| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 5931 |
. . . . . . . . 9
⊢ (𝑘 = 𝑥 → (2 · 𝑘) = (2 · 𝑥)) |
| 2 | 1 | fveq2d 5563 |
. . . . . . . 8
⊢ (𝑘 = 𝑥 → (𝐿‘(2 · 𝑘)) = (𝐿‘(2 · 𝑥))) |
| 3 | 2 | cbvmptv 4130 |
. . . . . . 7
⊢ (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))) |
| 4 | 3 | oveq2i 5934 |
. . . . . 6
⊢ (𝐺 Σg
(𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘)))) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) |
| 5 | | eqid 2196 |
. . . . . . 7
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 6 | | eqid 2196 |
. . . . . . 7
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 7 | | lgseisen.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ (ℙ ∖
{2})) |
| 8 | 7 | eldifad 3168 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 9 | | lgseisen.7 |
. . . . . . . . . . 11
⊢ 𝑌 =
(ℤ/nℤ‘𝑃) |
| 10 | 9 | znidom 14223 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → 𝑌 ∈ IDomn) |
| 11 | 8, 10 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ IDomn) |
| 12 | 11 | idomcringd 13844 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ CRing) |
| 13 | | lgseisen.8 |
. . . . . . . . 9
⊢ 𝐺 = (mulGrp‘𝑌) |
| 14 | 13 | crngmgp 13570 |
. . . . . . . 8
⊢ (𝑌 ∈ CRing → 𝐺 ∈ CMnd) |
| 15 | 12, 14 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 16 | | 1zzd 9355 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℤ) |
| 17 | | oddn2prm 12440 |
. . . . . . . . 9
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ¬ 2 ∥ 𝑃) |
| 18 | 7, 17 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → ¬ 2 ∥ 𝑃) |
| 19 | | prmz 12289 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
| 20 | | oddm1d2 12059 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℤ → (¬ 2
∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈
ℤ)) |
| 21 | 8, 19, 20 | 3syl 17 |
. . . . . . . 8
⊢ (𝜑 → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈
ℤ)) |
| 22 | 18, 21 | mpbid 147 |
. . . . . . 7
⊢ (𝜑 → ((𝑃 − 1) / 2) ∈
ℤ) |
| 23 | 11 | idomringd 13845 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ Ring) |
| 24 | | lgseisen.9 |
. . . . . . . . . . . 12
⊢ 𝐿 = (ℤRHom‘𝑌) |
| 25 | 24 | zrhrhm 14189 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring
RingHom 𝑌)) |
| 26 | | zringbas 14162 |
. . . . . . . . . . . 12
⊢ ℤ =
(Base‘ℤring) |
| 27 | | eqid 2196 |
. . . . . . . . . . . 12
⊢
(Base‘𝑌) =
(Base‘𝑌) |
| 28 | 26, 27 | rhmf 13729 |
. . . . . . . . . . 11
⊢ (𝐿 ∈ (ℤring
RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌)) |
| 29 | 23, 25, 28 | 3syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑌)) |
| 30 | | 2z 9356 |
. . . . . . . . . . 11
⊢ 2 ∈
ℤ |
| 31 | | elfzelz 10102 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (1...((𝑃 − 1) / 2)) → 𝑘 ∈ ℤ) |
| 32 | | zmulcl 9381 |
. . . . . . . . . . 11
⊢ ((2
∈ ℤ ∧ 𝑘
∈ ℤ) → (2 · 𝑘) ∈ ℤ) |
| 33 | 30, 31, 32 | sylancr 414 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...((𝑃 − 1) / 2)) → (2 · 𝑘) ∈
ℤ) |
| 34 | | ffvelcdm 5696 |
. . . . . . . . . 10
⊢ ((𝐿:ℤ⟶(Base‘𝑌) ∧ (2 · 𝑘) ∈ ℤ) → (𝐿‘(2 · 𝑘)) ∈ (Base‘𝑌)) |
| 35 | 29, 33, 34 | syl2an 289 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑘)) ∈ (Base‘𝑌)) |
| 36 | 35 | fmpttd 5718 |
. . . . . . . 8
⊢ (𝜑 → (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))):(1...((𝑃 − 1) / 2))⟶(Base‘𝑌)) |
| 37 | 13, 27 | mgpbasg 13492 |
. . . . . . . . . 10
⊢ (𝑌 ∈ CRing →
(Base‘𝑌) =
(Base‘𝐺)) |
| 38 | 12, 37 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → (Base‘𝑌) = (Base‘𝐺)) |
| 39 | 38 | feq3d 5397 |
. . . . . . . 8
⊢ (𝜑 → ((𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))):(1...((𝑃 − 1) / 2))⟶(Base‘𝑌) ↔ (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))):(1...((𝑃 − 1) / 2))⟶(Base‘𝐺))) |
| 40 | 36, 39 | mpbid 147 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))):(1...((𝑃 − 1) / 2))⟶(Base‘𝐺)) |
| 41 | | lgseisen.2 |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ∈ (ℙ ∖
{2})) |
| 42 | | lgseisen.3 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ≠ 𝑄) |
| 43 | | lgseisen.4 |
. . . . . . . 8
⊢ 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃) |
| 44 | | lgseisen.5 |
. . . . . . . 8
⊢ 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)) |
| 45 | | lgseisen.6 |
. . . . . . . 8
⊢ 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃) |
| 46 | 7, 41, 42, 43, 44, 45 | lgseisenlem2 15322 |
. . . . . . 7
⊢ (𝜑 → 𝑀:(1...((𝑃 − 1) / 2))–1-1-onto→(1...((𝑃 − 1) / 2))) |
| 47 | 5, 6, 15, 16, 22, 40, 46 | gsumfzreidx 13477 |
. . . . . 6
⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘)))) = (𝐺 Σg ((𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) ∘ 𝑀))) |
| 48 | 4, 47 | eqtr3id 2243 |
. . . . 5
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) = (𝐺 Σg ((𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) ∘ 𝑀))) |
| 49 | 7, 41, 42, 43, 44 | lgseisenlem1 15321 |
. . . . . . . 8
⊢ (𝜑 → 𝑀:(1...((𝑃 − 1) / 2))⟶(1...((𝑃 − 1) /
2))) |
| 50 | 44 | fmpt 5713 |
. . . . . . . 8
⊢
(∀𝑥 ∈
(1...((𝑃 − 1) /
2))((((-1↑𝑅) ·
𝑅) mod 𝑃) / 2) ∈ (1...((𝑃 − 1) / 2)) ↔ 𝑀:(1...((𝑃 − 1) / 2))⟶(1...((𝑃 − 1) /
2))) |
| 51 | 49, 50 | sylibr 134 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (1...((𝑃 − 1) / 2))((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ∈ (1...((𝑃 − 1) / 2))) |
| 52 | 44 | a1i 9 |
. . . . . . 7
⊢ (𝜑 → 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))) |
| 53 | | eqidd 2197 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) = (𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘)))) |
| 54 | | oveq2 5931 |
. . . . . . . 8
⊢ (𝑘 = ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) → (2 · 𝑘) = (2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))) |
| 55 | 54 | fveq2d 5563 |
. . . . . . 7
⊢ (𝑘 = ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) → (𝐿‘(2 · 𝑘)) = (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))) |
| 56 | 51, 52, 53, 55 | fmptcof 5730 |
. . . . . 6
⊢ (𝜑 → ((𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) ∘ 𝑀) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))))) |
| 57 | 56 | oveq2d 5939 |
. . . . 5
⊢ (𝜑 → (𝐺 Σg ((𝑘 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑘))) ∘ 𝑀)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))))) |
| 58 | 41 | eldifad 3168 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑄 ∈ ℙ) |
| 59 | 58 | adantr 276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℙ) |
| 60 | | prmz 12289 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑄 ∈ ℙ → 𝑄 ∈
ℤ) |
| 61 | 59, 60 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℤ) |
| 62 | | 2nn 9154 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 2 ∈
ℕ |
| 63 | | elfznn 10131 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ) |
| 64 | 63 | adantl 277 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℕ) |
| 65 | | nnmulcl 9013 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((2
∈ ℕ ∧ 𝑥
∈ ℕ) → (2 · 𝑥) ∈ ℕ) |
| 66 | 62, 64, 65 | sylancr 414 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈
ℕ) |
| 67 | 66 | nnzd 9449 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈
ℤ) |
| 68 | 61, 67 | zmulcld 9456 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℤ) |
| 69 | 8 | adantr 276 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℙ) |
| 70 | | prmnn 12288 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
| 71 | 69, 70 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ) |
| 72 | 68, 71 | zmodcld 10439 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) mod 𝑃) ∈
ℕ0) |
| 73 | 43, 72 | eqeltrid 2283 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈
ℕ0) |
| 74 | 73 | nn0zd 9448 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℤ) |
| 75 | | m1expcl 10656 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ ℤ →
(-1↑𝑅) ∈
ℤ) |
| 76 | 74, 75 | syl 14 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈
ℤ) |
| 77 | 76, 74 | zmulcld 9456 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · 𝑅) ∈ ℤ) |
| 78 | 77, 71 | zmodcld 10439 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈
ℕ0) |
| 79 | 78 | nn0cnd 9306 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℂ) |
| 80 | | 2cnd 9065 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈
ℂ) |
| 81 | | 2ap0 9085 |
. . . . . . . . . . . 12
⊢ 2 #
0 |
| 82 | 81 | a1i 9 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 #
0) |
| 83 | 79, 80, 82 | divcanap2d 8821 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 ·
((((-1↑𝑅) ·
𝑅) mod 𝑃) / 2)) = (((-1↑𝑅) · 𝑅) mod 𝑃)) |
| 84 | 83 | fveq2d 5563 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))) = (𝐿‘(((-1↑𝑅) · 𝑅) mod 𝑃))) |
| 85 | | zq 9702 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ ℤ → 𝑃 ∈
ℚ) |
| 86 | 8, 19, 85 | 3syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑃 ∈ ℚ) |
| 87 | 86 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℚ) |
| 88 | 71 | nngt0d 9036 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 0 < 𝑃) |
| 89 | | eqidd 2197 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) mod 𝑃) = ((-1↑𝑅) mod 𝑃)) |
| 90 | 43 | oveq1i 5933 |
. . . . . . . . . . . . . 14
⊢ (𝑅 mod 𝑃) = (((𝑄 · (2 · 𝑥)) mod 𝑃) mod 𝑃) |
| 91 | | zq 9702 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑄 · (2 · 𝑥)) ∈ ℤ → (𝑄 · (2 · 𝑥)) ∈
ℚ) |
| 92 | 68, 91 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℚ) |
| 93 | | modqabs2 10452 |
. . . . . . . . . . . . . . 15
⊢ (((𝑄 · (2 · 𝑥)) ∈ ℚ ∧ 𝑃 ∈ ℚ ∧ 0 <
𝑃) → (((𝑄 · (2 · 𝑥)) mod 𝑃) mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃)) |
| 94 | 92, 87, 88, 93 | syl3anc 1249 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((𝑄 · (2 · 𝑥)) mod 𝑃) mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃)) |
| 95 | 90, 94 | eqtrid 2241 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑅 mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃)) |
| 96 | 76, 76, 74, 68, 87, 88, 89, 95 | modqmul12d 10472 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑅) mod 𝑃) = (((-1↑𝑅) · (𝑄 · (2 · 𝑥))) mod 𝑃)) |
| 97 | | zq 9702 |
. . . . . . . . . . . . . 14
⊢
(((-1↑𝑅)
· 𝑅) ∈ ℤ
→ ((-1↑𝑅)
· 𝑅) ∈
ℚ) |
| 98 | 77, 97 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · 𝑅) ∈ ℚ) |
| 99 | | modqabs2 10452 |
. . . . . . . . . . . . 13
⊢
((((-1↑𝑅)
· 𝑅) ∈ ℚ
∧ 𝑃 ∈ ℚ
∧ 0 < 𝑃) →
((((-1↑𝑅) ·
𝑅) mod 𝑃) mod 𝑃) = (((-1↑𝑅) · 𝑅) mod 𝑃)) |
| 100 | 98, 87, 88, 99 | syl3anc 1249 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((((-1↑𝑅) · 𝑅) mod 𝑃) mod 𝑃) = (((-1↑𝑅) · 𝑅) mod 𝑃)) |
| 101 | 76 | zcnd 9451 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈
ℂ) |
| 102 | 61 | zcnd 9451 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℂ) |
| 103 | 67 | zcnd 9451 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈
ℂ) |
| 104 | 101, 102,
103 | mulassd 8052 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑄) · (2 · 𝑥)) = ((-1↑𝑅) · (𝑄 · (2 · 𝑥)))) |
| 105 | 104 | oveq1d 5938 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((((-1↑𝑅) · 𝑄) · (2 · 𝑥)) mod 𝑃) = (((-1↑𝑅) · (𝑄 · (2 · 𝑥))) mod 𝑃)) |
| 106 | 96, 100, 105 | 3eqtr4d 2239 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((((-1↑𝑅) · 𝑅) mod 𝑃) mod 𝑃) = ((((-1↑𝑅) · 𝑄) · (2 · 𝑥)) mod 𝑃)) |
| 107 | 8, 70 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 108 | 107 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ) |
| 109 | 78 | nn0zd 9448 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℤ) |
| 110 | 76, 61 | zmulcld 9456 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · 𝑄) ∈ ℤ) |
| 111 | 110, 67 | zmulcld 9456 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((-1↑𝑅) · 𝑄) · (2 · 𝑥)) ∈ ℤ) |
| 112 | | moddvds 11966 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℕ ∧
(((-1↑𝑅) ·
𝑅) mod 𝑃) ∈ ℤ ∧ (((-1↑𝑅) · 𝑄) · (2 · 𝑥)) ∈ ℤ) → (((((-1↑𝑅) · 𝑅) mod 𝑃) mod 𝑃) = ((((-1↑𝑅) · 𝑄) · (2 · 𝑥)) mod 𝑃) ↔ 𝑃 ∥ ((((-1↑𝑅) · 𝑅) mod 𝑃) − (((-1↑𝑅) · 𝑄) · (2 · 𝑥))))) |
| 113 | 108, 109,
111, 112 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (((((-1↑𝑅) · 𝑅) mod 𝑃) mod 𝑃) = ((((-1↑𝑅) · 𝑄) · (2 · 𝑥)) mod 𝑃) ↔ 𝑃 ∥ ((((-1↑𝑅) · 𝑅) mod 𝑃) − (((-1↑𝑅) · 𝑄) · (2 · 𝑥))))) |
| 114 | 106, 113 | mpbid 147 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∥ ((((-1↑𝑅) · 𝑅) mod 𝑃) − (((-1↑𝑅) · 𝑄) · (2 · 𝑥)))) |
| 115 | 71 | nnnn0d 9304 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈
ℕ0) |
| 116 | 9, 24 | zndvds 14215 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℕ0
∧ (((-1↑𝑅)
· 𝑅) mod 𝑃) ∈ ℤ ∧
(((-1↑𝑅) ·
𝑄) · (2 ·
𝑥)) ∈ ℤ) →
((𝐿‘(((-1↑𝑅) · 𝑅) mod 𝑃)) = (𝐿‘(((-1↑𝑅) · 𝑄) · (2 · 𝑥))) ↔ 𝑃 ∥ ((((-1↑𝑅) · 𝑅) mod 𝑃) − (((-1↑𝑅) · 𝑄) · (2 · 𝑥))))) |
| 117 | 115, 109,
111, 116 | syl3anc 1249 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(((-1↑𝑅) · 𝑅) mod 𝑃)) = (𝐿‘(((-1↑𝑅) · 𝑄) · (2 · 𝑥))) ↔ 𝑃 ∥ ((((-1↑𝑅) · 𝑅) mod 𝑃) − (((-1↑𝑅) · 𝑄) · (2 · 𝑥))))) |
| 118 | 114, 117 | mpbird 167 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(((-1↑𝑅) · 𝑅) mod 𝑃)) = (𝐿‘(((-1↑𝑅) · 𝑄) · (2 · 𝑥)))) |
| 119 | 23, 25 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐿 ∈ (ℤring RingHom
𝑌)) |
| 120 | 119 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝐿 ∈ (ℤring RingHom
𝑌)) |
| 121 | | zringmulr 14165 |
. . . . . . . . . . 11
⊢ ·
= (.r‘ℤring) |
| 122 | | eqid 2196 |
. . . . . . . . . . 11
⊢
(.r‘𝑌) = (.r‘𝑌) |
| 123 | 26, 121, 122 | rhmmul 13730 |
. . . . . . . . . 10
⊢ ((𝐿 ∈ (ℤring
RingHom 𝑌) ∧
((-1↑𝑅) · 𝑄) ∈ ℤ ∧ (2
· 𝑥) ∈ ℤ)
→ (𝐿‘(((-1↑𝑅) · 𝑄) · (2 · 𝑥))) = ((𝐿‘((-1↑𝑅) · 𝑄))(.r‘𝑌)(𝐿‘(2 · 𝑥)))) |
| 124 | 120, 110,
67, 123 | syl3anc 1249 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(((-1↑𝑅) · 𝑄) · (2 · 𝑥))) = ((𝐿‘((-1↑𝑅) · 𝑄))(.r‘𝑌)(𝐿‘(2 · 𝑥)))) |
| 125 | 84, 118, 124 | 3eqtrd 2233 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))) = ((𝐿‘((-1↑𝑅) · 𝑄))(.r‘𝑌)(𝐿‘(2 · 𝑥)))) |
| 126 | 125 | mpteq2dva 4124 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((𝐿‘((-1↑𝑅) · 𝑄))(.r‘𝑌)(𝐿‘(2 · 𝑥))))) |
| 127 | 16, 22 | fzfigd 10525 |
. . . . . . . 8
⊢ (𝜑 → (1...((𝑃 − 1) / 2)) ∈
Fin) |
| 128 | 29 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝐿:ℤ⟶(Base‘𝑌)) |
| 129 | 128, 110 | ffvelcdmd 5699 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑𝑅) · 𝑄)) ∈ (Base‘𝑌)) |
| 130 | 128, 67 | ffvelcdmd 5699 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑥)) ∈ (Base‘𝑌)) |
| 131 | | eqidd 2197 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) |
| 132 | | eqidd 2197 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) |
| 133 | 127, 129,
130, 131, 132 | offval2 6152 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘𝑓
(.r‘𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((𝐿‘((-1↑𝑅) · 𝑄))(.r‘𝑌)(𝐿‘(2 · 𝑥))))) |
| 134 | 126, 133 | eqtr4d 2232 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))) = ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘𝑓
(.r‘𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) |
| 135 | 134 | oveq2d 5939 |
. . . . 5
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))))) = (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘𝑓
(.r‘𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))) |
| 136 | 48, 57, 135 | 3eqtrd 2233 |
. . . 4
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) = (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘𝑓
(.r‘𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))) |
| 137 | | eqid 2196 |
. . . . . 6
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 138 | 38 | eleq2d 2266 |
. . . . . . . 8
⊢ (𝜑 → ((𝐿‘((-1↑𝑅) · 𝑄)) ∈ (Base‘𝑌) ↔ (𝐿‘((-1↑𝑅) · 𝑄)) ∈ (Base‘𝐺))) |
| 139 | 138 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘((-1↑𝑅) · 𝑄)) ∈ (Base‘𝑌) ↔ (𝐿‘((-1↑𝑅) · 𝑄)) ∈ (Base‘𝐺))) |
| 140 | 129, 139 | mpbid 147 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑𝑅) · 𝑄)) ∈ (Base‘𝐺)) |
| 141 | 38 | eleq2d 2266 |
. . . . . . . 8
⊢ (𝜑 → ((𝐿‘(2 · 𝑥)) ∈ (Base‘𝑌) ↔ (𝐿‘(2 · 𝑥)) ∈ (Base‘𝐺))) |
| 142 | 141 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(2 · 𝑥)) ∈ (Base‘𝑌) ↔ (𝐿‘(2 · 𝑥)) ∈ (Base‘𝐺))) |
| 143 | 130, 142 | mpbid 147 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑥)) ∈ (Base‘𝐺)) |
| 144 | | eqid 2196 |
. . . . . 6
⊢ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) |
| 145 | | eqid 2196 |
. . . . . 6
⊢ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))) |
| 146 | 5, 137, 15, 16, 22, 140, 143, 144, 145 | gsumfzmptfidmadd2 13480 |
. . . . 5
⊢ (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘𝑓
(+g‘𝐺)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(+g‘𝐺)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))) |
| 147 | 13, 122 | mgpplusgg 13490 |
. . . . . . . . 9
⊢ (𝑌 ∈ CRing →
(.r‘𝑌) =
(+g‘𝐺)) |
| 148 | 12, 147 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → (.r‘𝑌) = (+g‘𝐺)) |
| 149 | 148 | ofeqd 6138 |
. . . . . . 7
⊢ (𝜑 →
∘𝑓 (.r‘𝑌) = ∘𝑓
(+g‘𝐺)) |
| 150 | 149 | oveqd 5940 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘𝑓
(.r‘𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) = ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘𝑓
(+g‘𝐺)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) |
| 151 | 150 | oveq2d 5939 |
. . . . 5
⊢ (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘𝑓
(.r‘𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘𝑓
(+g‘𝐺)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))) |
| 152 | 148 | oveqd 5940 |
. . . . 5
⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r‘𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(+g‘𝐺)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))) |
| 153 | 146, 151,
152 | 3eqtr4d 2239 |
. . . 4
⊢ (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) ∘𝑓
(.r‘𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r‘𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))) |
| 154 | 136, 153 | eqtrd 2229 |
. . 3
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r‘𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))) |
| 155 | 154 | oveq1d 5938 |
. 2
⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))(/r‘𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r‘𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))(/r‘𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))) |
| 156 | 15 | cmnmndd 13448 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 157 | | eqid 2196 |
. . . . . 6
⊢
(Unit‘𝑌) =
(Unit‘𝑌) |
| 158 | 157, 13 | unitsubm 13685 |
. . . . 5
⊢ (𝑌 ∈ Ring →
(Unit‘𝑌) ∈
(SubMnd‘𝐺)) |
| 159 | 23, 158 | syl 14 |
. . . 4
⊢ (𝜑 → (Unit‘𝑌) ∈ (SubMnd‘𝐺)) |
| 160 | | elfzle2 10105 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ≤ ((𝑃 − 1) / 2)) |
| 161 | 160 | adantl 277 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ≤ ((𝑃 − 1) / 2)) |
| 162 | 64 | nnred 9005 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℝ) |
| 163 | | prmuz2 12309 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) |
| 164 | | uz2m1nn 9681 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈
(ℤ≥‘2) → (𝑃 − 1) ∈ ℕ) |
| 165 | 69, 163, 164 | 3syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 − 1) ∈ ℕ) |
| 166 | 165 | nnred 9005 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 − 1) ∈ ℝ) |
| 167 | | 2re 9062 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
| 168 | 167 | a1i 9 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈
ℝ) |
| 169 | | 2pos 9083 |
. . . . . . . . . . 11
⊢ 0 <
2 |
| 170 | 169 | a1i 9 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 0 <
2) |
| 171 | | lemuldiv2 8911 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ (𝑃 − 1) ∈ ℝ ∧
(2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑥) ≤ (𝑃 − 1) ↔ 𝑥 ≤ ((𝑃 − 1) / 2))) |
| 172 | 162, 166,
168, 170, 171 | syl112anc 1253 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((2 · 𝑥) ≤ (𝑃 − 1) ↔ 𝑥 ≤ ((𝑃 − 1) / 2))) |
| 173 | 161, 172 | mpbird 167 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ≤ (𝑃 − 1)) |
| 174 | 69, 19 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℤ) |
| 175 | | peano2zm 9366 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℤ → (𝑃 − 1) ∈
ℤ) |
| 176 | | fznn 10166 |
. . . . . . . . 9
⊢ ((𝑃 − 1) ∈ ℤ
→ ((2 · 𝑥)
∈ (1...(𝑃 − 1))
↔ ((2 · 𝑥)
∈ ℕ ∧ (2 · 𝑥) ≤ (𝑃 − 1)))) |
| 177 | 174, 175,
176 | 3syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((2 · 𝑥) ∈ (1...(𝑃 − 1)) ↔ ((2 · 𝑥) ∈ ℕ ∧ (2
· 𝑥) ≤ (𝑃 − 1)))) |
| 178 | 66, 173, 177 | mpbir2and 946 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈ (1...(𝑃 − 1))) |
| 179 | | fzm1ndvds 12023 |
. . . . . . 7
⊢ ((𝑃 ∈ ℕ ∧ (2
· 𝑥) ∈
(1...(𝑃 − 1))) →
¬ 𝑃 ∥ (2 ·
𝑥)) |
| 180 | 71, 178, 179 | syl2anc 411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ 𝑃 ∥ (2 · 𝑥)) |
| 181 | 9, 157, 24 | znunit 14225 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℕ0
∧ (2 · 𝑥) ∈
ℤ) → ((𝐿‘(2 · 𝑥)) ∈ (Unit‘𝑌) ↔ ((2 · 𝑥) gcd 𝑃) = 1)) |
| 182 | 115, 67, 181 | syl2anc 411 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(2 · 𝑥)) ∈ (Unit‘𝑌) ↔ ((2 · 𝑥) gcd 𝑃) = 1)) |
| 183 | | coprm 12322 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (2
· 𝑥) ∈ ℤ)
→ (¬ 𝑃 ∥ (2
· 𝑥) ↔ (𝑃 gcd (2 · 𝑥)) = 1)) |
| 184 | 19 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ (2
· 𝑥) ∈ ℤ)
→ 𝑃 ∈
ℤ) |
| 185 | | simpr 110 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ (2
· 𝑥) ∈ ℤ)
→ (2 · 𝑥)
∈ ℤ) |
| 186 | 184, 185 | gcdcomd 12151 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ (2
· 𝑥) ∈ ℤ)
→ (𝑃 gcd (2 ·
𝑥)) = ((2 · 𝑥) gcd 𝑃)) |
| 187 | 186 | eqeq1d 2205 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (2
· 𝑥) ∈ ℤ)
→ ((𝑃 gcd (2 ·
𝑥)) = 1 ↔ ((2 ·
𝑥) gcd 𝑃) = 1)) |
| 188 | 183, 187 | bitrd 188 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (2
· 𝑥) ∈ ℤ)
→ (¬ 𝑃 ∥ (2
· 𝑥) ↔ ((2
· 𝑥) gcd 𝑃) = 1)) |
| 189 | 69, 67, 188 | syl2anc 411 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (¬ 𝑃 ∥ (2 · 𝑥) ↔ ((2 · 𝑥) gcd 𝑃) = 1)) |
| 190 | 182, 189 | bitr4d 191 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(2 · 𝑥)) ∈ (Unit‘𝑌) ↔ ¬ 𝑃 ∥ (2 · 𝑥))) |
| 191 | 180, 190 | mpbird 167 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(2 · 𝑥)) ∈ (Unit‘𝑌)) |
| 192 | 191 | fmpttd 5718 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))):(1...((𝑃 − 1) / 2))⟶(Unit‘𝑌)) |
| 193 | 156, 16, 22, 159, 192 | gsumfzsubmcl 13478 |
. . 3
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) ∈ (Unit‘𝑌)) |
| 194 | | eqid 2196 |
. . . 4
⊢
(/r‘𝑌) = (/r‘𝑌) |
| 195 | | eqid 2196 |
. . . 4
⊢
(1r‘𝑌) = (1r‘𝑌) |
| 196 | 157, 194,
195 | dvrid 13703 |
. . 3
⊢ ((𝑌 ∈ Ring ∧ (𝐺 Σg
(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) ∈ (Unit‘𝑌)) → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))(/r‘𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (1r‘𝑌)) |
| 197 | 23, 193, 196 | syl2anc 411 |
. 2
⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))(/r‘𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (1r‘𝑌)) |
| 198 | 129 | fmpttd 5718 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))):(1...((𝑃 − 1) / 2))⟶(Base‘𝑌)) |
| 199 | 38 | feq3d 5397 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))):(1...((𝑃 − 1) / 2))⟶(Base‘𝑌) ↔ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))):(1...((𝑃 − 1) / 2))⟶(Base‘𝐺))) |
| 200 | 198, 199 | mpbid 147 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))):(1...((𝑃 − 1) / 2))⟶(Base‘𝐺)) |
| 201 | 5, 6, 156, 16, 22, 200 | gsumfzcl 13141 |
. . . 4
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) ∈ (Base‘𝐺)) |
| 202 | 201, 38 | eleqtrrd 2276 |
. . 3
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) ∈ (Base‘𝑌)) |
| 203 | 27, 157, 194, 122 | dvrcan3 13707 |
. . 3
⊢ ((𝑌 ∈ Ring ∧ (𝐺 Σg
(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) ∈ (Base‘𝑌) ∧ (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))) ∈ (Unit‘𝑌)) → (((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r‘𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))(/r‘𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) |
| 204 | 23, 202, 193, 203 | syl3anc 1249 |
. 2
⊢ (𝜑 → (((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))(.r‘𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥)))))(/r‘𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(2 · 𝑥))))) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) |
| 205 | 155, 197,
204 | 3eqtr3rd 2238 |
1
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (1r‘𝑌)) |