ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elin1d GIF version

Theorem elin1d 3325
Description: Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.)
Hypothesis
Ref Expression
elin1d.1 (𝜑𝑋 ∈ (𝐴𝐵))
Assertion
Ref Expression
elin1d (𝜑𝑋𝐴)

Proof of Theorem elin1d
StepHypRef Expression
1 elin1d.1 . 2 (𝜑𝑋 ∈ (𝐴𝐵))
2 elinel1 3322 . 2 (𝑋 ∈ (𝐴𝐵) → 𝑋𝐴)
31, 2syl 14 1 (𝜑𝑋𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2148  cin 3129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-in 3136
This theorem is referenced by:  fiuni  6977  explecnv  11513  nninfdclemcl  12449  nninfdclemp1  12451  restbasg  13671  txcnp  13774  blin2  13935  bj-charfun  14562
  Copyright terms: Public domain W3C validator