ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2albii GIF version

Theorem 2albii 1459
Description: Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.)
Hypothesis
Ref Expression
albii.1 (𝜑𝜓)
Assertion
Ref Expression
2albii (∀𝑥𝑦𝜑 ↔ ∀𝑥𝑦𝜓)

Proof of Theorem 2albii
StepHypRef Expression
1 albii.1 . . 3 (𝜑𝜓)
21albii 1458 . 2 (∀𝑦𝜑 ↔ ∀𝑦𝜓)
32albii 1458 1 (∀𝑥𝑦𝜑 ↔ ∀𝑥𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wb 104  wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  mor  2056  mo4f  2074  moanim  2088  2eu4  2107  ralcomf  2627  raliunxp  4745  cnvsym  4987  intasym  4988  intirr  4990  codir  4992  qfto  4993  dffun4  5199  dffun4f  5204  funcnveq  5251  fun11  5255  fununi  5256  mpo2eqb  5951  addnq0mo  7388  mulnq0mo  7389  addsrmo  7684  mulsrmo  7685
  Copyright terms: Public domain W3C validator