| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mpbiran2 | GIF version | ||
| Description: Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) (Revised by NM, 9-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| mpbiran2.1 | ⊢ 𝜒 | 
| mpbiran2.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | 
| Ref | Expression | 
|---|---|
| mpbiran2 | ⊢ (𝜑 ↔ 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpbiran2.2 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | mpbiran2.1 | . . 3 ⊢ 𝜒 | |
| 3 | 2 | biantru 302 | . 2 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜒)) | 
| 4 | 1, 3 | bitr4i 187 | 1 ⊢ (𝜑 ↔ 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: reueq 2963 ss0b 3490 eusv1 4487 eusv2nf 4491 eusv2 4492 opthprc 4714 opelres 4951 f1cnvcnv 5474 fores 5490 f1orn 5514 funfvdm 5624 dfoprab2 5969 tpostpos 6322 opelreal 7894 elreal2 7897 eqresr 7903 axprecex 7947 zeoxor 12034 isprm2 12285 toptopon 14254 bdeq0 15513 subctctexmid 15645 | 
| Copyright terms: Public domain | W3C validator |