Step | Hyp | Ref
| Expression |
1 | | updjud.f |
. . . . 5
β’ (π β πΉ:π΄βΆπΆ) |
2 | | updjud.g |
. . . . 5
β’ (π β πΊ:π΅βΆπΆ) |
3 | | updjudhf.h |
. . . . 5
β’ π» = (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯)))) |
4 | 1, 2, 3 | updjudhf 7077 |
. . . 4
β’ (π β π»:(π΄ β π΅)βΆπΆ) |
5 | | ffn 5365 |
. . . 4
β’ (π»:(π΄ β π΅)βΆπΆ β π» Fn (π΄ β π΅)) |
6 | 4, 5 | syl 14 |
. . 3
β’ (π β π» Fn (π΄ β π΅)) |
7 | | inrresf1 7060 |
. . . 4
β’ (inr
βΎ π΅):π΅β1-1β(π΄ β π΅) |
8 | | f1fn 5423 |
. . . 4
β’ ((inr
βΎ π΅):π΅β1-1β(π΄ β π΅) β (inr βΎ π΅) Fn π΅) |
9 | 7, 8 | mp1i 10 |
. . 3
β’ (π β (inr βΎ π΅) Fn π΅) |
10 | | f1f 5421 |
. . . . 5
β’ ((inr
βΎ π΅):π΅β1-1β(π΄ β π΅) β (inr βΎ π΅):π΅βΆ(π΄ β π΅)) |
11 | 7, 10 | ax-mp 5 |
. . . 4
β’ (inr
βΎ π΅):π΅βΆ(π΄ β π΅) |
12 | | frn 5374 |
. . . 4
β’ ((inr
βΎ π΅):π΅βΆ(π΄ β π΅) β ran (inr βΎ π΅) β (π΄ β π΅)) |
13 | 11, 12 | mp1i 10 |
. . 3
β’ (π β ran (inr βΎ π΅) β (π΄ β π΅)) |
14 | | fnco 5324 |
. . 3
β’ ((π» Fn (π΄ β π΅) β§ (inr βΎ π΅) Fn π΅ β§ ran (inr βΎ π΅) β (π΄ β π΅)) β (π» β (inr βΎ π΅)) Fn π΅) |
15 | 6, 9, 13, 14 | syl3anc 1238 |
. 2
β’ (π β (π» β (inr βΎ π΅)) Fn π΅) |
16 | | ffn 5365 |
. . 3
β’ (πΊ:π΅βΆπΆ β πΊ Fn π΅) |
17 | 2, 16 | syl 14 |
. 2
β’ (π β πΊ Fn π΅) |
18 | | fvco2 5585 |
. . . 4
β’ (((inr
βΎ π΅) Fn π΅ β§ π β π΅) β ((π» β (inr βΎ π΅))βπ) = (π»β((inr βΎ π΅)βπ))) |
19 | 9, 18 | sylan 283 |
. . 3
β’ ((π β§ π β π΅) β ((π» β (inr βΎ π΅))βπ) = (π»β((inr βΎ π΅)βπ))) |
20 | | fvres 5539 |
. . . . . 6
β’ (π β π΅ β ((inr βΎ π΅)βπ) = (inrβπ)) |
21 | 20 | adantl 277 |
. . . . 5
β’ ((π β§ π β π΅) β ((inr βΎ π΅)βπ) = (inrβπ)) |
22 | 21 | fveq2d 5519 |
. . . 4
β’ ((π β§ π β π΅) β (π»β((inr βΎ π΅)βπ)) = (π»β(inrβπ))) |
23 | 3 | a1i 9 |
. . . . 5
β’ ((π β§ π β π΅) β π» = (π₯ β (π΄ β π΅) β¦ if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))))) |
24 | | fveq2 5515 |
. . . . . . . . 9
β’ (π₯ = (inrβπ) β (1st βπ₯) = (1st
β(inrβπ))) |
25 | 24 | eqeq1d 2186 |
. . . . . . . 8
β’ (π₯ = (inrβπ) β ((1st βπ₯) = β
β
(1st β(inrβπ)) = β
)) |
26 | | fveq2 5515 |
. . . . . . . . 9
β’ (π₯ = (inrβπ) β (2nd βπ₯) = (2nd
β(inrβπ))) |
27 | 26 | fveq2d 5519 |
. . . . . . . 8
β’ (π₯ = (inrβπ) β (πΉβ(2nd βπ₯)) = (πΉβ(2nd
β(inrβπ)))) |
28 | 26 | fveq2d 5519 |
. . . . . . . 8
β’ (π₯ = (inrβπ) β (πΊβ(2nd βπ₯)) = (πΊβ(2nd
β(inrβπ)))) |
29 | 25, 27, 28 | ifbieq12d 3560 |
. . . . . . 7
β’ (π₯ = (inrβπ) β if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))) = if((1st
β(inrβπ)) =
β
, (πΉβ(2nd
β(inrβπ))),
(πΊβ(2nd
β(inrβπ))))) |
30 | 29 | adantl 277 |
. . . . . 6
β’ (((π β§ π β π΅) β§ π₯ = (inrβπ)) β if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))) = if((1st
β(inrβπ)) =
β
, (πΉβ(2nd
β(inrβπ))),
(πΊβ(2nd
β(inrβπ))))) |
31 | | 1stinr 7074 |
. . . . . . . . . 10
β’ (π β π΅ β (1st
β(inrβπ)) =
1o) |
32 | | 1n0 6432 |
. . . . . . . . . . . 12
β’
1o β β
|
33 | 32 | neii 2349 |
. . . . . . . . . . 11
β’ Β¬
1o = β
|
34 | | eqeq1 2184 |
. . . . . . . . . . 11
β’
((1st β(inrβπ)) = 1o β ((1st
β(inrβπ)) =
β
β 1o = β
)) |
35 | 33, 34 | mtbiri 675 |
. . . . . . . . . 10
β’
((1st β(inrβπ)) = 1o β Β¬
(1st β(inrβπ)) = β
) |
36 | 31, 35 | syl 14 |
. . . . . . . . 9
β’ (π β π΅ β Β¬ (1st
β(inrβπ)) =
β
) |
37 | 36 | adantl 277 |
. . . . . . . 8
β’ ((π β§ π β π΅) β Β¬ (1st
β(inrβπ)) =
β
) |
38 | 37 | adantr 276 |
. . . . . . 7
β’ (((π β§ π β π΅) β§ π₯ = (inrβπ)) β Β¬ (1st
β(inrβπ)) =
β
) |
39 | 38 | iffalsed 3544 |
. . . . . 6
β’ (((π β§ π β π΅) β§ π₯ = (inrβπ)) β if((1st
β(inrβπ)) =
β
, (πΉβ(2nd
β(inrβπ))),
(πΊβ(2nd
β(inrβπ)))) =
(πΊβ(2nd
β(inrβπ)))) |
40 | 30, 39 | eqtrd 2210 |
. . . . 5
β’ (((π β§ π β π΅) β§ π₯ = (inrβπ)) β if((1st βπ₯) = β
, (πΉβ(2nd βπ₯)), (πΊβ(2nd βπ₯))) = (πΊβ(2nd
β(inrβπ)))) |
41 | | djurcl 7050 |
. . . . . 6
β’ (π β π΅ β (inrβπ) β (π΄ β π΅)) |
42 | 41 | adantl 277 |
. . . . 5
β’ ((π β§ π β π΅) β (inrβπ) β (π΄ β π΅)) |
43 | 2 | adantr 276 |
. . . . . 6
β’ ((π β§ π β π΅) β πΊ:π΅βΆπΆ) |
44 | | 2ndinr 7075 |
. . . . . . . 8
β’ (π β π΅ β (2nd
β(inrβπ)) =
π) |
45 | 44 | adantl 277 |
. . . . . . 7
β’ ((π β§ π β π΅) β (2nd
β(inrβπ)) =
π) |
46 | | simpr 110 |
. . . . . . 7
β’ ((π β§ π β π΅) β π β π΅) |
47 | 45, 46 | eqeltrd 2254 |
. . . . . 6
β’ ((π β§ π β π΅) β (2nd
β(inrβπ))
β π΅) |
48 | 43, 47 | ffvelcdmd 5652 |
. . . . 5
β’ ((π β§ π β π΅) β (πΊβ(2nd
β(inrβπ)))
β πΆ) |
49 | 23, 40, 42, 48 | fvmptd 5597 |
. . . 4
β’ ((π β§ π β π΅) β (π»β(inrβπ)) = (πΊβ(2nd
β(inrβπ)))) |
50 | 22, 49 | eqtrd 2210 |
. . 3
β’ ((π β§ π β π΅) β (π»β((inr βΎ π΅)βπ)) = (πΊβ(2nd
β(inrβπ)))) |
51 | 45 | fveq2d 5519 |
. . 3
β’ ((π β§ π β π΅) β (πΊβ(2nd
β(inrβπ))) =
(πΊβπ)) |
52 | 19, 50, 51 | 3eqtrd 2214 |
. 2
β’ ((π β§ π β π΅) β ((π» β (inr βΎ π΅))βπ) = (πΊβπ)) |
53 | 15, 17, 52 | eqfnfvd 5616 |
1
β’ (π β (π» β (inr βΎ π΅)) = πΊ) |