ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1eqcocnv GIF version

Theorem f1eqcocnv 5883
Description: Condition for function equality in terms of vanishing of the composition with the inverse. (Contributed by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
f1eqcocnv ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → (𝐹 = 𝐺 ↔ (𝐹𝐺) = ( I ↾ 𝐴)))

Proof of Theorem f1eqcocnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1cocnv1 5574 . . . 4 (𝐹:𝐴1-1𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
2 coeq2 4854 . . . . 5 (𝐹 = 𝐺 → (𝐹𝐹) = (𝐹𝐺))
32eqeq1d 2216 . . . 4 (𝐹 = 𝐺 → ((𝐹𝐹) = ( I ↾ 𝐴) ↔ (𝐹𝐺) = ( I ↾ 𝐴)))
41, 3syl5ibcom 155 . . 3 (𝐹:𝐴1-1𝐵 → (𝐹 = 𝐺 → (𝐹𝐺) = ( I ↾ 𝐴)))
54adantr 276 . 2 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → (𝐹 = 𝐺 → (𝐹𝐺) = ( I ↾ 𝐴)))
6 f1fn 5505 . . . . . . 7 (𝐺:𝐴1-1𝐵𝐺 Fn 𝐴)
76adantl 277 . . . . . 6 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → 𝐺 Fn 𝐴)
87adantr 276 . . . . 5 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) → 𝐺 Fn 𝐴)
9 f1fn 5505 . . . . . . 7 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
109adantr 276 . . . . . 6 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → 𝐹 Fn 𝐴)
1110adantr 276 . . . . 5 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) → 𝐹 Fn 𝐴)
12 equid 1725 . . . . . . . . . 10 𝑥 = 𝑥
13 resieq 4988 . . . . . . . . . 10 ((𝑥𝐴𝑥𝐴) → (𝑥( I ↾ 𝐴)𝑥𝑥 = 𝑥))
1412, 13mpbiri 168 . . . . . . . . 9 ((𝑥𝐴𝑥𝐴) → 𝑥( I ↾ 𝐴)𝑥)
1514anidms 397 . . . . . . . 8 (𝑥𝐴𝑥( I ↾ 𝐴)𝑥)
1615adantl 277 . . . . . . 7 ((((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) ∧ 𝑥𝐴) → 𝑥( I ↾ 𝐴)𝑥)
17 breq 4061 . . . . . . . 8 ((𝐹𝐺) = ( I ↾ 𝐴) → (𝑥(𝐹𝐺)𝑥𝑥( I ↾ 𝐴)𝑥))
1817ad2antlr 489 . . . . . . 7 ((((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) ∧ 𝑥𝐴) → (𝑥(𝐹𝐺)𝑥𝑥( I ↾ 𝐴)𝑥))
1916, 18mpbird 167 . . . . . 6 ((((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) ∧ 𝑥𝐴) → 𝑥(𝐹𝐺)𝑥)
20 vex 2779 . . . . . . . . . 10 𝑥 ∈ V
2120, 20brco 4867 . . . . . . . . 9 (𝑥(𝐹𝐺)𝑥 ↔ ∃𝑦(𝑥𝐺𝑦𝑦𝐹𝑥))
22 fnfun 5390 . . . . . . . . . . . . . . . . 17 (𝐺 Fn 𝐴 → Fun 𝐺)
237, 22syl 14 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → Fun 𝐺)
2423adantr 276 . . . . . . . . . . . . . . 15 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → Fun 𝐺)
25 fndm 5392 . . . . . . . . . . . . . . . . . 18 (𝐺 Fn 𝐴 → dom 𝐺 = 𝐴)
267, 25syl 14 . . . . . . . . . . . . . . . . 17 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → dom 𝐺 = 𝐴)
2726eleq2d 2277 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → (𝑥 ∈ dom 𝐺𝑥𝐴))
2827biimpar 297 . . . . . . . . . . . . . . 15 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → 𝑥 ∈ dom 𝐺)
29 funopfvb 5645 . . . . . . . . . . . . . . 15 ((Fun 𝐺𝑥 ∈ dom 𝐺) → ((𝐺𝑥) = 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
3024, 28, 29syl2anc 411 . . . . . . . . . . . . . 14 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → ((𝐺𝑥) = 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
3130bicomd 141 . . . . . . . . . . . . 13 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (⟨𝑥, 𝑦⟩ ∈ 𝐺 ↔ (𝐺𝑥) = 𝑦))
32 df-br 4060 . . . . . . . . . . . . 13 (𝑥𝐺𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺)
33 eqcom 2209 . . . . . . . . . . . . 13 (𝑦 = (𝐺𝑥) ↔ (𝐺𝑥) = 𝑦)
3431, 32, 333bitr4g 223 . . . . . . . . . . . 12 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (𝑥𝐺𝑦𝑦 = (𝐺𝑥)))
3534biimpd 144 . . . . . . . . . . 11 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (𝑥𝐺𝑦𝑦 = (𝐺𝑥)))
36 df-br 4060 . . . . . . . . . . . . . 14 (𝑥𝐹𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
37 fnfun 5390 . . . . . . . . . . . . . . . . 17 (𝐹 Fn 𝐴 → Fun 𝐹)
3810, 37syl 14 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → Fun 𝐹)
3938adantr 276 . . . . . . . . . . . . . . 15 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → Fun 𝐹)
40 fndm 5392 . . . . . . . . . . . . . . . . . 18 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
4110, 40syl 14 . . . . . . . . . . . . . . . . 17 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → dom 𝐹 = 𝐴)
4241eleq2d 2277 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → (𝑥 ∈ dom 𝐹𝑥𝐴))
4342biimpar 297 . . . . . . . . . . . . . . 15 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → 𝑥 ∈ dom 𝐹)
44 funopfvb 5645 . . . . . . . . . . . . . . 15 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) = 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
4539, 43, 44syl2anc 411 . . . . . . . . . . . . . 14 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → ((𝐹𝑥) = 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
4636, 45bitr4id 199 . . . . . . . . . . . . 13 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (𝑥𝐹𝑦 ↔ (𝐹𝑥) = 𝑦))
47 vex 2779 . . . . . . . . . . . . . 14 𝑦 ∈ V
4847, 20brcnv 4879 . . . . . . . . . . . . 13 (𝑦𝐹𝑥𝑥𝐹𝑦)
49 eqcom 2209 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
5046, 48, 493bitr4g 223 . . . . . . . . . . . 12 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (𝑦𝐹𝑥𝑦 = (𝐹𝑥)))
5150biimpd 144 . . . . . . . . . . 11 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (𝑦𝐹𝑥𝑦 = (𝐹𝑥)))
5235, 51anim12d 335 . . . . . . . . . 10 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → ((𝑥𝐺𝑦𝑦𝐹𝑥) → (𝑦 = (𝐺𝑥) ∧ 𝑦 = (𝐹𝑥))))
5352eximdv 1904 . . . . . . . . 9 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (∃𝑦(𝑥𝐺𝑦𝑦𝐹𝑥) → ∃𝑦(𝑦 = (𝐺𝑥) ∧ 𝑦 = (𝐹𝑥))))
5421, 53biimtrid 152 . . . . . . . 8 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (𝑥(𝐹𝐺)𝑥 → ∃𝑦(𝑦 = (𝐺𝑥) ∧ 𝑦 = (𝐹𝑥))))
556anim1i 340 . . . . . . . . . 10 ((𝐺:𝐴1-1𝐵𝑥𝐴) → (𝐺 Fn 𝐴𝑥𝐴))
5655adantll 476 . . . . . . . . 9 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (𝐺 Fn 𝐴𝑥𝐴))
57 funfvex 5616 . . . . . . . . . 10 ((Fun 𝐺𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ V)
5857funfni 5395 . . . . . . . . 9 ((𝐺 Fn 𝐴𝑥𝐴) → (𝐺𝑥) ∈ V)
59 eqvincg 2904 . . . . . . . . 9 ((𝐺𝑥) ∈ V → ((𝐺𝑥) = (𝐹𝑥) ↔ ∃𝑦(𝑦 = (𝐺𝑥) ∧ 𝑦 = (𝐹𝑥))))
6056, 58, 593syl 17 . . . . . . . 8 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → ((𝐺𝑥) = (𝐹𝑥) ↔ ∃𝑦(𝑦 = (𝐺𝑥) ∧ 𝑦 = (𝐹𝑥))))
6154, 60sylibrd 169 . . . . . . 7 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (𝑥(𝐹𝐺)𝑥 → (𝐺𝑥) = (𝐹𝑥)))
6261adantlr 477 . . . . . 6 ((((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) ∧ 𝑥𝐴) → (𝑥(𝐹𝐺)𝑥 → (𝐺𝑥) = (𝐹𝑥)))
6319, 62mpd 13 . . . . 5 ((((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐹𝑥))
648, 11, 63eqfnfvd 5703 . . . 4 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) → 𝐺 = 𝐹)
6564eqcomd 2213 . . 3 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) → 𝐹 = 𝐺)
6665ex 115 . 2 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → ((𝐹𝐺) = ( I ↾ 𝐴) → 𝐹 = 𝐺))
675, 66impbid 129 1 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → (𝐹 = 𝐺 ↔ (𝐹𝐺) = ( I ↾ 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wex 1516  wcel 2178  Vcvv 2776  cop 3646   class class class wbr 4059   I cid 4353  ccnv 4692  dom cdm 4693  cres 4695  ccom 4697  Fun wfun 5284   Fn wfn 5285  1-1wf1 5287  cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator