| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbiran2 | GIF version | ||
| Description: Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) (Revised by NM, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mpbiran2.1 | ⊢ 𝜒 |
| mpbiran2.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbiran2 | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbiran2.2 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | mpbiran2.1 | . . 3 ⊢ 𝜒 | |
| 3 | 2 | biantru 302 | . 2 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜒)) |
| 4 | 1, 3 | bitr4i 187 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: reueq 3002 ss0b 3531 eusv1 4540 eusv2nf 4544 eusv2 4545 opthprc 4767 opelres 5006 f1cnvcnv 5538 fores 5554 f1orn 5578 funfvdm 5690 dfoprab2 6042 tpostpos 6400 opelreal 8002 elreal2 8005 eqresr 8011 axprecex 8055 zeoxor 12366 isprm2 12625 toptopon 14677 bdeq0 16160 subctctexmid 16297 |
| Copyright terms: Public domain | W3C validator |