ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem4dom GIF version

Theorem phplem4dom 6966
Description: Dominance of successors implies dominance of the original natural numbers. (Contributed by Jim Kingdon, 1-Sep-2021.)
Assertion
Ref Expression
phplem4dom ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≼ suc 𝐵𝐴𝐵))

Proof of Theorem phplem4dom
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 peano2 4647 . . . . . 6 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
21adantl 277 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → suc 𝐵 ∈ ω)
3 brdomg 6844 . . . . 5 (suc 𝐵 ∈ ω → (suc 𝐴 ≼ suc 𝐵 ↔ ∃𝑓 𝑓:suc 𝐴1-1→suc 𝐵))
42, 3syl 14 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≼ suc 𝐵 ↔ ∃𝑓 𝑓:suc 𝐴1-1→suc 𝐵))
54biimpa 296 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) → ∃𝑓 𝑓:suc 𝐴1-1→suc 𝐵)
6 simpr 110 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝑓:suc 𝐴1-1→suc 𝐵)
72ad2antrr 488 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → suc 𝐵 ∈ ω)
8 sssucid 4466 . . . . . . . 8 𝐴 ⊆ suc 𝐴
98a1i 9 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝐴 ⊆ suc 𝐴)
10 simplll 533 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝐴 ∈ ω)
11 f1imaen2g 6892 . . . . . . 7 (((𝑓:suc 𝐴1-1→suc 𝐵 ∧ suc 𝐵 ∈ ω) ∧ (𝐴 ⊆ suc 𝐴𝐴 ∈ ω)) → (𝑓𝐴) ≈ 𝐴)
126, 7, 9, 10, 11syl22anc 1251 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (𝑓𝐴) ≈ 𝐴)
1312ensymd 6882 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝐴 ≈ (𝑓𝐴))
14 difexg 4189 . . . . . . 7 (suc 𝐵 ∈ ω → (suc 𝐵 ∖ {(𝑓𝐴)}) ∈ V)
157, 14syl 14 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (suc 𝐵 ∖ {(𝑓𝐴)}) ∈ V)
16 nnord 4664 . . . . . . . . . 10 (𝐴 ∈ ω → Ord 𝐴)
17 orddif 4599 . . . . . . . . . 10 (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))
1816, 17syl 14 . . . . . . . . 9 (𝐴 ∈ ω → 𝐴 = (suc 𝐴 ∖ {𝐴}))
1918imaeq2d 5027 . . . . . . . 8 (𝐴 ∈ ω → (𝑓𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴})))
2010, 19syl 14 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (𝑓𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴})))
21 f1fn 5490 . . . . . . . . . . . 12 (𝑓:suc 𝐴1-1→suc 𝐵𝑓 Fn suc 𝐴)
2221adantl 277 . . . . . . . . . . 11 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝑓 Fn suc 𝐴)
23 sucidg 4467 . . . . . . . . . . . 12 (𝐴 ∈ ω → 𝐴 ∈ suc 𝐴)
2410, 23syl 14 . . . . . . . . . . 11 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝐴 ∈ suc 𝐴)
25 fnsnfv 5645 . . . . . . . . . . 11 ((𝑓 Fn suc 𝐴𝐴 ∈ suc 𝐴) → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
2622, 24, 25syl2anc 411 . . . . . . . . . 10 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
2726difeq2d 3292 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
28 df-f1 5281 . . . . . . . . . . . 12 (𝑓:suc 𝐴1-1→suc 𝐵 ↔ (𝑓:suc 𝐴⟶suc 𝐵 ∧ Fun 𝑓))
2928simprbi 275 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1→suc 𝐵 → Fun 𝑓)
30 imadif 5359 . . . . . . . . . . 11 (Fun 𝑓 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
3129, 30syl 14 . . . . . . . . . 10 (𝑓:suc 𝐴1-1→suc 𝐵 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
3231adantl 277 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
3327, 32eqtr4d 2242 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}) = (𝑓 “ (suc 𝐴 ∖ {𝐴})))
34 f1f 5488 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1→suc 𝐵𝑓:suc 𝐴⟶suc 𝐵)
3534adantl 277 . . . . . . . . . 10 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝑓:suc 𝐴⟶suc 𝐵)
36 imassrn 5038 . . . . . . . . . . 11 (𝑓 “ suc 𝐴) ⊆ ran 𝑓
37 frn 5440 . . . . . . . . . . 11 (𝑓:suc 𝐴⟶suc 𝐵 → ran 𝑓 ⊆ suc 𝐵)
3836, 37sstrid 3205 . . . . . . . . . 10 (𝑓:suc 𝐴⟶suc 𝐵 → (𝑓 “ suc 𝐴) ⊆ suc 𝐵)
3935, 38syl 14 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (𝑓 “ suc 𝐴) ⊆ suc 𝐵)
4039ssdifd 3310 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}) ⊆ (suc 𝐵 ∖ {(𝑓𝐴)}))
4133, 40eqsstrrd 3231 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (𝑓 “ (suc 𝐴 ∖ {𝐴})) ⊆ (suc 𝐵 ∖ {(𝑓𝐴)}))
4220, 41eqsstrd 3230 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (𝑓𝐴) ⊆ (suc 𝐵 ∖ {(𝑓𝐴)}))
43 ssdomg 6877 . . . . . 6 ((suc 𝐵 ∖ {(𝑓𝐴)}) ∈ V → ((𝑓𝐴) ⊆ (suc 𝐵 ∖ {(𝑓𝐴)}) → (𝑓𝐴) ≼ (suc 𝐵 ∖ {(𝑓𝐴)})))
4415, 42, 43sylc 62 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (𝑓𝐴) ≼ (suc 𝐵 ∖ {(𝑓𝐴)}))
45 endomtr 6889 . . . . 5 ((𝐴 ≈ (𝑓𝐴) ∧ (𝑓𝐴) ≼ (suc 𝐵 ∖ {(𝑓𝐴)})) → 𝐴 ≼ (suc 𝐵 ∖ {(𝑓𝐴)}))
4613, 44, 45syl2anc 411 . . . 4 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝐴 ≼ (suc 𝐵 ∖ {(𝑓𝐴)}))
47 simpllr 534 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝐵 ∈ ω)
4835, 24ffvelcdmd 5723 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (𝑓𝐴) ∈ suc 𝐵)
49 phplem3g 6960 . . . . . 6 ((𝐵 ∈ ω ∧ (𝑓𝐴) ∈ suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
5047, 48, 49syl2anc 411 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
5150ensymd 6882 . . . 4 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵)
52 domentr 6890 . . . 4 ((𝐴 ≼ (suc 𝐵 ∖ {(𝑓𝐴)}) ∧ (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵) → 𝐴𝐵)
5346, 51, 52syl2anc 411 . . 3 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝐴𝐵)
545, 53exlimddv 1923 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) → 𝐴𝐵)
5554ex 115 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≼ suc 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wex 1516  wcel 2177  Vcvv 2773  cdif 3164  wss 3167  {csn 3634   class class class wbr 4047  Ord word 4413  suc csuc 4416  ωcom 4642  ccnv 4678  ran crn 4680  cima 4682  Fun wfun 5270   Fn wfn 5271  wf 5272  1-1wf1 5273  cfv 5276  cen 6832  cdom 6833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-er 6627  df-en 6835  df-dom 6836
This theorem is referenced by:  php5dom  6967
  Copyright terms: Public domain W3C validator