| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2albii | GIF version | ||
| Description: Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| albii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 2albii | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | albii 1494 | . 2 ⊢ (∀𝑦𝜑 ↔ ∀𝑦𝜓) |
| 3 | 2 | albii 1494 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mor 2097 mo4f 2115 moanim 2129 2eu4 2148 ralcomf 2668 raliunxp 4827 cnvsym 5075 intasym 5076 intirr 5078 codir 5080 qfto 5081 dffun4 5291 dffun4f 5296 funcnveq 5346 fun11 5350 fununi 5351 mpo2eqb 6068 addnq0mo 7580 mulnq0mo 7581 addsrmo 7876 mulsrmo 7877 |
| Copyright terms: Public domain | W3C validator |