![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2albii | GIF version |
Description: Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
albii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2albii | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | albii 1470 | . 2 ⊢ (∀𝑦𝜑 ↔ ∀𝑦𝜓) |
3 | 2 | albii 1470 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∀wal 1351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mor 2068 mo4f 2086 moanim 2100 2eu4 2119 ralcomf 2638 raliunxp 4769 cnvsym 5013 intasym 5014 intirr 5016 codir 5018 qfto 5019 dffun4 5228 dffun4f 5233 funcnveq 5280 fun11 5284 fununi 5285 mpo2eqb 5984 addnq0mo 7446 mulnq0mo 7447 addsrmo 7742 mulsrmo 7743 |
Copyright terms: Public domain | W3C validator |