| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2albii | GIF version | ||
| Description: Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| albii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2albii | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | albii 1484 | . 2 ⊢ (∀𝑦𝜑 ↔ ∀𝑦𝜓) |
| 3 | 2 | albii 1484 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mor 2087 mo4f 2105 moanim 2119 2eu4 2138 ralcomf 2658 raliunxp 4807 cnvsym 5053 intasym 5054 intirr 5056 codir 5058 qfto 5059 dffun4 5269 dffun4f 5274 funcnveq 5321 fun11 5325 fununi 5326 mpo2eqb 6032 addnq0mo 7514 mulnq0mo 7515 addsrmo 7810 mulsrmo 7811 |
| Copyright terms: Public domain | W3C validator |