ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq1d GIF version

Theorem feq1d 5353
Description: Equality deduction for functions. (Contributed by NM, 19-Feb-2008.)
Hypothesis
Ref Expression
feq1d.1 (𝜑𝐹 = 𝐺)
Assertion
Ref Expression
feq1d (𝜑 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))

Proof of Theorem feq1d
StepHypRef Expression
1 feq1d.1 . 2 (𝜑𝐹 = 𝐺)
2 feq1 5349 . 2 (𝐹 = 𝐺 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
31, 2syl 14 1 (𝜑 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1353  wf 5213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-fun 5219  df-fn 5220  df-f 5221
This theorem is referenced by:  feq12d  5356  fco2  5383  fssres2  5394  fresin  5395  fmpt3d  5673  fmptco  5683  fressnfv  5704  off  6095  caofinvl  6105  f2ndf  6227  eroprf  6628  pmresg  6676  fseq1p1m1  10094  mgmplusf  12785  mgmb1mgm1  12787  grpsubf  12949  lmodscaf  13400  lmbr  13716  blfps  13912  blf  13913  dvmptclx  14183  lgsfcl3  14425
  Copyright terms: Public domain W3C validator