| Step | Hyp | Ref
| Expression |
| 1 | | peano2 4632 |
. . . . . 6
⊢ (𝐵 ∈ ω → suc 𝐵 ∈
ω) |
| 2 | 1 | adantl 277 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → suc
𝐵 ∈
ω) |
| 3 | | brdomg 6816 |
. . . . 5
⊢ (suc
𝐵 ∈ ω →
(suc 𝐴 ≼ suc 𝐵 ↔ ∃𝑓 𝑓:suc 𝐴–1-1→suc 𝐵)) |
| 4 | 2, 3 | syl 14 |
. . . 4
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc
𝐴 ≼ suc 𝐵 ↔ ∃𝑓 𝑓:suc 𝐴–1-1→suc 𝐵)) |
| 5 | 4 | biimpa 296 |
. . 3
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) → ∃𝑓 𝑓:suc 𝐴–1-1→suc 𝐵) |
| 6 | | simpr 110 |
. . . . . . 7
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → 𝑓:suc 𝐴–1-1→suc 𝐵) |
| 7 | 2 | ad2antrr 488 |
. . . . . . 7
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → suc 𝐵 ∈ ω) |
| 8 | | sssucid 4451 |
. . . . . . . 8
⊢ 𝐴 ⊆ suc 𝐴 |
| 9 | 8 | a1i 9 |
. . . . . . 7
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → 𝐴 ⊆ suc 𝐴) |
| 10 | | simplll 533 |
. . . . . . 7
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → 𝐴 ∈ ω) |
| 11 | | f1imaen2g 6861 |
. . . . . . 7
⊢ (((𝑓:suc 𝐴–1-1→suc 𝐵 ∧ suc 𝐵 ∈ ω) ∧ (𝐴 ⊆ suc 𝐴 ∧ 𝐴 ∈ ω)) → (𝑓 “ 𝐴) ≈ 𝐴) |
| 12 | 6, 7, 9, 10, 11 | syl22anc 1250 |
. . . . . 6
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → (𝑓 “ 𝐴) ≈ 𝐴) |
| 13 | 12 | ensymd 6851 |
. . . . 5
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → 𝐴 ≈ (𝑓 “ 𝐴)) |
| 14 | | difexg 4175 |
. . . . . . 7
⊢ (suc
𝐵 ∈ ω →
(suc 𝐵 ∖ {(𝑓‘𝐴)}) ∈ V) |
| 15 | 7, 14 | syl 14 |
. . . . . 6
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → (suc 𝐵 ∖ {(𝑓‘𝐴)}) ∈ V) |
| 16 | | nnord 4649 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ω → Ord 𝐴) |
| 17 | | orddif 4584 |
. . . . . . . . . 10
⊢ (Ord
𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) |
| 18 | 16, 17 | syl 14 |
. . . . . . . . 9
⊢ (𝐴 ∈ ω → 𝐴 = (suc 𝐴 ∖ {𝐴})) |
| 19 | 18 | imaeq2d 5010 |
. . . . . . . 8
⊢ (𝐴 ∈ ω → (𝑓 “ 𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴}))) |
| 20 | 10, 19 | syl 14 |
. . . . . . 7
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → (𝑓 “ 𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴}))) |
| 21 | | f1fn 5468 |
. . . . . . . . . . . 12
⊢ (𝑓:suc 𝐴–1-1→suc 𝐵 → 𝑓 Fn suc 𝐴) |
| 22 | 21 | adantl 277 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → 𝑓 Fn suc 𝐴) |
| 23 | | sucidg 4452 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ω → 𝐴 ∈ suc 𝐴) |
| 24 | 10, 23 | syl 14 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → 𝐴 ∈ suc 𝐴) |
| 25 | | fnsnfv 5623 |
. . . . . . . . . . 11
⊢ ((𝑓 Fn suc 𝐴 ∧ 𝐴 ∈ suc 𝐴) → {(𝑓‘𝐴)} = (𝑓 “ {𝐴})) |
| 26 | 22, 24, 25 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → {(𝑓‘𝐴)} = (𝑓 “ {𝐴})) |
| 27 | 26 | difeq2d 3282 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → ((𝑓 “ suc 𝐴) ∖ {(𝑓‘𝐴)}) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴}))) |
| 28 | | df-f1 5264 |
. . . . . . . . . . . 12
⊢ (𝑓:suc 𝐴–1-1→suc 𝐵 ↔ (𝑓:suc 𝐴⟶suc 𝐵 ∧ Fun ◡𝑓)) |
| 29 | 28 | simprbi 275 |
. . . . . . . . . . 11
⊢ (𝑓:suc 𝐴–1-1→suc 𝐵 → Fun ◡𝑓) |
| 30 | | imadif 5339 |
. . . . . . . . . . 11
⊢ (Fun
◡𝑓 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴}))) |
| 31 | 29, 30 | syl 14 |
. . . . . . . . . 10
⊢ (𝑓:suc 𝐴–1-1→suc 𝐵 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴}))) |
| 32 | 31 | adantl 277 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴}))) |
| 33 | 27, 32 | eqtr4d 2232 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → ((𝑓 “ suc 𝐴) ∖ {(𝑓‘𝐴)}) = (𝑓 “ (suc 𝐴 ∖ {𝐴}))) |
| 34 | | f1f 5466 |
. . . . . . . . . . 11
⊢ (𝑓:suc 𝐴–1-1→suc 𝐵 → 𝑓:suc 𝐴⟶suc 𝐵) |
| 35 | 34 | adantl 277 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → 𝑓:suc 𝐴⟶suc 𝐵) |
| 36 | | imassrn 5021 |
. . . . . . . . . . 11
⊢ (𝑓 “ suc 𝐴) ⊆ ran 𝑓 |
| 37 | | frn 5419 |
. . . . . . . . . . 11
⊢ (𝑓:suc 𝐴⟶suc 𝐵 → ran 𝑓 ⊆ suc 𝐵) |
| 38 | 36, 37 | sstrid 3195 |
. . . . . . . . . 10
⊢ (𝑓:suc 𝐴⟶suc 𝐵 → (𝑓 “ suc 𝐴) ⊆ suc 𝐵) |
| 39 | 35, 38 | syl 14 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → (𝑓 “ suc 𝐴) ⊆ suc 𝐵) |
| 40 | 39 | ssdifd 3300 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → ((𝑓 “ suc 𝐴) ∖ {(𝑓‘𝐴)}) ⊆ (suc 𝐵 ∖ {(𝑓‘𝐴)})) |
| 41 | 33, 40 | eqsstrrd 3221 |
. . . . . . 7
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → (𝑓 “ (suc 𝐴 ∖ {𝐴})) ⊆ (suc 𝐵 ∖ {(𝑓‘𝐴)})) |
| 42 | 20, 41 | eqsstrd 3220 |
. . . . . 6
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → (𝑓 “ 𝐴) ⊆ (suc 𝐵 ∖ {(𝑓‘𝐴)})) |
| 43 | | ssdomg 6846 |
. . . . . 6
⊢ ((suc
𝐵 ∖ {(𝑓‘𝐴)}) ∈ V → ((𝑓 “ 𝐴) ⊆ (suc 𝐵 ∖ {(𝑓‘𝐴)}) → (𝑓 “ 𝐴) ≼ (suc 𝐵 ∖ {(𝑓‘𝐴)}))) |
| 44 | 15, 42, 43 | sylc 62 |
. . . . 5
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → (𝑓 “ 𝐴) ≼ (suc 𝐵 ∖ {(𝑓‘𝐴)})) |
| 45 | | endomtr 6858 |
. . . . 5
⊢ ((𝐴 ≈ (𝑓 “ 𝐴) ∧ (𝑓 “ 𝐴) ≼ (suc 𝐵 ∖ {(𝑓‘𝐴)})) → 𝐴 ≼ (suc 𝐵 ∖ {(𝑓‘𝐴)})) |
| 46 | 13, 44, 45 | syl2anc 411 |
. . . 4
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → 𝐴 ≼ (suc 𝐵 ∖ {(𝑓‘𝐴)})) |
| 47 | | simpllr 534 |
. . . . . 6
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → 𝐵 ∈ ω) |
| 48 | 35, 24 | ffvelcdmd 5701 |
. . . . . 6
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → (𝑓‘𝐴) ∈ suc 𝐵) |
| 49 | | phplem3g 6926 |
. . . . . 6
⊢ ((𝐵 ∈ ω ∧ (𝑓‘𝐴) ∈ suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓‘𝐴)})) |
| 50 | 47, 48, 49 | syl2anc 411 |
. . . . 5
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓‘𝐴)})) |
| 51 | 50 | ensymd 6851 |
. . . 4
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → (suc 𝐵 ∖ {(𝑓‘𝐴)}) ≈ 𝐵) |
| 52 | | domentr 6859 |
. . . 4
⊢ ((𝐴 ≼ (suc 𝐵 ∖ {(𝑓‘𝐴)}) ∧ (suc 𝐵 ∖ {(𝑓‘𝐴)}) ≈ 𝐵) → 𝐴 ≼ 𝐵) |
| 53 | 46, 51, 52 | syl2anc 411 |
. . 3
⊢ ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1→suc 𝐵) → 𝐴 ≼ 𝐵) |
| 54 | 5, 53 | exlimddv 1913 |
. 2
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) → 𝐴 ≼ 𝐵) |
| 55 | 54 | ex 115 |
1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc
𝐴 ≼ suc 𝐵 → 𝐴 ≼ 𝐵)) |