ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgseisenlem3 GIF version

Theorem lgseisenlem3 15745
Description: Lemma for lgseisen 15747. (Contributed by Mario Carneiro, 17-Jun-2015.) (Proof shortened by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
lgseisen.4 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)
lgseisen.5 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
lgseisen.6 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)
lgseisen.7 𝑌 = (ℤ/nℤ‘𝑃)
lgseisen.8 𝐺 = (mulGrp‘𝑌)
lgseisen.9 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
lgseisenlem3 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (1r𝑌))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐿   𝑥,𝑦,𝑃   𝜑,𝑥,𝑦   𝑦,𝑀   𝑥,𝑄,𝑦   𝑥,𝑌   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝑆(𝑦)   𝐺(𝑦)   𝐿(𝑦)   𝑀(𝑥)   𝑌(𝑦)

Proof of Theorem lgseisenlem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 oveq2 6008 . . . . . . . . 9 (𝑘 = 𝑥 → (2 · 𝑘) = (2 · 𝑥))
21fveq2d 5630 . . . . . . . 8 (𝑘 = 𝑥 → (𝐿‘(2 · 𝑘)) = (𝐿‘(2 · 𝑥)))
32cbvmptv 4179 . . . . . . 7 (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))
43oveq2i 6011 . . . . . 6 (𝐺 Σg (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘)))) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))
5 eqid 2229 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
6 eqid 2229 . . . . . . 7 (0g𝐺) = (0g𝐺)
7 lgseisen.1 . . . . . . . . . . 11 (𝜑𝑃 ∈ (ℙ ∖ {2}))
87eldifad 3208 . . . . . . . . . 10 (𝜑𝑃 ∈ ℙ)
9 lgseisen.7 . . . . . . . . . . 11 𝑌 = (ℤ/nℤ‘𝑃)
109znidom 14615 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑌 ∈ IDomn)
118, 10syl 14 . . . . . . . . 9 (𝜑𝑌 ∈ IDomn)
1211idomcringd 14236 . . . . . . . 8 (𝜑𝑌 ∈ CRing)
13 lgseisen.8 . . . . . . . . 9 𝐺 = (mulGrp‘𝑌)
1413crngmgp 13962 . . . . . . . 8 (𝑌 ∈ CRing → 𝐺 ∈ CMnd)
1512, 14syl 14 . . . . . . 7 (𝜑𝐺 ∈ CMnd)
16 1zzd 9469 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
17 oddn2prm 12779 . . . . . . . . 9 (𝑃 ∈ (ℙ ∖ {2}) → ¬ 2 ∥ 𝑃)
187, 17syl 14 . . . . . . . 8 (𝜑 → ¬ 2 ∥ 𝑃)
19 prmz 12628 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
20 oddm1d2 12398 . . . . . . . . 9 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
218, 19, 203syl 17 . . . . . . . 8 (𝜑 → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
2218, 21mpbid 147 . . . . . . 7 (𝜑 → ((𝑃 − 1) / 2) ∈ ℤ)
2311idomringd 14237 . . . . . . . . . . 11 (𝜑𝑌 ∈ Ring)
24 lgseisen.9 . . . . . . . . . . . 12 𝐿 = (ℤRHom‘𝑌)
2524zrhrhm 14581 . . . . . . . . . . 11 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
26 zringbas 14554 . . . . . . . . . . . 12 ℤ = (Base‘ℤring)
27 eqid 2229 . . . . . . . . . . . 12 (Base‘𝑌) = (Base‘𝑌)
2826, 27rhmf 14121 . . . . . . . . . . 11 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
2923, 25, 283syl 17 . . . . . . . . . 10 (𝜑𝐿:ℤ⟶(Base‘𝑌))
30 2z 9470 . . . . . . . . . . 11 2 ∈ ℤ
31 elfzelz 10217 . . . . . . . . . . 11 (𝑘 ∈ (1...((𝑃 − 1) / 2)) → 𝑘 ∈ ℤ)
32 zmulcl 9496 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (2 · 𝑘) ∈ ℤ)
3330, 31, 32sylancr 414 . . . . . . . . . 10 (𝑘 ∈ (1...((𝑃 − 1) / 2)) → (2 · 𝑘) ∈ ℤ)
34 ffvelcdm 5767 . . . . . . . . . 10 ((𝐿:ℤ⟶(Base‘𝑌) ∧ (2 · 𝑘) ∈ ℤ) → (𝐿‘(2 · 𝑘)) ∈ (Base‘𝑌))
3529, 33, 34syl2an 289 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑘)) ∈ (Base‘𝑌))
3635fmpttd 5789 . . . . . . . 8 (𝜑 → (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))):(1...((𝑃 − 1) / 2))⟶(Base‘𝑌))
3713, 27mgpbasg 13884 . . . . . . . . . 10 (𝑌 ∈ CRing → (Base‘𝑌) = (Base‘𝐺))
3812, 37syl 14 . . . . . . . . 9 (𝜑 → (Base‘𝑌) = (Base‘𝐺))
3938feq3d 5461 . . . . . . . 8 (𝜑 → ((𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))):(1...((𝑃 − 1) / 2))⟶(Base‘𝑌) ↔ (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))):(1...((𝑃 − 1) / 2))⟶(Base‘𝐺)))
4036, 39mpbid 147 . . . . . . 7 (𝜑 → (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))):(1...((𝑃 − 1) / 2))⟶(Base‘𝐺))
41 lgseisen.2 . . . . . . . 8 (𝜑𝑄 ∈ (ℙ ∖ {2}))
42 lgseisen.3 . . . . . . . 8 (𝜑𝑃𝑄)
43 lgseisen.4 . . . . . . . 8 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)
44 lgseisen.5 . . . . . . . 8 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
45 lgseisen.6 . . . . . . . 8 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)
467, 41, 42, 43, 44, 45lgseisenlem2 15744 . . . . . . 7 (𝜑𝑀:(1...((𝑃 − 1) / 2))–1-1-onto→(1...((𝑃 − 1) / 2)))
475, 6, 15, 16, 22, 40, 46gsumfzreidx 13869 . . . . . 6 (𝜑 → (𝐺 Σg (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘)))) = (𝐺 Σg ((𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) ∘ 𝑀)))
484, 47eqtr3id 2276 . . . . 5 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) = (𝐺 Σg ((𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) ∘ 𝑀)))
497, 41, 42, 43, 44lgseisenlem1 15743 . . . . . . . 8 (𝜑𝑀:(1...((𝑃 − 1) / 2))⟶(1...((𝑃 − 1) / 2)))
5044fmpt 5784 . . . . . . . 8 (∀𝑥 ∈ (1...((𝑃 − 1) / 2))((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ∈ (1...((𝑃 − 1) / 2)) ↔ 𝑀:(1...((𝑃 − 1) / 2))⟶(1...((𝑃 − 1) / 2)))
5149, 50sylibr 134 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (1...((𝑃 − 1) / 2))((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ∈ (1...((𝑃 − 1) / 2)))
5244a1i 9 . . . . . . 7 (𝜑𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))
53 eqidd 2230 . . . . . . 7 (𝜑 → (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) = (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))))
54 oveq2 6008 . . . . . . . 8 (𝑘 = ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) → (2 · 𝑘) = (2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))
5554fveq2d 5630 . . . . . . 7 (𝑘 = ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) → (𝐿‘(2 · 𝑘)) = (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))))
5651, 52, 53, 55fmptcof 5801 . . . . . 6 (𝜑 → ((𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) ∘ 𝑀) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))))
5756oveq2d 6016 . . . . 5 (𝜑 → (𝐺 Σg ((𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) ∘ 𝑀)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))))))
5841eldifad 3208 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑄 ∈ ℙ)
5958adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℙ)
60 prmz 12628 . . . . . . . . . . . . . . . . . . . 20 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
6159, 60syl 14 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℤ)
62 2nn 9268 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℕ
63 elfznn 10246 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ)
6463adantl 277 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℕ)
65 nnmulcl 9127 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (2 · 𝑥) ∈ ℕ)
6662, 64, 65sylancr 414 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℕ)
6766nnzd 9564 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℤ)
6861, 67zmulcld 9571 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℤ)
698adantr 276 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℙ)
70 prmnn 12627 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
7169, 70syl 14 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ)
7268, 71zmodcld 10562 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) mod 𝑃) ∈ ℕ0)
7343, 72eqeltrid 2316 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℕ0)
7473nn0zd 9563 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℤ)
75 m1expcl 10779 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℤ → (-1↑𝑅) ∈ ℤ)
7674, 75syl 14 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈ ℤ)
7776, 74zmulcld 9571 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · 𝑅) ∈ ℤ)
7877, 71zmodcld 10562 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℕ0)
7978nn0cnd 9420 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℂ)
80 2cnd 9179 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℂ)
81 2ap0 9199 . . . . . . . . . . . 12 2 # 0
8281a1i 9 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 # 0)
8379, 80, 82divcanap2d 8935 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)) = (((-1↑𝑅) · 𝑅) mod 𝑃))
8483fveq2d 5630 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))) = (𝐿‘(((-1↑𝑅) · 𝑅) mod 𝑃)))
85 zq 9817 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℤ → 𝑃 ∈ ℚ)
868, 19, 853syl 17 . . . . . . . . . . . . . 14 (𝜑𝑃 ∈ ℚ)
8786adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℚ)
8871nngt0d 9150 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 0 < 𝑃)
89 eqidd 2230 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) mod 𝑃) = ((-1↑𝑅) mod 𝑃))
9043oveq1i 6010 . . . . . . . . . . . . . 14 (𝑅 mod 𝑃) = (((𝑄 · (2 · 𝑥)) mod 𝑃) mod 𝑃)
91 zq 9817 . . . . . . . . . . . . . . . 16 ((𝑄 · (2 · 𝑥)) ∈ ℤ → (𝑄 · (2 · 𝑥)) ∈ ℚ)
9268, 91syl 14 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℚ)
93 modqabs2 10575 . . . . . . . . . . . . . . 15 (((𝑄 · (2 · 𝑥)) ∈ ℚ ∧ 𝑃 ∈ ℚ ∧ 0 < 𝑃) → (((𝑄 · (2 · 𝑥)) mod 𝑃) mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃))
9492, 87, 88, 93syl3anc 1271 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((𝑄 · (2 · 𝑥)) mod 𝑃) mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃))
9590, 94eqtrid 2274 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑅 mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃))
9676, 76, 74, 68, 87, 88, 89, 95modqmul12d 10595 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑅) mod 𝑃) = (((-1↑𝑅) · (𝑄 · (2 · 𝑥))) mod 𝑃))
97 zq 9817 . . . . . . . . . . . . . 14 (((-1↑𝑅) · 𝑅) ∈ ℤ → ((-1↑𝑅) · 𝑅) ∈ ℚ)
9877, 97syl 14 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · 𝑅) ∈ ℚ)
99 modqabs2 10575 . . . . . . . . . . . . 13 ((((-1↑𝑅) · 𝑅) ∈ ℚ ∧ 𝑃 ∈ ℚ ∧ 0 < 𝑃) → ((((-1↑𝑅) · 𝑅) mod 𝑃) mod 𝑃) = (((-1↑𝑅) · 𝑅) mod 𝑃))
10098, 87, 88, 99syl3anc 1271 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((((-1↑𝑅) · 𝑅) mod 𝑃) mod 𝑃) = (((-1↑𝑅) · 𝑅) mod 𝑃))
10176zcnd 9566 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈ ℂ)
10261zcnd 9566 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℂ)
10367zcnd 9566 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ ℂ)
104101, 102, 103mulassd 8166 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑄) · (2 · 𝑥)) = ((-1↑𝑅) · (𝑄 · (2 · 𝑥))))
105104oveq1d 6015 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((((-1↑𝑅) · 𝑄) · (2 · 𝑥)) mod 𝑃) = (((-1↑𝑅) · (𝑄 · (2 · 𝑥))) mod 𝑃))
10696, 100, 1053eqtr4d 2272 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((((-1↑𝑅) · 𝑅) mod 𝑃) mod 𝑃) = ((((-1↑𝑅) · 𝑄) · (2 · 𝑥)) mod 𝑃))
1078, 70syl 14 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℕ)
108107adantr 276 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ)
10978nn0zd 9563 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℤ)
11076, 61zmulcld 9571 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · 𝑄) ∈ ℤ)
111110, 67zmulcld 9571 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑄) · (2 · 𝑥)) ∈ ℤ)
112 moddvds 12305 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℤ ∧ (((-1↑𝑅) · 𝑄) · (2 · 𝑥)) ∈ ℤ) → (((((-1↑𝑅) · 𝑅) mod 𝑃) mod 𝑃) = ((((-1↑𝑅) · 𝑄) · (2 · 𝑥)) mod 𝑃) ↔ 𝑃 ∥ ((((-1↑𝑅) · 𝑅) mod 𝑃) − (((-1↑𝑅) · 𝑄) · (2 · 𝑥)))))
113108, 109, 111, 112syl3anc 1271 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((((-1↑𝑅) · 𝑅) mod 𝑃) mod 𝑃) = ((((-1↑𝑅) · 𝑄) · (2 · 𝑥)) mod 𝑃) ↔ 𝑃 ∥ ((((-1↑𝑅) · 𝑅) mod 𝑃) − (((-1↑𝑅) · 𝑄) · (2 · 𝑥)))))
114106, 113mpbid 147 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∥ ((((-1↑𝑅) · 𝑅) mod 𝑃) − (((-1↑𝑅) · 𝑄) · (2 · 𝑥))))
11571nnnn0d 9418 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ0)
1169, 24zndvds 14607 . . . . . . . . . . 11 ((𝑃 ∈ ℕ0 ∧ (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℤ ∧ (((-1↑𝑅) · 𝑄) · (2 · 𝑥)) ∈ ℤ) → ((𝐿‘(((-1↑𝑅) · 𝑅) mod 𝑃)) = (𝐿‘(((-1↑𝑅) · 𝑄) · (2 · 𝑥))) ↔ 𝑃 ∥ ((((-1↑𝑅) · 𝑅) mod 𝑃) − (((-1↑𝑅) · 𝑄) · (2 · 𝑥)))))
117115, 109, 111, 116syl3anc 1271 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(((-1↑𝑅) · 𝑅) mod 𝑃)) = (𝐿‘(((-1↑𝑅) · 𝑄) · (2 · 𝑥))) ↔ 𝑃 ∥ ((((-1↑𝑅) · 𝑅) mod 𝑃) − (((-1↑𝑅) · 𝑄) · (2 · 𝑥)))))
118114, 117mpbird 167 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(((-1↑𝑅) · 𝑅) mod 𝑃)) = (𝐿‘(((-1↑𝑅) · 𝑄) · (2 · 𝑥))))
11923, 25syl 14 . . . . . . . . . . 11 (𝜑𝐿 ∈ (ℤring RingHom 𝑌))
120119adantr 276 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝐿 ∈ (ℤring RingHom 𝑌))
121 zringmulr 14557 . . . . . . . . . . 11 · = (.r‘ℤring)
122 eqid 2229 . . . . . . . . . . 11 (.r𝑌) = (.r𝑌)
12326, 121, 122rhmmul 14122 . . . . . . . . . 10 ((𝐿 ∈ (ℤring RingHom 𝑌) ∧ ((-1↑𝑅) · 𝑄) ∈ ℤ ∧ (2 · 𝑥) ∈ ℤ) → (𝐿‘(((-1↑𝑅) · 𝑄) · (2 · 𝑥))) = ((𝐿‘((-1↑𝑅) · 𝑄))(.r𝑌)(𝐿‘(2 · 𝑥))))
124120, 110, 67, 123syl3anc 1271 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(((-1↑𝑅) · 𝑄) · (2 · 𝑥))) = ((𝐿‘((-1↑𝑅) · 𝑄))(.r𝑌)(𝐿‘(2 · 𝑥))))
12584, 118, 1243eqtrd 2266 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))) = ((𝐿‘((-1↑𝑅) · 𝑄))(.r𝑌)(𝐿‘(2 · 𝑥))))
126125mpteq2dva 4173 . . . . . . 7 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((𝐿‘((-1↑𝑅) · 𝑄))(.r𝑌)(𝐿‘(2 · 𝑥)))))
12716, 22fzfigd 10648 . . . . . . . 8 (𝜑 → (1...((𝑃 − 1) / 2)) ∈ Fin)
12829adantr 276 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝐿:ℤ⟶(Base‘𝑌))
129128, 110ffvelcdmd 5770 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑𝑅) · 𝑄)) ∈ (Base‘𝑌))
130128, 67ffvelcdmd 5770 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑥)) ∈ (Base‘𝑌))
131 eqidd 2230 . . . . . . . 8 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))
132 eqidd 2230 . . . . . . . 8 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))
133127, 129, 130, 131, 132offval2 6232 . . . . . . 7 (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘𝑓 (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((𝐿‘((-1↑𝑅) · 𝑄))(.r𝑌)(𝐿‘(2 · 𝑥)))))
134126, 133eqtr4d 2265 . . . . . 6 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))) = ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘𝑓 (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))
135134oveq2d 6016 . . . . 5 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))))) = (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘𝑓 (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))))
13648, 57, 1353eqtrd 2266 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) = (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘𝑓 (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))))
137 eqid 2229 . . . . . 6 (+g𝐺) = (+g𝐺)
13838eleq2d 2299 . . . . . . . 8 (𝜑 → ((𝐿‘((-1↑𝑅) · 𝑄)) ∈ (Base‘𝑌) ↔ (𝐿‘((-1↑𝑅) · 𝑄)) ∈ (Base‘𝐺)))
139138adantr 276 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘((-1↑𝑅) · 𝑄)) ∈ (Base‘𝑌) ↔ (𝐿‘((-1↑𝑅) · 𝑄)) ∈ (Base‘𝐺)))
140129, 139mpbid 147 . . . . . 6 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑𝑅) · 𝑄)) ∈ (Base‘𝐺))
14138eleq2d 2299 . . . . . . . 8 (𝜑 → ((𝐿‘(2 · 𝑥)) ∈ (Base‘𝑌) ↔ (𝐿‘(2 · 𝑥)) ∈ (Base‘𝐺)))
142141adantr 276 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(2 · 𝑥)) ∈ (Base‘𝑌) ↔ (𝐿‘(2 · 𝑥)) ∈ (Base‘𝐺)))
143130, 142mpbid 147 . . . . . 6 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑥)) ∈ (Base‘𝐺))
144 eqid 2229 . . . . . 6 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))
145 eqid 2229 . . . . . 6 (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))
1465, 137, 15, 16, 22, 140, 143, 144, 145gsumfzmptfidmadd2 13872 . . . . 5 (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘𝑓 (+g𝐺)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(+g𝐺)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))))
14713, 122mgpplusgg 13882 . . . . . . . . 9 (𝑌 ∈ CRing → (.r𝑌) = (+g𝐺))
14812, 147syl 14 . . . . . . . 8 (𝜑 → (.r𝑌) = (+g𝐺))
149148ofeqd 6218 . . . . . . 7 (𝜑 → ∘𝑓 (.r𝑌) = ∘𝑓 (+g𝐺))
150149oveqd 6017 . . . . . 6 (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘𝑓 (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) = ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘𝑓 (+g𝐺)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))
151150oveq2d 6016 . . . . 5 (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘𝑓 (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘𝑓 (+g𝐺)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))))
152148oveqd 6017 . . . . 5 (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(+g𝐺)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))))
153146, 151, 1523eqtr4d 2272 . . . 4 (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘𝑓 (.r𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))))
154136, 153eqtrd 2262 . . 3 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))))
155154oveq1d 6015 . 2 (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))(/r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))(/r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))))
15615cmnmndd 13840 . . . 4 (𝜑𝐺 ∈ Mnd)
157 eqid 2229 . . . . . 6 (Unit‘𝑌) = (Unit‘𝑌)
158157, 13unitsubm 14077 . . . . 5 (𝑌 ∈ Ring → (Unit‘𝑌) ∈ (SubMnd‘𝐺))
15923, 158syl 14 . . . 4 (𝜑 → (Unit‘𝑌) ∈ (SubMnd‘𝐺))
160 elfzle2 10220 . . . . . . . . . 10 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ≤ ((𝑃 − 1) / 2))
161160adantl 277 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ≤ ((𝑃 − 1) / 2))
16264nnred 9119 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℝ)
163 prmuz2 12648 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
164 uz2m1nn 9796 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) → (𝑃 − 1) ∈ ℕ)
16569, 163, 1643syl 17 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 − 1) ∈ ℕ)
166165nnred 9119 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 − 1) ∈ ℝ)
167 2re 9176 . . . . . . . . . . 11 2 ∈ ℝ
168167a1i 9 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈ ℝ)
169 2pos 9197 . . . . . . . . . . 11 0 < 2
170169a1i 9 . . . . . . . . . 10 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 0 < 2)
171 lemuldiv2 9025 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ (𝑃 − 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑥) ≤ (𝑃 − 1) ↔ 𝑥 ≤ ((𝑃 − 1) / 2)))
172162, 166, 168, 170, 171syl112anc 1275 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((2 · 𝑥) ≤ (𝑃 − 1) ↔ 𝑥 ≤ ((𝑃 − 1) / 2)))
173161, 172mpbird 167 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ≤ (𝑃 − 1))
17469, 19syl 14 . . . . . . . . 9 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℤ)
175 peano2zm 9480 . . . . . . . . 9 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
176 fznn 10281 . . . . . . . . 9 ((𝑃 − 1) ∈ ℤ → ((2 · 𝑥) ∈ (1...(𝑃 − 1)) ↔ ((2 · 𝑥) ∈ ℕ ∧ (2 · 𝑥) ≤ (𝑃 − 1))))
177174, 175, 1763syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((2 · 𝑥) ∈ (1...(𝑃 − 1)) ↔ ((2 · 𝑥) ∈ ℕ ∧ (2 · 𝑥) ≤ (𝑃 − 1))))
17866, 173, 177mpbir2and 950 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ (1...(𝑃 − 1)))
179 fzm1ndvds 12362 . . . . . . 7 ((𝑃 ∈ ℕ ∧ (2 · 𝑥) ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (2 · 𝑥))
18071, 178, 179syl2anc 411 . . . . . 6 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ 𝑃 ∥ (2 · 𝑥))
1819, 157, 24znunit 14617 . . . . . . . 8 ((𝑃 ∈ ℕ0 ∧ (2 · 𝑥) ∈ ℤ) → ((𝐿‘(2 · 𝑥)) ∈ (Unit‘𝑌) ↔ ((2 · 𝑥) gcd 𝑃) = 1))
182115, 67, 181syl2anc 411 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(2 · 𝑥)) ∈ (Unit‘𝑌) ↔ ((2 · 𝑥) gcd 𝑃) = 1))
183 coprm 12661 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (2 · 𝑥) ∈ ℤ) → (¬ 𝑃 ∥ (2 · 𝑥) ↔ (𝑃 gcd (2 · 𝑥)) = 1))
18419adantr 276 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (2 · 𝑥) ∈ ℤ) → 𝑃 ∈ ℤ)
185 simpr 110 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (2 · 𝑥) ∈ ℤ) → (2 · 𝑥) ∈ ℤ)
186184, 185gcdcomd 12490 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (2 · 𝑥) ∈ ℤ) → (𝑃 gcd (2 · 𝑥)) = ((2 · 𝑥) gcd 𝑃))
187186eqeq1d 2238 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (2 · 𝑥) ∈ ℤ) → ((𝑃 gcd (2 · 𝑥)) = 1 ↔ ((2 · 𝑥) gcd 𝑃) = 1))
188183, 187bitrd 188 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (2 · 𝑥) ∈ ℤ) → (¬ 𝑃 ∥ (2 · 𝑥) ↔ ((2 · 𝑥) gcd 𝑃) = 1))
18969, 67, 188syl2anc 411 . . . . . . 7 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (¬ 𝑃 ∥ (2 · 𝑥) ↔ ((2 · 𝑥) gcd 𝑃) = 1))
190182, 189bitr4d 191 . . . . . 6 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(2 · 𝑥)) ∈ (Unit‘𝑌) ↔ ¬ 𝑃 ∥ (2 · 𝑥)))
191180, 190mpbird 167 . . . . 5 ((𝜑𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑥)) ∈ (Unit‘𝑌))
192191fmpttd 5789 . . . 4 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))):(1...((𝑃 − 1) / 2))⟶(Unit‘𝑌))
193156, 16, 22, 159, 192gsumfzsubmcl 13870 . . 3 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) ∈ (Unit‘𝑌))
194 eqid 2229 . . . 4 (/r𝑌) = (/r𝑌)
195 eqid 2229 . . . 4 (1r𝑌) = (1r𝑌)
196157, 194, 195dvrid 14095 . . 3 ((𝑌 ∈ Ring ∧ (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) ∈ (Unit‘𝑌)) → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))(/r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (1r𝑌))
19723, 193, 196syl2anc 411 . 2 (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))(/r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (1r𝑌))
198129fmpttd 5789 . . . . . 6 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))):(1...((𝑃 − 1) / 2))⟶(Base‘𝑌))
19938feq3d 5461 . . . . . 6 (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))):(1...((𝑃 − 1) / 2))⟶(Base‘𝑌) ↔ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))):(1...((𝑃 − 1) / 2))⟶(Base‘𝐺)))
200198, 199mpbid 147 . . . . 5 (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))):(1...((𝑃 − 1) / 2))⟶(Base‘𝐺))
2015, 6, 156, 16, 22, 200gsumfzcl 13527 . . . 4 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) ∈ (Base‘𝐺))
202201, 38eleqtrrd 2309 . . 3 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) ∈ (Base‘𝑌))
20327, 157, 194, 122dvrcan3 14099 . . 3 ((𝑌 ∈ Ring ∧ (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) ∈ (Base‘𝑌) ∧ (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) ∈ (Unit‘𝑌)) → (((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))(/r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))))
20423, 202, 193, 203syl3anc 1271 . 2 (𝜑 → (((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))(/r𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))))
205155, 197, 2043eqtr3rd 2271 1 (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (1r𝑌))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wne 2400  wral 2508  cdif 3194  {csn 3666   class class class wbr 4082  cmpt 4144  ccom 4722  wf 5313  cfv 5317  (class class class)co 6000  𝑓 cof 6214  Fincfn 6885  cr 7994  0cc0 7995  1c1 7996   · cmul 8000   < clt 8177  cle 8178  cmin 8313  -cneg 8314   # cap 8724   / cdiv 8815  cn 9106  2c2 9157  0cn0 9365  cz 9442  cuz 9718  cq 9810  ...cfz 10200   mod cmo 10539  cexp 10755  cdvds 12293   gcd cgcd 12469  cprime 12624  Basecbs 13027  +gcplusg 13105  .rcmulr 13106  0gc0g 13284   Σg cgsu 13285  SubMndcsubmnd 13486  CMndccmn 13816  mulGrpcmgp 13878  1rcur 13917  Ringcrg 13954  CRingccrg 13955  Unitcui 14045  /rcdvr 14089   RingHom crh 14108  IDomncidom 14215  ringczring 14548  ℤRHomczrh 14569  ℤ/nczn 14571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115  ax-addf 8117  ax-mulf 8118
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-of 6216  df-1st 6284  df-2nd 6285  df-tpos 6389  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-2o 6561  df-oadd 6564  df-er 6678  df-ec 6680  df-qs 6684  df-map 6795  df-en 6886  df-dom 6887  df-fin 6888  df-sup 7147  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-z 9443  df-dec 9575  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-ihash 10993  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-dvds 12294  df-gcd 12470  df-prm 12625  df-struct 13029  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-mulr 13119  df-starv 13120  df-sca 13121  df-vsca 13122  df-ip 13123  df-tset 13124  df-ple 13125  df-ds 13127  df-unif 13128  df-0g 13286  df-igsum 13287  df-topgen 13288  df-iimas 13330  df-qus 13331  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-mhm 13487  df-submnd 13488  df-grp 13531  df-minusg 13532  df-sbg 13533  df-mulg 13652  df-subg 13702  df-nsg 13703  df-eqg 13704  df-ghm 13773  df-cmn 13818  df-abl 13819  df-mgp 13879  df-rng 13891  df-ur 13918  df-srg 13922  df-ring 13956  df-cring 13957  df-oppr 14026  df-dvdsr 14047  df-unit 14048  df-invr 14079  df-dvr 14090  df-rhm 14110  df-nzr 14138  df-subrg 14177  df-domn 14217  df-idom 14218  df-lmod 14247  df-lssm 14311  df-lsp 14345  df-sra 14393  df-rgmod 14394  df-lidl 14427  df-rsp 14428  df-2idl 14458  df-bl 14504  df-mopn 14505  df-fg 14507  df-metu 14508  df-cnfld 14515  df-zring 14549  df-zrh 14572  df-zn 14574
This theorem is referenced by:  lgseisenlem4  15746
  Copyright terms: Public domain W3C validator