ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2albii GIF version

Theorem 2albii 1495
Description: Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.)
Hypothesis
Ref Expression
albii.1 (𝜑𝜓)
Assertion
Ref Expression
2albii (∀𝑥𝑦𝜑 ↔ ∀𝑥𝑦𝜓)

Proof of Theorem 2albii
StepHypRef Expression
1 albii.1 . . 3 (𝜑𝜓)
21albii 1494 . 2 (∀𝑦𝜑 ↔ ∀𝑦𝜓)
32albii 1494 1 (∀𝑥𝑦𝜑 ↔ ∀𝑥𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  mor  2097  mo4f  2115  moanim  2129  2eu4  2148  ralcomf  2668  raliunxp  4827  cnvsym  5075  intasym  5076  intirr  5078  codir  5080  qfto  5081  dffun4  5291  dffun4f  5296  funcnveq  5346  fun11  5350  fununi  5351  mpo2eqb  6068  addnq0mo  7580  mulnq0mo  7581  addsrmo  7876  mulsrmo  7877
  Copyright terms: Public domain W3C validator