![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > feq1d | GIF version |
Description: Equality deduction for functions. (Contributed by NM, 19-Feb-2008.) |
Ref | Expression |
---|---|
feq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Ref | Expression |
---|---|
feq1d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | feq1 5386 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ⟶wf 5250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-fun 5256 df-fn 5257 df-f 5258 |
This theorem is referenced by: feq12d 5393 fco2 5420 fssres2 5431 fresin 5432 fmpt3d 5714 fmptco 5724 fressnfv 5745 off 6143 caofinvl 6155 f2ndf 6279 eroprf 6682 pmresg 6730 pw2f1odclem 6890 fseq1p1m1 10160 mgmplusf 12949 mgmb1mgm1 12951 grpsubf 13151 lmodscaf 13806 lmbr 14381 blfps 14577 blf 14578 dvmptclx 14865 lgsfcl3 15137 |
Copyright terms: Public domain | W3C validator |