![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbiran2 | GIF version |
Description: Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) (Revised by NM, 9-Jan-2015.) |
Ref | Expression |
---|---|
mpbiran2.1 | ⊢ 𝜒 |
mpbiran2.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
mpbiran2 | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbiran2.2 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | mpbiran2.1 | . . 3 ⊢ 𝜒 | |
3 | 2 | biantru 298 | . 2 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜒)) |
4 | 1, 3 | bitr4i 186 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: reueq 2850 ss0b 3366 eusv1 4331 eusv2nf 4335 eusv2 4336 opthprc 4548 opelres 4780 f1cnvcnv 5295 fores 5310 f1orn 5331 funfvdm 5436 dfoprab2 5770 tpostpos 6113 opelreal 7556 elreal2 7559 eqresr 7565 axprecex 7609 zeoxor 11408 isprm2 11638 toptopon 12022 bdeq0 12748 |
Copyright terms: Public domain | W3C validator |