![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > feq1d | GIF version |
Description: Equality deduction for functions. (Contributed by NM, 19-Feb-2008.) |
Ref | Expression |
---|---|
feq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Ref | Expression |
---|---|
feq1d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | feq1 5211 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1312 ⟶wf 5075 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-v 2657 df-un 3039 df-in 3041 df-ss 3048 df-sn 3497 df-pr 3498 df-op 3500 df-br 3894 df-opab 3948 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-fun 5081 df-fn 5082 df-f 5083 |
This theorem is referenced by: feq12d 5218 fco2 5245 fssres2 5256 fresin 5257 fmpt3d 5528 fmptco 5538 fressnfv 5559 off 5946 caofinvl 5956 f2ndf 6075 eroprf 6474 pmresg 6522 fseq1p1m1 9761 lmbr 12218 blfps 12392 blf 12393 |
Copyright terms: Public domain | W3C validator |