![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2albii | GIF version |
Description: Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
albii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2albii | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | albii 1481 | . 2 ⊢ (∀𝑦𝜑 ↔ ∀𝑦𝜓) |
3 | 2 | albii 1481 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∀wal 1362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mor 2084 mo4f 2102 moanim 2116 2eu4 2135 ralcomf 2655 raliunxp 4804 cnvsym 5050 intasym 5051 intirr 5053 codir 5055 qfto 5056 dffun4 5266 dffun4f 5271 funcnveq 5318 fun11 5322 fununi 5323 mpo2eqb 6029 addnq0mo 7509 mulnq0mo 7510 addsrmo 7805 mulsrmo 7806 |
Copyright terms: Public domain | W3C validator |