ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff1o5 GIF version

Theorem dff1o5 5513
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o5 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵 ∧ ran 𝐹 = 𝐵))

Proof of Theorem dff1o5
StepHypRef Expression
1 df-f1o 5265 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
2 dffo2 5484 . . . 4 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
3 f1f 5463 . . . . 5 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
43biantrurd 305 . . . 4 (𝐹:𝐴1-1𝐵 → (ran 𝐹 = 𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵)))
52, 4bitr4id 199 . . 3 (𝐹:𝐴1-1𝐵 → (𝐹:𝐴onto𝐵 ↔ ran 𝐹 = 𝐵))
65pm5.32i 454 . 2 ((𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵) ↔ (𝐹:𝐴1-1𝐵 ∧ ran 𝐹 = 𝐵))
71, 6bitri 184 1 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵 ∧ ran 𝐹 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  ran crn 4664  wf 5254  1-1wf1 5255  ontowfo 5256  1-1-ontowf1o 5257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265
This theorem is referenced by:  f1orescnv  5520  f1finf1o  7013  djuinr  7129  eninl  7163  eninr  7164  frec2uzf1od  10498  ennnfonelemex  12631  ennnfonelemen  12638  ssnnctlemct  12663  2lgslem1b  15330  pwf1oexmid  15644
  Copyright terms: Public domain W3C validator