ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq1d GIF version

Theorem feq1d 5215
Description: Equality deduction for functions. (Contributed by NM, 19-Feb-2008.)
Hypothesis
Ref Expression
feq1d.1 (𝜑𝐹 = 𝐺)
Assertion
Ref Expression
feq1d (𝜑 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))

Proof of Theorem feq1d
StepHypRef Expression
1 feq1d.1 . 2 (𝜑𝐹 = 𝐺)
2 feq1 5211 . 2 (𝐹 = 𝐺 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
31, 2syl 14 1 (𝜑 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1312  wf 5075
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-sn 3497  df-pr 3498  df-op 3500  df-br 3894  df-opab 3948  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-fun 5081  df-fn 5082  df-f 5083
This theorem is referenced by:  feq12d  5218  fco2  5245  fssres2  5256  fresin  5257  fmpt3d  5528  fmptco  5538  fressnfv  5559  off  5946  caofinvl  5956  f2ndf  6075  eroprf  6474  pmresg  6522  fseq1p1m1  9761  lmbr  12218  blfps  12392  blf  12393
  Copyright terms: Public domain W3C validator