ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2albii GIF version

Theorem 2albii 1464
Description: Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.)
Hypothesis
Ref Expression
albii.1 (𝜑𝜓)
Assertion
Ref Expression
2albii (∀𝑥𝑦𝜑 ↔ ∀𝑥𝑦𝜓)

Proof of Theorem 2albii
StepHypRef Expression
1 albii.1 . . 3 (𝜑𝜓)
21albii 1463 . 2 (∀𝑦𝜑 ↔ ∀𝑦𝜓)
32albii 1463 1 (∀𝑥𝑦𝜑 ↔ ∀𝑥𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wb 104  wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  mor  2061  mo4f  2079  moanim  2093  2eu4  2112  ralcomf  2631  raliunxp  4750  cnvsym  4992  intasym  4993  intirr  4995  codir  4997  qfto  4998  dffun4  5207  dffun4f  5212  funcnveq  5259  fun11  5263  fununi  5264  mpo2eqb  5960  addnq0mo  7402  mulnq0mo  7403  addsrmo  7698  mulsrmo  7699
  Copyright terms: Public domain W3C validator