ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem4dom GIF version

Theorem phplem4dom 6749
Description: Dominance of successors implies dominance of the original natural numbers. (Contributed by Jim Kingdon, 1-Sep-2021.)
Assertion
Ref Expression
phplem4dom ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≼ suc 𝐵𝐴𝐵))

Proof of Theorem phplem4dom
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 peano2 4504 . . . . . 6 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
21adantl 275 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → suc 𝐵 ∈ ω)
3 brdomg 6635 . . . . 5 (suc 𝐵 ∈ ω → (suc 𝐴 ≼ suc 𝐵 ↔ ∃𝑓 𝑓:suc 𝐴1-1→suc 𝐵))
42, 3syl 14 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≼ suc 𝐵 ↔ ∃𝑓 𝑓:suc 𝐴1-1→suc 𝐵))
54biimpa 294 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) → ∃𝑓 𝑓:suc 𝐴1-1→suc 𝐵)
6 simpr 109 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝑓:suc 𝐴1-1→suc 𝐵)
72ad2antrr 479 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → suc 𝐵 ∈ ω)
8 sssucid 4332 . . . . . . . 8 𝐴 ⊆ suc 𝐴
98a1i 9 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝐴 ⊆ suc 𝐴)
10 simplll 522 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝐴 ∈ ω)
11 f1imaen2g 6680 . . . . . . 7 (((𝑓:suc 𝐴1-1→suc 𝐵 ∧ suc 𝐵 ∈ ω) ∧ (𝐴 ⊆ suc 𝐴𝐴 ∈ ω)) → (𝑓𝐴) ≈ 𝐴)
126, 7, 9, 10, 11syl22anc 1217 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (𝑓𝐴) ≈ 𝐴)
1312ensymd 6670 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝐴 ≈ (𝑓𝐴))
14 difexg 4064 . . . . . . 7 (suc 𝐵 ∈ ω → (suc 𝐵 ∖ {(𝑓𝐴)}) ∈ V)
157, 14syl 14 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (suc 𝐵 ∖ {(𝑓𝐴)}) ∈ V)
16 nnord 4520 . . . . . . . . . 10 (𝐴 ∈ ω → Ord 𝐴)
17 orddif 4457 . . . . . . . . . 10 (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))
1816, 17syl 14 . . . . . . . . 9 (𝐴 ∈ ω → 𝐴 = (suc 𝐴 ∖ {𝐴}))
1918imaeq2d 4876 . . . . . . . 8 (𝐴 ∈ ω → (𝑓𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴})))
2010, 19syl 14 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (𝑓𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴})))
21 f1fn 5325 . . . . . . . . . . . 12 (𝑓:suc 𝐴1-1→suc 𝐵𝑓 Fn suc 𝐴)
2221adantl 275 . . . . . . . . . . 11 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝑓 Fn suc 𝐴)
23 sucidg 4333 . . . . . . . . . . . 12 (𝐴 ∈ ω → 𝐴 ∈ suc 𝐴)
2410, 23syl 14 . . . . . . . . . . 11 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝐴 ∈ suc 𝐴)
25 fnsnfv 5473 . . . . . . . . . . 11 ((𝑓 Fn suc 𝐴𝐴 ∈ suc 𝐴) → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
2622, 24, 25syl2anc 408 . . . . . . . . . 10 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
2726difeq2d 3189 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
28 df-f1 5123 . . . . . . . . . . . 12 (𝑓:suc 𝐴1-1→suc 𝐵 ↔ (𝑓:suc 𝐴⟶suc 𝐵 ∧ Fun 𝑓))
2928simprbi 273 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1→suc 𝐵 → Fun 𝑓)
30 imadif 5198 . . . . . . . . . . 11 (Fun 𝑓 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
3129, 30syl 14 . . . . . . . . . 10 (𝑓:suc 𝐴1-1→suc 𝐵 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
3231adantl 275 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
3327, 32eqtr4d 2173 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}) = (𝑓 “ (suc 𝐴 ∖ {𝐴})))
34 f1f 5323 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1→suc 𝐵𝑓:suc 𝐴⟶suc 𝐵)
3534adantl 275 . . . . . . . . . 10 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝑓:suc 𝐴⟶suc 𝐵)
36 imassrn 4887 . . . . . . . . . . 11 (𝑓 “ suc 𝐴) ⊆ ran 𝑓
37 frn 5276 . . . . . . . . . . 11 (𝑓:suc 𝐴⟶suc 𝐵 → ran 𝑓 ⊆ suc 𝐵)
3836, 37sstrid 3103 . . . . . . . . . 10 (𝑓:suc 𝐴⟶suc 𝐵 → (𝑓 “ suc 𝐴) ⊆ suc 𝐵)
3935, 38syl 14 . . . . . . . . 9 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (𝑓 “ suc 𝐴) ⊆ suc 𝐵)
4039ssdifd 3207 . . . . . . . 8 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}) ⊆ (suc 𝐵 ∖ {(𝑓𝐴)}))
4133, 40eqsstrrd 3129 . . . . . . 7 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (𝑓 “ (suc 𝐴 ∖ {𝐴})) ⊆ (suc 𝐵 ∖ {(𝑓𝐴)}))
4220, 41eqsstrd 3128 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (𝑓𝐴) ⊆ (suc 𝐵 ∖ {(𝑓𝐴)}))
43 ssdomg 6665 . . . . . 6 ((suc 𝐵 ∖ {(𝑓𝐴)}) ∈ V → ((𝑓𝐴) ⊆ (suc 𝐵 ∖ {(𝑓𝐴)}) → (𝑓𝐴) ≼ (suc 𝐵 ∖ {(𝑓𝐴)})))
4415, 42, 43sylc 62 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (𝑓𝐴) ≼ (suc 𝐵 ∖ {(𝑓𝐴)}))
45 endomtr 6677 . . . . 5 ((𝐴 ≈ (𝑓𝐴) ∧ (𝑓𝐴) ≼ (suc 𝐵 ∖ {(𝑓𝐴)})) → 𝐴 ≼ (suc 𝐵 ∖ {(𝑓𝐴)}))
4613, 44, 45syl2anc 408 . . . 4 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝐴 ≼ (suc 𝐵 ∖ {(𝑓𝐴)}))
47 simpllr 523 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝐵 ∈ ω)
4835, 24ffvelrnd 5549 . . . . . 6 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (𝑓𝐴) ∈ suc 𝐵)
49 phplem3g 6743 . . . . . 6 ((𝐵 ∈ ω ∧ (𝑓𝐴) ∈ suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
5047, 48, 49syl2anc 408 . . . . 5 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
5150ensymd 6670 . . . 4 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵)
52 domentr 6678 . . . 4 ((𝐴 ≼ (suc 𝐵 ∖ {(𝑓𝐴)}) ∧ (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵) → 𝐴𝐵)
5346, 51, 52syl2anc 408 . . 3 ((((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) ∧ 𝑓:suc 𝐴1-1→suc 𝐵) → 𝐴𝐵)
545, 53exlimddv 1870 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≼ suc 𝐵) → 𝐴𝐵)
5554ex 114 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≼ suc 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wex 1468  wcel 1480  Vcvv 2681  cdif 3063  wss 3066  {csn 3522   class class class wbr 3924  Ord word 4279  suc csuc 4282  ωcom 4499  ccnv 4533  ran crn 4535  cima 4537  Fun wfun 5112   Fn wfn 5113  wf 5114  1-1wf1 5115  cfv 5118  cen 6625  cdom 6626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-er 6422  df-en 6628  df-dom 6629
This theorem is referenced by:  php5dom  6750
  Copyright terms: Public domain W3C validator