ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2albii GIF version

Theorem 2albii 1485
Description: Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.)
Hypothesis
Ref Expression
albii.1 (𝜑𝜓)
Assertion
Ref Expression
2albii (∀𝑥𝑦𝜑 ↔ ∀𝑥𝑦𝜓)

Proof of Theorem 2albii
StepHypRef Expression
1 albii.1 . . 3 (𝜑𝜓)
21albii 1484 . 2 (∀𝑦𝜑 ↔ ∀𝑦𝜓)
32albii 1484 1 (∀𝑥𝑦𝜑 ↔ ∀𝑥𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  mor  2087  mo4f  2105  moanim  2119  2eu4  2138  ralcomf  2658  raliunxp  4807  cnvsym  5053  intasym  5054  intirr  5056  codir  5058  qfto  5059  dffun4  5269  dffun4f  5274  funcnveq  5321  fun11  5325  fununi  5326  mpo2eqb  6032  addnq0mo  7514  mulnq0mo  7515  addsrmo  7810  mulsrmo  7811
  Copyright terms: Public domain W3C validator