| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbiran2 | GIF version | ||
| Description: Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) (Revised by NM, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mpbiran2.1 | ⊢ 𝜒 |
| mpbiran2.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbiran2 | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbiran2.2 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | mpbiran2.1 | . . 3 ⊢ 𝜒 | |
| 3 | 2 | biantru 302 | . 2 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜒)) |
| 4 | 1, 3 | bitr4i 187 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: reueq 3002 ss0b 3531 eusv1 4543 eusv2nf 4547 eusv2 4548 opthprc 4770 opelres 5010 f1cnvcnv 5544 fores 5560 f1orn 5584 funfvdm 5699 dfoprab2 6057 tpostpos 6416 opelreal 8022 elreal2 8025 eqresr 8031 axprecex 8075 zeoxor 12388 isprm2 12647 toptopon 14700 bdeq0 16254 subctctexmid 16395 |
| Copyright terms: Public domain | W3C validator |