ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  updjudhcoinrg GIF version

Theorem updjudhcoinrg 7209
Description: The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the right injection equals the second function. (Contributed by AV, 27-Jun-2022.)
Hypotheses
Ref Expression
updjud.f (𝜑𝐹:𝐴𝐶)
updjud.g (𝜑𝐺:𝐵𝐶)
updjudhf.h 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
Assertion
Ref Expression
updjudhcoinrg (𝜑 → (𝐻 ∘ (inr ↾ 𝐵)) = 𝐺)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem updjudhcoinrg
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 updjud.f . . . . 5 (𝜑𝐹:𝐴𝐶)
2 updjud.g . . . . 5 (𝜑𝐺:𝐵𝐶)
3 updjudhf.h . . . . 5 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
41, 2, 3updjudhf 7207 . . . 4 (𝜑𝐻:(𝐴𝐵)⟶𝐶)
5 ffn 5445 . . . 4 (𝐻:(𝐴𝐵)⟶𝐶𝐻 Fn (𝐴𝐵))
64, 5syl 14 . . 3 (𝜑𝐻 Fn (𝐴𝐵))
7 inrresf1 7190 . . . 4 (inr ↾ 𝐵):𝐵1-1→(𝐴𝐵)
8 f1fn 5505 . . . 4 ((inr ↾ 𝐵):𝐵1-1→(𝐴𝐵) → (inr ↾ 𝐵) Fn 𝐵)
97, 8mp1i 10 . . 3 (𝜑 → (inr ↾ 𝐵) Fn 𝐵)
10 f1f 5503 . . . . 5 ((inr ↾ 𝐵):𝐵1-1→(𝐴𝐵) → (inr ↾ 𝐵):𝐵⟶(𝐴𝐵))
117, 10ax-mp 5 . . . 4 (inr ↾ 𝐵):𝐵⟶(𝐴𝐵)
12 frn 5454 . . . 4 ((inr ↾ 𝐵):𝐵⟶(𝐴𝐵) → ran (inr ↾ 𝐵) ⊆ (𝐴𝐵))
1311, 12mp1i 10 . . 3 (𝜑 → ran (inr ↾ 𝐵) ⊆ (𝐴𝐵))
14 fnco 5403 . . 3 ((𝐻 Fn (𝐴𝐵) ∧ (inr ↾ 𝐵) Fn 𝐵 ∧ ran (inr ↾ 𝐵) ⊆ (𝐴𝐵)) → (𝐻 ∘ (inr ↾ 𝐵)) Fn 𝐵)
156, 9, 13, 14syl3anc 1250 . 2 (𝜑 → (𝐻 ∘ (inr ↾ 𝐵)) Fn 𝐵)
16 ffn 5445 . . 3 (𝐺:𝐵𝐶𝐺 Fn 𝐵)
172, 16syl 14 . 2 (𝜑𝐺 Fn 𝐵)
18 fvco2 5671 . . . 4 (((inr ↾ 𝐵) Fn 𝐵𝑏𝐵) → ((𝐻 ∘ (inr ↾ 𝐵))‘𝑏) = (𝐻‘((inr ↾ 𝐵)‘𝑏)))
199, 18sylan 283 . . 3 ((𝜑𝑏𝐵) → ((𝐻 ∘ (inr ↾ 𝐵))‘𝑏) = (𝐻‘((inr ↾ 𝐵)‘𝑏)))
20 fvres 5623 . . . . . 6 (𝑏𝐵 → ((inr ↾ 𝐵)‘𝑏) = (inr‘𝑏))
2120adantl 277 . . . . 5 ((𝜑𝑏𝐵) → ((inr ↾ 𝐵)‘𝑏) = (inr‘𝑏))
2221fveq2d 5603 . . . 4 ((𝜑𝑏𝐵) → (𝐻‘((inr ↾ 𝐵)‘𝑏)) = (𝐻‘(inr‘𝑏)))
233a1i 9 . . . . 5 ((𝜑𝑏𝐵) → 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))))
24 fveq2 5599 . . . . . . . . 9 (𝑥 = (inr‘𝑏) → (1st𝑥) = (1st ‘(inr‘𝑏)))
2524eqeq1d 2216 . . . . . . . 8 (𝑥 = (inr‘𝑏) → ((1st𝑥) = ∅ ↔ (1st ‘(inr‘𝑏)) = ∅))
26 fveq2 5599 . . . . . . . . 9 (𝑥 = (inr‘𝑏) → (2nd𝑥) = (2nd ‘(inr‘𝑏)))
2726fveq2d 5603 . . . . . . . 8 (𝑥 = (inr‘𝑏) → (𝐹‘(2nd𝑥)) = (𝐹‘(2nd ‘(inr‘𝑏))))
2826fveq2d 5603 . . . . . . . 8 (𝑥 = (inr‘𝑏) → (𝐺‘(2nd𝑥)) = (𝐺‘(2nd ‘(inr‘𝑏))))
2925, 27, 28ifbieq12d 3606 . . . . . . 7 (𝑥 = (inr‘𝑏) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) = if((1st ‘(inr‘𝑏)) = ∅, (𝐹‘(2nd ‘(inr‘𝑏))), (𝐺‘(2nd ‘(inr‘𝑏)))))
3029adantl 277 . . . . . 6 (((𝜑𝑏𝐵) ∧ 𝑥 = (inr‘𝑏)) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) = if((1st ‘(inr‘𝑏)) = ∅, (𝐹‘(2nd ‘(inr‘𝑏))), (𝐺‘(2nd ‘(inr‘𝑏)))))
31 1stinr 7204 . . . . . . . . . 10 (𝑏𝐵 → (1st ‘(inr‘𝑏)) = 1o)
32 1n0 6541 . . . . . . . . . . . 12 1o ≠ ∅
3332neii 2380 . . . . . . . . . . 11 ¬ 1o = ∅
34 eqeq1 2214 . . . . . . . . . . 11 ((1st ‘(inr‘𝑏)) = 1o → ((1st ‘(inr‘𝑏)) = ∅ ↔ 1o = ∅))
3533, 34mtbiri 677 . . . . . . . . . 10 ((1st ‘(inr‘𝑏)) = 1o → ¬ (1st ‘(inr‘𝑏)) = ∅)
3631, 35syl 14 . . . . . . . . 9 (𝑏𝐵 → ¬ (1st ‘(inr‘𝑏)) = ∅)
3736adantl 277 . . . . . . . 8 ((𝜑𝑏𝐵) → ¬ (1st ‘(inr‘𝑏)) = ∅)
3837adantr 276 . . . . . . 7 (((𝜑𝑏𝐵) ∧ 𝑥 = (inr‘𝑏)) → ¬ (1st ‘(inr‘𝑏)) = ∅)
3938iffalsed 3589 . . . . . 6 (((𝜑𝑏𝐵) ∧ 𝑥 = (inr‘𝑏)) → if((1st ‘(inr‘𝑏)) = ∅, (𝐹‘(2nd ‘(inr‘𝑏))), (𝐺‘(2nd ‘(inr‘𝑏)))) = (𝐺‘(2nd ‘(inr‘𝑏))))
4030, 39eqtrd 2240 . . . . 5 (((𝜑𝑏𝐵) ∧ 𝑥 = (inr‘𝑏)) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) = (𝐺‘(2nd ‘(inr‘𝑏))))
41 djurcl 7180 . . . . . 6 (𝑏𝐵 → (inr‘𝑏) ∈ (𝐴𝐵))
4241adantl 277 . . . . 5 ((𝜑𝑏𝐵) → (inr‘𝑏) ∈ (𝐴𝐵))
432adantr 276 . . . . . 6 ((𝜑𝑏𝐵) → 𝐺:𝐵𝐶)
44 2ndinr 7205 . . . . . . . 8 (𝑏𝐵 → (2nd ‘(inr‘𝑏)) = 𝑏)
4544adantl 277 . . . . . . 7 ((𝜑𝑏𝐵) → (2nd ‘(inr‘𝑏)) = 𝑏)
46 simpr 110 . . . . . . 7 ((𝜑𝑏𝐵) → 𝑏𝐵)
4745, 46eqeltrd 2284 . . . . . 6 ((𝜑𝑏𝐵) → (2nd ‘(inr‘𝑏)) ∈ 𝐵)
4843, 47ffvelcdmd 5739 . . . . 5 ((𝜑𝑏𝐵) → (𝐺‘(2nd ‘(inr‘𝑏))) ∈ 𝐶)
4923, 40, 42, 48fvmptd 5683 . . . 4 ((𝜑𝑏𝐵) → (𝐻‘(inr‘𝑏)) = (𝐺‘(2nd ‘(inr‘𝑏))))
5022, 49eqtrd 2240 . . 3 ((𝜑𝑏𝐵) → (𝐻‘((inr ↾ 𝐵)‘𝑏)) = (𝐺‘(2nd ‘(inr‘𝑏))))
5145fveq2d 5603 . . 3 ((𝜑𝑏𝐵) → (𝐺‘(2nd ‘(inr‘𝑏))) = (𝐺𝑏))
5219, 50, 513eqtrd 2244 . 2 ((𝜑𝑏𝐵) → ((𝐻 ∘ (inr ↾ 𝐵))‘𝑏) = (𝐺𝑏))
5315, 17, 52eqfnfvd 5703 1 (𝜑 → (𝐻 ∘ (inr ↾ 𝐵)) = 𝐺)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1373  wcel 2178  wss 3174  c0 3468  ifcif 3579  cmpt 4121  ran crn 4694  cres 4695  ccom 4697   Fn wfn 5285  wf 5286  1-1wf1 5287  cfv 5290  1st c1st 6247  2nd c2nd 6248  1oc1o 6518  cdju 7165  inrcinr 7174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1st 6249  df-2nd 6250  df-1o 6525  df-dju 7166  df-inl 7175  df-inr 7176
This theorem is referenced by:  updjud  7210
  Copyright terms: Public domain W3C validator