(2nd ‘(inl‘𝑎))) ∈ 𝐶)
4423, 35, 37, 43fvmptd 5398 . . . 4 ((𝜑𝑎𝐴) → (𝐻‘(inl‘𝑎)) = (𝐹‘(2nd ‘(inl‘𝑎))))
4522, 44eqtrd 2121 . . 3 ((𝜑𝑎𝐴) → (𝐻‘((inl ↾ 𝐴)‘𝑎)) = (𝐹‘(2nd ‘(inl‘𝑎))))
4640fveq2d 5322 . . 3 ((𝜑𝑎𝐴) → (𝐹‘(2nd ‘(inl‘𝑎))) = (𝐹𝑎))
4719, 45, 463eqtrd 2125 . 2 ((𝜑𝑎𝐴) → ((𝐻 ∘ (inl ↾ 𝐴))‘𝑎) = (𝐹𝑎))
4815, 17, 47eqfnfvd 5414 1 (𝜑 → (𝐻 ∘ (inl ↾ 𝐴)) = 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1290  wcel 1439  wss 3000  c0 3287  ifcif 3397  cmpt 3905  ran crn 4453  cres 4454  ccom 4456   Fn wfn 5023  wf 5024  1-1wf1 5025  cfv 5028  1st c1st 5923  2nd c2nd 5924  cdju 6784  inlcinl 6791
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-iord 4202  df-on 4204  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-1st 5925  df-2nd 5926  df-1o 6195  df-dju 6785  df-inl 6793  df-inr 6794
This theorem is referenced by:  updjud  6827
  Copyright terms: Public domain W3C validator