| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elin1d | GIF version | ||
| Description: Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.) |
| Ref | Expression |
|---|---|
| elin1d.1 | ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
| Ref | Expression |
|---|---|
| elin1d | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin1d.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) | |
| 2 | elinel1 3358 | . 2 ⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) → 𝑋 ∈ 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ∩ cin 3164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 |
| This theorem is referenced by: fiuni 7079 explecnv 11758 nninfdclemcl 12761 nninfdclemp1 12763 idomcringd 13982 2idllidld 14210 qus1 14230 restbasg 14582 txcnp 14685 blin2 14846 bj-charfun 15676 |
| Copyright terms: Public domain | W3C validator |