| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq1d | GIF version | ||
| Description: Equality deduction for functions. (Contributed by NM, 19-Feb-2008.) |
| Ref | Expression |
|---|---|
| feq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| feq1d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | feq1 5414 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ⟶wf 5272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-fun 5278 df-fn 5279 df-f 5280 |
| This theorem is referenced by: feq12d 5421 fco2 5448 fssres2 5460 fresin 5461 fmpt3d 5743 fmptco 5753 fressnfv 5778 off 6178 caofinvl 6191 f2ndf 6319 eroprf 6722 pmresg 6770 pw2f1odclem 6938 fseq1p1m1 10223 mgmplusf 13242 mgmb1mgm1 13244 grpsubf 13455 lmodscaf 14116 lmbr 14729 blfps 14925 blf 14926 dvmptclx 15234 lgsfcl3 15542 |
| Copyright terms: Public domain | W3C validator |