ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elin1d GIF version

Theorem elin1d 3393
Description: Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.)
Hypothesis
Ref Expression
elin1d.1 (𝜑𝑋 ∈ (𝐴𝐵))
Assertion
Ref Expression
elin1d (𝜑𝑋𝐴)

Proof of Theorem elin1d
StepHypRef Expression
1 elin1d.1 . 2 (𝜑𝑋 ∈ (𝐴𝐵))
2 elinel1 3390 . 2 (𝑋 ∈ (𝐴𝐵) → 𝑋𝐴)
31, 2syl 14 1 (𝜑𝑋𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  cin 3196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203
This theorem is referenced by:  fiuni  7141  explecnv  12011  nninfdclemcl  13014  nninfdclemp1  13016  idomcringd  14236  2idllidld  14464  qus1  14484  restbasg  14836  txcnp  14939  blin2  15100  bj-charfun  16128
  Copyright terms: Public domain W3C validator