| Step | Hyp | Ref
| Expression |
| 1 | | f1cocnv1 5534 |
. . . 4
⊢ (𝐹:𝐴–1-1→𝐵 → (◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴)) |
| 2 | | coeq2 4824 |
. . . . 5
⊢ (𝐹 = 𝐺 → (◡𝐹 ∘ 𝐹) = (◡𝐹 ∘ 𝐺)) |
| 3 | 2 | eqeq1d 2205 |
. . . 4
⊢ (𝐹 = 𝐺 → ((◡𝐹 ∘ 𝐹) = ( I ↾ 𝐴) ↔ (◡𝐹 ∘ 𝐺) = ( I ↾ 𝐴))) |
| 4 | 1, 3 | syl5ibcom 155 |
. . 3
⊢ (𝐹:𝐴–1-1→𝐵 → (𝐹 = 𝐺 → (◡𝐹 ∘ 𝐺) = ( I ↾ 𝐴))) |
| 5 | 4 | adantr 276 |
. 2
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 = 𝐺 → (◡𝐹 ∘ 𝐺) = ( I ↾ 𝐴))) |
| 6 | | f1fn 5465 |
. . . . . . 7
⊢ (𝐺:𝐴–1-1→𝐵 → 𝐺 Fn 𝐴) |
| 7 | 6 | adantl 277 |
. . . . . 6
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) → 𝐺 Fn 𝐴) |
| 8 | 7 | adantr 276 |
. . . . 5
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (◡𝐹 ∘ 𝐺) = ( I ↾ 𝐴)) → 𝐺 Fn 𝐴) |
| 9 | | f1fn 5465 |
. . . . . . 7
⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
| 10 | 9 | adantr 276 |
. . . . . 6
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) → 𝐹 Fn 𝐴) |
| 11 | 10 | adantr 276 |
. . . . 5
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (◡𝐹 ∘ 𝐺) = ( I ↾ 𝐴)) → 𝐹 Fn 𝐴) |
| 12 | | equid 1715 |
. . . . . . . . . 10
⊢ 𝑥 = 𝑥 |
| 13 | | resieq 4956 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥( I ↾ 𝐴)𝑥 ↔ 𝑥 = 𝑥)) |
| 14 | 12, 13 | mpbiri 168 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥( I ↾ 𝐴)𝑥) |
| 15 | 14 | anidms 397 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 → 𝑥( I ↾ 𝐴)𝑥) |
| 16 | 15 | adantl 277 |
. . . . . . 7
⊢ ((((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (◡𝐹 ∘ 𝐺) = ( I ↾ 𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑥( I ↾ 𝐴)𝑥) |
| 17 | | breq 4035 |
. . . . . . . 8
⊢ ((◡𝐹 ∘ 𝐺) = ( I ↾ 𝐴) → (𝑥(◡𝐹 ∘ 𝐺)𝑥 ↔ 𝑥( I ↾ 𝐴)𝑥)) |
| 18 | 17 | ad2antlr 489 |
. . . . . . 7
⊢ ((((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (◡𝐹 ∘ 𝐺) = ( I ↾ 𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝑥(◡𝐹 ∘ 𝐺)𝑥 ↔ 𝑥( I ↾ 𝐴)𝑥)) |
| 19 | 16, 18 | mpbird 167 |
. . . . . 6
⊢ ((((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (◡𝐹 ∘ 𝐺) = ( I ↾ 𝐴)) ∧ 𝑥 ∈ 𝐴) → 𝑥(◡𝐹 ∘ 𝐺)𝑥) |
| 20 | | vex 2766 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
| 21 | 20, 20 | brco 4837 |
. . . . . . . . 9
⊢ (𝑥(◡𝐹 ∘ 𝐺)𝑥 ↔ ∃𝑦(𝑥𝐺𝑦 ∧ 𝑦◡𝐹𝑥)) |
| 22 | | fnfun 5355 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 Fn 𝐴 → Fun 𝐺) |
| 23 | 7, 22 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) → Fun 𝐺) |
| 24 | 23 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) → Fun 𝐺) |
| 25 | | fndm 5357 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 Fn 𝐴 → dom 𝐺 = 𝐴) |
| 26 | 7, 25 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) → dom 𝐺 = 𝐴) |
| 27 | 26 | eleq2d 2266 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) → (𝑥 ∈ dom 𝐺 ↔ 𝑥 ∈ 𝐴)) |
| 28 | 27 | biimpar 297 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ dom 𝐺) |
| 29 | | funopfvb 5604 |
. . . . . . . . . . . . . . 15
⊢ ((Fun
𝐺 ∧ 𝑥 ∈ dom 𝐺) → ((𝐺‘𝑥) = 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐺)) |
| 30 | 24, 28, 29 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑥) = 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐺)) |
| 31 | 30 | bicomd 141 |
. . . . . . . . . . . . 13
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) → (〈𝑥, 𝑦〉 ∈ 𝐺 ↔ (𝐺‘𝑥) = 𝑦)) |
| 32 | | df-br 4034 |
. . . . . . . . . . . . 13
⊢ (𝑥𝐺𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐺) |
| 33 | | eqcom 2198 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐺‘𝑥) ↔ (𝐺‘𝑥) = 𝑦) |
| 34 | 31, 32, 33 | 3bitr4g 223 |
. . . . . . . . . . . 12
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥𝐺𝑦 ↔ 𝑦 = (𝐺‘𝑥))) |
| 35 | 34 | biimpd 144 |
. . . . . . . . . . 11
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥𝐺𝑦 → 𝑦 = (𝐺‘𝑥))) |
| 36 | | df-br 4034 |
. . . . . . . . . . . . . 14
⊢ (𝑥𝐹𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐹) |
| 37 | | fnfun 5355 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
| 38 | 10, 37 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) → Fun 𝐹) |
| 39 | 38 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) → Fun 𝐹) |
| 40 | | fndm 5357 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
| 41 | 10, 40 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) → dom 𝐹 = 𝐴) |
| 42 | 41 | eleq2d 2266 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) → (𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝐴)) |
| 43 | 42 | biimpar 297 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ dom 𝐹) |
| 44 | | funopfvb 5604 |
. . . . . . . . . . . . . . 15
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ dom 𝐹) → ((𝐹‘𝑥) = 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐹)) |
| 45 | 39, 43, 44 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐹)) |
| 46 | 36, 45 | bitr4id 199 |
. . . . . . . . . . . . 13
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥𝐹𝑦 ↔ (𝐹‘𝑥) = 𝑦)) |
| 47 | | vex 2766 |
. . . . . . . . . . . . . 14
⊢ 𝑦 ∈ V |
| 48 | 47, 20 | brcnv 4849 |
. . . . . . . . . . . . 13
⊢ (𝑦◡𝐹𝑥 ↔ 𝑥𝐹𝑦) |
| 49 | | eqcom 2198 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) |
| 50 | 46, 48, 49 | 3bitr4g 223 |
. . . . . . . . . . . 12
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑦◡𝐹𝑥 ↔ 𝑦 = (𝐹‘𝑥))) |
| 51 | 50 | biimpd 144 |
. . . . . . . . . . 11
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑦◡𝐹𝑥 → 𝑦 = (𝐹‘𝑥))) |
| 52 | 35, 51 | anim12d 335 |
. . . . . . . . . 10
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝑥𝐺𝑦 ∧ 𝑦◡𝐹𝑥) → (𝑦 = (𝐺‘𝑥) ∧ 𝑦 = (𝐹‘𝑥)))) |
| 53 | 52 | eximdv 1894 |
. . . . . . . . 9
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) → (∃𝑦(𝑥𝐺𝑦 ∧ 𝑦◡𝐹𝑥) → ∃𝑦(𝑦 = (𝐺‘𝑥) ∧ 𝑦 = (𝐹‘𝑥)))) |
| 54 | 21, 53 | biimtrid 152 |
. . . . . . . 8
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥(◡𝐹 ∘ 𝐺)𝑥 → ∃𝑦(𝑦 = (𝐺‘𝑥) ∧ 𝑦 = (𝐹‘𝑥)))) |
| 55 | 6 | anim1i 340 |
. . . . . . . . . 10
⊢ ((𝐺:𝐴–1-1→𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴)) |
| 56 | 55 | adantll 476 |
. . . . . . . . 9
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴)) |
| 57 | | funfvex 5575 |
. . . . . . . . . 10
⊢ ((Fun
𝐺 ∧ 𝑥 ∈ dom 𝐺) → (𝐺‘𝑥) ∈ V) |
| 58 | 57 | funfni 5358 |
. . . . . . . . 9
⊢ ((𝐺 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ V) |
| 59 | | eqvincg 2888 |
. . . . . . . . 9
⊢ ((𝐺‘𝑥) ∈ V → ((𝐺‘𝑥) = (𝐹‘𝑥) ↔ ∃𝑦(𝑦 = (𝐺‘𝑥) ∧ 𝑦 = (𝐹‘𝑥)))) |
| 60 | 56, 58, 59 | 3syl 17 |
. . . . . . . 8
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐺‘𝑥) = (𝐹‘𝑥) ↔ ∃𝑦(𝑦 = (𝐺‘𝑥) ∧ 𝑦 = (𝐹‘𝑥)))) |
| 61 | 54, 60 | sylibrd 169 |
. . . . . . 7
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥(◡𝐹 ∘ 𝐺)𝑥 → (𝐺‘𝑥) = (𝐹‘𝑥))) |
| 62 | 61 | adantlr 477 |
. . . . . 6
⊢ ((((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (◡𝐹 ∘ 𝐺) = ( I ↾ 𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝑥(◡𝐹 ∘ 𝐺)𝑥 → (𝐺‘𝑥) = (𝐹‘𝑥))) |
| 63 | 19, 62 | mpd 13 |
. . . . 5
⊢ ((((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (◡𝐹 ∘ 𝐺) = ( I ↾ 𝐴)) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝐹‘𝑥)) |
| 64 | 8, 11, 63 | eqfnfvd 5662 |
. . . 4
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (◡𝐹 ∘ 𝐺) = ( I ↾ 𝐴)) → 𝐺 = 𝐹) |
| 65 | 64 | eqcomd 2202 |
. . 3
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (◡𝐹 ∘ 𝐺) = ( I ↾ 𝐴)) → 𝐹 = 𝐺) |
| 66 | 65 | ex 115 |
. 2
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) → ((◡𝐹 ∘ 𝐺) = ( I ↾ 𝐴) → 𝐹 = 𝐺)) |
| 67 | 5, 66 | impbid 129 |
1
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 = 𝐺 ↔ (◡𝐹 ∘ 𝐺) = ( I ↾ 𝐴))) |