![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbiran2 | GIF version |
Description: Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) (Revised by NM, 9-Jan-2015.) |
Ref | Expression |
---|---|
mpbiran2.1 | ⊢ 𝜒 |
mpbiran2.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
mpbiran2 | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbiran2.2 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | mpbiran2.1 | . . 3 ⊢ 𝜒 | |
3 | 2 | biantru 302 | . 2 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜒)) |
4 | 1, 3 | bitr4i 187 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: reueq 2959 ss0b 3486 eusv1 4483 eusv2nf 4487 eusv2 4488 opthprc 4710 opelres 4947 f1cnvcnv 5470 fores 5486 f1orn 5510 funfvdm 5620 dfoprab2 5965 tpostpos 6317 opelreal 7887 elreal2 7890 eqresr 7896 axprecex 7940 zeoxor 12010 isprm2 12255 toptopon 14186 bdeq0 15359 subctctexmid 15491 |
Copyright terms: Public domain | W3C validator |