Step | Hyp | Ref
| Expression |
1 | | updjud.f |
. . . . 5
β’ (π β πΉ:π΄βΆπΆ) |
2 | | updjud.g |
. . . . 5
β’ (π β πΊ:π΅βΆπΆ) |
3 | | updjudhf.h |
. . . . 5
β’ π» = (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) |
4 | 1, 2, 3 | updjudhf 7077 |
. . . 4
β’ (π β π»:(π΄ β π΅)βΆπΆ) |
5 | | ffn 5365 |
. . . 4
β’ (π»:(π΄ β π΅)βΆπΆ β π» Fn (π΄ β π΅)) |
6 | 4, 5 | syl 14 |
. . 3
β’ (π β π» Fn (π΄ β π΅)) |
7 | | inlresf1 7059 |
. . . 4
β’ (inl
βΎ π΄):π΄β1-1β(π΄ β π΅) |
8 | | f1fn 5423 |
. . . 4
β’ ((inl
βΎ π΄):π΄β1-1β(π΄ β π΅) β (inl βΎ π΄) Fn π΄) |
9 | 7, 8 | mp1i 10 |
. . 3
β’ (π β (inl βΎ π΄) Fn π΄) |
10 | | f1f 5421 |
. . . . 5
β’ ((inl
βΎ π΄):π΄β1-1β(π΄ β π΅) β (inl βΎ π΄):π΄βΆ(π΄ β π΅)) |
11 | 7, 10 | ax-mp 5 |
. . . 4
β’ (inl
βΎ π΄):π΄βΆ(π΄ β π΅) |
12 | | frn 5374 |
. . . 4
β’ ((inl
βΎ π΄):π΄βΆ(π΄ β π΅) β ran (inl βΎ π΄) β (π΄ β π΅)) |
13 | 11, 12 | mp1i 10 |
. . 3
β’ (π β ran (inl βΎ π΄) β (π΄ β π΅)) |
14 | | fnco 5324 |
. . 3
β’ ((π» Fn (π΄ β π΅) β§ (inl βΎ π΄) Fn π΄ β§ ran (inl βΎ π΄) β (π΄ β π΅)) β (π» β (inl βΎ π΄)) Fn π΄) |
15 | 6, 9, 13, 14 | syl3anc 1238 |
. 2
β’ (π β (π» β (inl βΎ π΄)) Fn π΄) |
16 | | ffn 5365 |
. . 3
β’ (πΉ:π΄βΆπΆ β πΉ Fn π΄) |
17 | 1, 16 | syl 14 |
. 2
β’ (π β πΉ Fn π΄) |
18 | | fvco2 5585 |
. . . 4
β’ (((inl
βΎ π΄) Fn π΄ β§ π β π΄) β ((π» β (inl βΎ π΄))βπ) = (π»β((inl βΎ π΄)βπ))) |
19 | 9, 18 | sylan 283 |
. . 3
β’ ((π β§ π β π΄) β ((π» β (inl βΎ π΄))βπ) = (π»β((inl βΎ π΄)βπ))) |
20 | | fvres 5539 |
. . . . . 6
β’ (π β π΄ β ((inl βΎ π΄)βπ) = (inlβπ)) |
21 | 20 | adantl 277 |
. . . . 5
β’ ((π β§ π β π΄) β ((inl βΎ π΄)βπ) = (inlβπ)) |
22 | 21 | fveq2d 5519 |
. . . 4
β’ ((π β§ π β π΄) β (π»β((inl βΎ π΄)βπ)) = (π»β(inlβπ))) |
23 | 3 | a1i 9 |
. . . . 5
β’ ((π β§ π β π΄) β π» = (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))) |
24 | | fveq2 5515 |
. . . . . . . . 9
β’ (π₯ = (inlβπ) β (1st βπ₯) = (1st
β(inlβπ))) |
25 | 24 | eqeq1d 2186 |
. . . . . . . 8
β’ (π₯ = (inlβπ) β ((1st βπ₯) = β
β
(1st β(inlβπ)) = β
)) |
26 | | fveq2 5515 |
. . . . . . . . 9
β’ (π₯ = (inlβπ) β (2nd βπ₯) = (2nd
β(inlβπ))) |
27 | 26 | fveq2d 5519 |
. . . . . . . 8
β’ (π₯ = (inlβπ) β (πΉβ(2nd βπ₯)) = (πΉβ(2nd
β(inlβπ)))) |
28 | 26 | fveq2d 5519 |
. . . . . . . 8
β’ (π₯ = (inlβπ) β (πΊβ(2nd βπ₯)) = (πΊβ(2nd
β(inlβπ)))) |
29 | 25, 27, 28 | ifbieq12d 3560 |
. . . . . . 7
β’ (π₯ = (inlβπ) β if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))) = if((1st
β(inlβπ)) =
β
, (πΉβ(2nd
β(inlβπ))),
(πΊβ(2nd
β(inlβπ))))) |
30 | 29 | adantl 277 |
. . . . . 6
β’ (((π β§ π β π΄) β§ π₯ = (inlβπ)) β if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))) = if((1st
β(inlβπ)) =
β
, (πΉβ(2nd
β(inlβπ))),
(πΊβ(2nd
β(inlβπ))))) |
31 | | 1stinl 7072 |
. . . . . . . . 9
β’ (π β π΄ β (1st
β(inlβπ)) =
β
) |
32 | 31 | adantl 277 |
. . . . . . . 8
β’ ((π β§ π β π΄) β (1st
β(inlβπ)) =
β
) |
33 | 32 | adantr 276 |
. . . . . . 7
β’ (((π β§ π β π΄) β§ π₯ = (inlβπ)) β (1st
β(inlβπ)) =
β
) |
34 | 33 | iftrued 3541 |
. . . . . 6
β’ (((π β§ π β π΄) β§ π₯ = (inlβπ)) β if((1st
β(inlβπ)) =
β
, (πΉβ(2nd
β(inlβπ))),
(πΊβ(2nd
β(inlβπ)))) =
(πΉβ(2nd
β(inlβπ)))) |
35 | 30, 34 | eqtrd 2210 |
. . . . 5
β’ (((π β§ π β π΄) β§ π₯ = (inlβπ)) β if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))) = (πΉβ(2nd
β(inlβπ)))) |
36 | | djulcl 7049 |
. . . . . 6
β’ (π β π΄ β (inlβπ) β (π΄ β π΅)) |
37 | 36 | adantl 277 |
. . . . 5
β’ ((π β§ π β π΄) β (inlβπ) β (π΄ β π΅)) |
38 | 1 | adantr 276 |
. . . . . 6
β’ ((π β§ π β π΄) β πΉ:π΄βΆπΆ) |
39 | | 2ndinl 7073 |
. . . . . . . 8
β’ (π β π΄ β (2nd
β(inlβπ)) =
π) |
40 | 39 | adantl 277 |
. . . . . . 7
β’ ((π β§ π β π΄) β (2nd
β(inlβπ)) =
π) |
41 | | simpr 110 |
. . . . . . 7
β’ ((π β§ π β π΄) β π β π΄) |
42 | 40, 41 | eqeltrd 2254 |
. . . . . 6
β’ ((π β§ π β π΄) β (2nd
β(inlβπ))
β π΄) |
43 | 38, 42 | ffvelcdmd 5652 |
. . . . 5
β’ ((π β§ π β π΄) β (πΉβ(2nd
β(inlβπ)))
β πΆ) |
44 | 23, 35, 37, 43 | fvmptd 5597 |
. . . 4
β’ ((π β§ π β π΄) β (π»β(inlβπ)) = (πΉβ(2nd
β(inlβπ)))) |
45 | 22, 44 | eqtrd 2210 |
. . 3
β’ ((π β§ π β π΄) β (π»β((inl βΎ π΄)βπ)) = (πΉβ(2nd
β(inlβπ)))) |
46 | 40 | fveq2d 5519 |
. . 3
β’ ((π β§ π β π΄) β (πΉβ(2nd
β(inlβπ))) =
(πΉβπ)) |
47 | 19, 45, 46 | 3eqtrd 2214 |
. 2
β’ ((π β§ π β π΄) β ((π» β (inl βΎ π΄))βπ) = (πΉβπ)) |
48 | 15, 17, 47 | eqfnfvd 5616 |
1
β’ (π β (π» β (inl βΎ π΄)) = πΉ) |