![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbiran2 | GIF version |
Description: Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) (Revised by NM, 9-Jan-2015.) |
Ref | Expression |
---|---|
mpbiran2.1 | ⊢ 𝜒 |
mpbiran2.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
mpbiran2 | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbiran2.2 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | mpbiran2.1 | . . 3 ⊢ 𝜒 | |
3 | 2 | biantru 302 | . 2 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜒)) |
4 | 1, 3 | bitr4i 187 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: reueq 2960 ss0b 3487 eusv1 4484 eusv2nf 4488 eusv2 4489 opthprc 4711 opelres 4948 f1cnvcnv 5471 fores 5487 f1orn 5511 funfvdm 5621 dfoprab2 5966 tpostpos 6319 opelreal 7889 elreal2 7892 eqresr 7898 axprecex 7942 zeoxor 12013 isprm2 12258 toptopon 14197 bdeq0 15429 subctctexmid 15561 |
Copyright terms: Public domain | W3C validator |