| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbiran2 | GIF version | ||
| Description: Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) (Revised by NM, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mpbiran2.1 | ⊢ 𝜒 |
| mpbiran2.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbiran2 | ⊢ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbiran2.2 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | mpbiran2.1 | . . 3 ⊢ 𝜒 | |
| 3 | 2 | biantru 302 | . 2 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜒)) |
| 4 | 1, 3 | bitr4i 187 | 1 ⊢ (𝜑 ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: reueq 2974 ss0b 3502 eusv1 4504 eusv2nf 4508 eusv2 4509 opthprc 4731 opelres 4970 f1cnvcnv 5501 fores 5517 f1orn 5541 funfvdm 5652 dfoprab2 6002 tpostpos 6360 opelreal 7953 elreal2 7956 eqresr 7962 axprecex 8006 zeoxor 12230 isprm2 12489 toptopon 14540 bdeq0 15917 subctctexmid 16052 |
| Copyright terms: Public domain | W3C validator |