ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2albii GIF version

Theorem 2albii 1517
Description: Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.)
Hypothesis
Ref Expression
albii.1 (𝜑𝜓)
Assertion
Ref Expression
2albii (∀𝑥𝑦𝜑 ↔ ∀𝑥𝑦𝜓)

Proof of Theorem 2albii
StepHypRef Expression
1 albii.1 . . 3 (𝜑𝜓)
21albii 1516 . 2 (∀𝑦𝜑 ↔ ∀𝑦𝜓)
32albii 1516 1 (∀𝑥𝑦𝜑 ↔ ∀𝑥𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  mor  2120  mo4f  2138  moanim  2152  2eu4  2171  ralcomf  2692  raliunxp  4862  cnvsym  5111  intasym  5112  intirr  5114  codir  5116  qfto  5117  dffun4  5328  dffun4f  5333  funcnveq  5383  fun11  5387  fununi  5388  mpo2eqb  6113  addnq0mo  7630  mulnq0mo  7631  addsrmo  7926  mulsrmo  7927
  Copyright terms: Public domain W3C validator