Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2albii | GIF version |
Description: Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
albii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2albii | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | albii 1463 | . 2 ⊢ (∀𝑦𝜑 ↔ ∀𝑦𝜓) |
3 | 2 | albii 1463 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mor 2061 mo4f 2079 moanim 2093 2eu4 2112 ralcomf 2631 raliunxp 4750 cnvsym 4992 intasym 4993 intirr 4995 codir 4997 qfto 4998 dffun4 5207 dffun4f 5212 funcnveq 5259 fun11 5263 fununi 5264 mpo2eqb 5960 addnq0mo 7402 mulnq0mo 7403 addsrmo 7698 mulsrmo 7699 |
Copyright terms: Public domain | W3C validator |