ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2albii GIF version

Theorem 2albii 1464
Description: Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.)
Hypothesis
Ref Expression
albii.1 (𝜑𝜓)
Assertion
Ref Expression
2albii (∀𝑥𝑦𝜑 ↔ ∀𝑥𝑦𝜓)

Proof of Theorem 2albii
StepHypRef Expression
1 albii.1 . . 3 (𝜑𝜓)
21albii 1463 . 2 (∀𝑦𝜑 ↔ ∀𝑦𝜓)
32albii 1463 1 (∀𝑥𝑦𝜑 ↔ ∀𝑥𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wb 104  wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  mor  2061  mo4f  2079  moanim  2093  2eu4  2112  ralcomf  2631  raliunxp  4752  cnvsym  4994  intasym  4995  intirr  4997  codir  4999  qfto  5000  dffun4  5209  dffun4f  5214  funcnveq  5261  fun11  5265  fununi  5266  mpo2eqb  5962  addnq0mo  7409  mulnq0mo  7410  addsrmo  7705  mulsrmo  7706
  Copyright terms: Public domain W3C validator