ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  updjudhcoinrg GIF version

Theorem updjudhcoinrg 7046
Description: The composition of the mapping of an element of the disjoint union to the value of the corresponding function and the right injection equals the second function. (Contributed by AV, 27-Jun-2022.)
Hypotheses
Ref Expression
updjud.f (𝜑𝐹:𝐴𝐶)
updjud.g (𝜑𝐺:𝐵𝐶)
updjudhf.h 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
Assertion
Ref Expression
updjudhcoinrg (𝜑 → (𝐻 ∘ (inr ↾ 𝐵)) = 𝐺)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem updjudhcoinrg
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 updjud.f . . . . 5 (𝜑𝐹:𝐴𝐶)
2 updjud.g . . . . 5 (𝜑𝐺:𝐵𝐶)
3 updjudhf.h . . . . 5 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))))
41, 2, 3updjudhf 7044 . . . 4 (𝜑𝐻:(𝐴𝐵)⟶𝐶)
5 ffn 5337 . . . 4 (𝐻:(𝐴𝐵)⟶𝐶𝐻 Fn (𝐴𝐵))
64, 5syl 14 . . 3 (𝜑𝐻 Fn (𝐴𝐵))
7 inrresf1 7027 . . . 4 (inr ↾ 𝐵):𝐵1-1→(𝐴𝐵)
8 f1fn 5395 . . . 4 ((inr ↾ 𝐵):𝐵1-1→(𝐴𝐵) → (inr ↾ 𝐵) Fn 𝐵)
97, 8mp1i 10 . . 3 (𝜑 → (inr ↾ 𝐵) Fn 𝐵)
10 f1f 5393 . . . . 5 ((inr ↾ 𝐵):𝐵1-1→(𝐴𝐵) → (inr ↾ 𝐵):𝐵⟶(𝐴𝐵))
117, 10ax-mp 5 . . . 4 (inr ↾ 𝐵):𝐵⟶(𝐴𝐵)
12 frn 5346 . . . 4 ((inr ↾ 𝐵):𝐵⟶(𝐴𝐵) → ran (inr ↾ 𝐵) ⊆ (𝐴𝐵))
1311, 12mp1i 10 . . 3 (𝜑 → ran (inr ↾ 𝐵) ⊆ (𝐴𝐵))
14 fnco 5296 . . 3 ((𝐻 Fn (𝐴𝐵) ∧ (inr ↾ 𝐵) Fn 𝐵 ∧ ran (inr ↾ 𝐵) ⊆ (𝐴𝐵)) → (𝐻 ∘ (inr ↾ 𝐵)) Fn 𝐵)
156, 9, 13, 14syl3anc 1228 . 2 (𝜑 → (𝐻 ∘ (inr ↾ 𝐵)) Fn 𝐵)
16 ffn 5337 . . 3 (𝐺:𝐵𝐶𝐺 Fn 𝐵)
172, 16syl 14 . 2 (𝜑𝐺 Fn 𝐵)
18 fvco2 5555 . . . 4 (((inr ↾ 𝐵) Fn 𝐵𝑏𝐵) → ((𝐻 ∘ (inr ↾ 𝐵))‘𝑏) = (𝐻‘((inr ↾ 𝐵)‘𝑏)))
199, 18sylan 281 . . 3 ((𝜑𝑏𝐵) → ((𝐻 ∘ (inr ↾ 𝐵))‘𝑏) = (𝐻‘((inr ↾ 𝐵)‘𝑏)))
20 fvres 5510 . . . . . 6 (𝑏𝐵 → ((inr ↾ 𝐵)‘𝑏) = (inr‘𝑏))
2120adantl 275 . . . . 5 ((𝜑𝑏𝐵) → ((inr ↾ 𝐵)‘𝑏) = (inr‘𝑏))
2221fveq2d 5490 . . . 4 ((𝜑𝑏𝐵) → (𝐻‘((inr ↾ 𝐵)‘𝑏)) = (𝐻‘(inr‘𝑏)))
233a1i 9 . . . . 5 ((𝜑𝑏𝐵) → 𝐻 = (𝑥 ∈ (𝐴𝐵) ↦ if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥)))))
24 fveq2 5486 . . . . . . . . 9 (𝑥 = (inr‘𝑏) → (1st𝑥) = (1st ‘(inr‘𝑏)))
2524eqeq1d 2174 . . . . . . . 8 (𝑥 = (inr‘𝑏) → ((1st𝑥) = ∅ ↔ (1st ‘(inr‘𝑏)) = ∅))
26 fveq2 5486 . . . . . . . . 9 (𝑥 = (inr‘𝑏) → (2nd𝑥) = (2nd ‘(inr‘𝑏)))
2726fveq2d 5490 . . . . . . . 8 (𝑥 = (inr‘𝑏) → (𝐹‘(2nd𝑥)) = (𝐹‘(2nd ‘(inr‘𝑏))))
2826fveq2d 5490 . . . . . . . 8 (𝑥 = (inr‘𝑏) → (𝐺‘(2nd𝑥)) = (𝐺‘(2nd ‘(inr‘𝑏))))
2925, 27, 28ifbieq12d 3546 . . . . . . 7 (𝑥 = (inr‘𝑏) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) = if((1st ‘(inr‘𝑏)) = ∅, (𝐹‘(2nd ‘(inr‘𝑏))), (𝐺‘(2nd ‘(inr‘𝑏)))))
3029adantl 275 . . . . . 6 (((𝜑𝑏𝐵) ∧ 𝑥 = (inr‘𝑏)) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) = if((1st ‘(inr‘𝑏)) = ∅, (𝐹‘(2nd ‘(inr‘𝑏))), (𝐺‘(2nd ‘(inr‘𝑏)))))
31 1stinr 7041 . . . . . . . . . 10 (𝑏𝐵 → (1st ‘(inr‘𝑏)) = 1o)
32 1n0 6400 . . . . . . . . . . . 12 1o ≠ ∅
3332neii 2338 . . . . . . . . . . 11 ¬ 1o = ∅
34 eqeq1 2172 . . . . . . . . . . 11 ((1st ‘(inr‘𝑏)) = 1o → ((1st ‘(inr‘𝑏)) = ∅ ↔ 1o = ∅))
3533, 34mtbiri 665 . . . . . . . . . 10 ((1st ‘(inr‘𝑏)) = 1o → ¬ (1st ‘(inr‘𝑏)) = ∅)
3631, 35syl 14 . . . . . . . . 9 (𝑏𝐵 → ¬ (1st ‘(inr‘𝑏)) = ∅)
3736adantl 275 . . . . . . . 8 ((𝜑𝑏𝐵) → ¬ (1st ‘(inr‘𝑏)) = ∅)
3837adantr 274 . . . . . . 7 (((𝜑𝑏𝐵) ∧ 𝑥 = (inr‘𝑏)) → ¬ (1st ‘(inr‘𝑏)) = ∅)
3938iffalsed 3530 . . . . . 6 (((𝜑𝑏𝐵) ∧ 𝑥 = (inr‘𝑏)) → if((1st ‘(inr‘𝑏)) = ∅, (𝐹‘(2nd ‘(inr‘𝑏))), (𝐺‘(2nd ‘(inr‘𝑏)))) = (𝐺‘(2nd ‘(inr‘𝑏))))
4030, 39eqtrd 2198 . . . . 5 (((𝜑𝑏𝐵) ∧ 𝑥 = (inr‘𝑏)) → if((1st𝑥) = ∅, (𝐹‘(2nd𝑥)), (𝐺‘(2nd𝑥))) = (𝐺‘(2nd ‘(inr‘𝑏))))
41 djurcl 7017 . . . . . 6 (𝑏𝐵 → (inr‘𝑏) ∈ (𝐴𝐵))
4241adantl 275 . . . . 5 ((𝜑𝑏𝐵) → (inr‘𝑏) ∈ (𝐴𝐵))
432adantr 274 . . . . . 6 ((𝜑𝑏𝐵) → 𝐺:𝐵𝐶)
44 2ndinr 7042 . . . . . . . 8 (𝑏𝐵 → (2nd ‘(inr‘𝑏)) = 𝑏)
4544adantl 275 . . . . . . 7 ((𝜑𝑏𝐵) → (2nd ‘(inr‘𝑏)) = 𝑏)
46 simpr 109 . . . . . . 7 ((𝜑𝑏𝐵) → 𝑏𝐵)
4745, 46eqeltrd 2243 . . . . . 6 ((𝜑𝑏𝐵) → (2nd ‘(inr‘𝑏)) ∈ 𝐵)
4843, 47ffvelrnd 5621 . . . . 5 ((𝜑𝑏𝐵) → (𝐺‘(2nd ‘(inr‘𝑏))) ∈ 𝐶)
4923, 40, 42, 48fvmptd 5567 . . . 4 ((𝜑𝑏𝐵) → (𝐻‘(inr‘𝑏)) = (𝐺‘(2nd ‘(inr‘𝑏))))
5022, 49eqtrd 2198 . . 3 ((𝜑𝑏𝐵) → (𝐻‘((inr ↾ 𝐵)‘𝑏)) = (𝐺‘(2nd ‘(inr‘𝑏))))
5145fveq2d 5490 . . 3 ((𝜑𝑏𝐵) → (𝐺‘(2nd ‘(inr‘𝑏))) = (𝐺𝑏))
5219, 50, 513eqtrd 2202 . 2 ((𝜑𝑏𝐵) → ((𝐻 ∘ (inr ↾ 𝐵))‘𝑏) = (𝐺𝑏))
5315, 17, 52eqfnfvd 5586 1 (𝜑 → (𝐻 ∘ (inr ↾ 𝐵)) = 𝐺)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1343  wcel 2136  wss 3116  c0 3409  ifcif 3520  cmpt 4043  ran crn 4605  cres 4606  ccom 4608   Fn wfn 5183  wf 5184  1-1wf1 5185  cfv 5188  1st c1st 6106  2nd c2nd 6107  1oc1o 6377  cdju 7002  inrcinr 7011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-dju 7003  df-inl 7012  df-inr 7013
This theorem is referenced by:  updjud  7047
  Copyright terms: Public domain W3C validator