ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elin1d GIF version

Theorem elin1d 3361
Description: Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.)
Hypothesis
Ref Expression
elin1d.1 (𝜑𝑋 ∈ (𝐴𝐵))
Assertion
Ref Expression
elin1d (𝜑𝑋𝐴)

Proof of Theorem elin1d
StepHypRef Expression
1 elin1d.1 . 2 (𝜑𝑋 ∈ (𝐴𝐵))
2 elinel1 3358 . 2 (𝑋 ∈ (𝐴𝐵) → 𝑋𝐴)
31, 2syl 14 1 (𝜑𝑋𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175  cin 3164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-in 3171
This theorem is referenced by:  fiuni  7079  explecnv  11758  nninfdclemcl  12761  nninfdclemp1  12763  idomcringd  13982  2idllidld  14210  qus1  14230  restbasg  14582  txcnp  14685  blin2  14846  bj-charfun  15676
  Copyright terms: Public domain W3C validator