ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq1d GIF version

Theorem feq1d 5436
Description: Equality deduction for functions. (Contributed by NM, 19-Feb-2008.)
Hypothesis
Ref Expression
feq1d.1 (𝜑𝐹 = 𝐺)
Assertion
Ref Expression
feq1d (𝜑 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))

Proof of Theorem feq1d
StepHypRef Expression
1 feq1d.1 . 2 (𝜑𝐹 = 𝐺)
2 feq1 5432 . 2 (𝐹 = 𝐺 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
31, 2syl 14 1 (𝜑 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1375  wf 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-fun 5296  df-fn 5297  df-f 5298
This theorem is referenced by:  feq12d  5439  fco2  5466  fssres2  5479  fresin  5480  fmpt3d  5764  fmptco  5774  fressnfv  5799  off  6201  caofinvl  6214  f2ndf  6342  eroprf  6745  pmresg  6793  pw2f1odclem  6963  fseq1p1m1  10258  mgmplusf  13365  mgmb1mgm1  13367  grpsubf  13578  lmodscaf  14239  lmbr  14852  blfps  15048  blf  15049  dvmptclx  15357  lgsfcl3  15665
  Copyright terms: Public domain W3C validator