ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq1d GIF version

Theorem feq1d 5391
Description: Equality deduction for functions. (Contributed by NM, 19-Feb-2008.)
Hypothesis
Ref Expression
feq1d.1 (𝜑𝐹 = 𝐺)
Assertion
Ref Expression
feq1d (𝜑 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))

Proof of Theorem feq1d
StepHypRef Expression
1 feq1d.1 . 2 (𝜑𝐹 = 𝐺)
2 feq1 5387 . 2 (𝐹 = 𝐺 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
31, 2syl 14 1 (𝜑 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wf 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-fun 5257  df-fn 5258  df-f 5259
This theorem is referenced by:  feq12d  5394  fco2  5421  fssres2  5432  fresin  5433  fmpt3d  5715  fmptco  5725  fressnfv  5746  off  6145  caofinvl  6157  f2ndf  6281  eroprf  6684  pmresg  6732  pw2f1odclem  6892  fseq1p1m1  10163  mgmplusf  12952  mgmb1mgm1  12954  grpsubf  13154  lmodscaf  13809  lmbr  14392  blfps  14588  blf  14589  dvmptclx  14897  lgsfcl3  15178
  Copyright terms: Public domain W3C validator