| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > feq1d | GIF version | ||
| Description: Equality deduction for functions. (Contributed by NM, 19-Feb-2008.) | 
| Ref | Expression | 
|---|---|
| feq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) | 
| Ref | Expression | 
|---|---|
| feq1d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | feq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | feq1 5390 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ⟶wf 5254 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-fun 5260 df-fn 5261 df-f 5262 | 
| This theorem is referenced by: feq12d 5397 fco2 5424 fssres2 5435 fresin 5436 fmpt3d 5718 fmptco 5728 fressnfv 5749 off 6148 caofinvl 6160 f2ndf 6284 eroprf 6687 pmresg 6735 pw2f1odclem 6895 fseq1p1m1 10169 mgmplusf 13009 mgmb1mgm1 13011 grpsubf 13211 lmodscaf 13866 lmbr 14449 blfps 14645 blf 14646 dvmptclx 14954 lgsfcl3 15262 | 
| Copyright terms: Public domain | W3C validator |