| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq1d | GIF version | ||
| Description: Equality deduction for functions. (Contributed by NM, 19-Feb-2008.) |
| Ref | Expression |
|---|---|
| feq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| feq1d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | feq1 5432 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1375 ⟶wf 5290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-fun 5296 df-fn 5297 df-f 5298 |
| This theorem is referenced by: feq12d 5439 fco2 5466 fssres2 5479 fresin 5480 fmpt3d 5764 fmptco 5774 fressnfv 5799 off 6201 caofinvl 6214 f2ndf 6342 eroprf 6745 pmresg 6793 pw2f1odclem 6963 fseq1p1m1 10258 mgmplusf 13365 mgmb1mgm1 13367 grpsubf 13578 lmodscaf 14239 lmbr 14852 blfps 15048 blf 15049 dvmptclx 15357 lgsfcl3 15665 |
| Copyright terms: Public domain | W3C validator |