ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq1d GIF version

Theorem feq1d 5299
Description: Equality deduction for functions. (Contributed by NM, 19-Feb-2008.)
Hypothesis
Ref Expression
feq1d.1 (𝜑𝐹 = 𝐺)
Assertion
Ref Expression
feq1d (𝜑 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))

Proof of Theorem feq1d
StepHypRef Expression
1 feq1d.1 . 2 (𝜑𝐹 = 𝐺)
2 feq1 5295 . 2 (𝐹 = 𝐺 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
31, 2syl 14 1 (𝜑 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1332  wf 5159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-sn 3562  df-pr 3563  df-op 3565  df-br 3962  df-opab 4022  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-fun 5165  df-fn 5166  df-f 5167
This theorem is referenced by:  feq12d  5302  fco2  5329  fssres2  5340  fresin  5341  fmpt3d  5616  fmptco  5626  fressnfv  5647  off  6034  caofinvl  6044  f2ndf  6163  eroprf  6562  pmresg  6610  fseq1p1m1  9974  lmbr  12560  blfps  12756  blf  12757  dvmptclx  13027
  Copyright terms: Public domain W3C validator