Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpbiran2 | GIF version |
Description: Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) (Revised by NM, 9-Jan-2015.) |
Ref | Expression |
---|---|
mpbiran2.1 | ⊢ 𝜒 |
mpbiran2.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
mpbiran2 | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbiran2.2 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | mpbiran2.1 | . . 3 ⊢ 𝜒 | |
3 | 2 | biantru 300 | . 2 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜒)) |
4 | 1, 3 | bitr4i 186 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: reueq 2929 ss0b 3454 eusv1 4437 eusv2nf 4441 eusv2 4442 opthprc 4662 opelres 4896 f1cnvcnv 5414 fores 5429 f1orn 5452 funfvdm 5559 dfoprab2 5900 tpostpos 6243 opelreal 7789 elreal2 7792 eqresr 7798 axprecex 7842 zeoxor 11828 isprm2 12071 toptopon 12810 bdeq0 13902 subctctexmid 14034 |
Copyright terms: Public domain | W3C validator |