Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > feq1d | GIF version |
Description: Equality deduction for functions. (Contributed by NM, 19-Feb-2008.) |
Ref | Expression |
---|---|
feq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Ref | Expression |
---|---|
feq1d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | feq1 5295 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1332 ⟶wf 5159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-sn 3562 df-pr 3563 df-op 3565 df-br 3962 df-opab 4022 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-fun 5165 df-fn 5166 df-f 5167 |
This theorem is referenced by: feq12d 5302 fco2 5329 fssres2 5340 fresin 5341 fmpt3d 5616 fmptco 5626 fressnfv 5647 off 6034 caofinvl 6044 f2ndf 6163 eroprf 6562 pmresg 6610 fseq1p1m1 9974 lmbr 12560 blfps 12756 blf 12757 dvmptclx 13027 |
Copyright terms: Public domain | W3C validator |