HomeHome Intuitionistic Logic Explorer
Theorem List (p. 141 of 165)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 14001-14100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremringacl 14001 Closure of the addition operation of a ring. (Contributed by Mario Carneiro, 14-Jan-2014.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
 
Theoremringcom 14002 Commutativity of the additive group of a ring. (Contributed by Gérard Lang, 4-Dec-2014.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
 
Theoremringabl 14003 A ring is an Abelian group. (Contributed by NM, 26-Aug-2011.)
(𝑅 ∈ Ring → 𝑅 ∈ Abel)
 
Theoremringcmn 14004 A ring is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
(𝑅 ∈ Ring → 𝑅 ∈ CMnd)
 
Theoremringabld 14005 A ring is an Abelian group. (Contributed by SN, 1-Jun-2024.)
(𝜑𝑅 ∈ Ring)       (𝜑𝑅 ∈ Abel)
 
Theoremringcmnd 14006 A ring is a commutative monoid. (Contributed by SN, 1-Jun-2024.)
(𝜑𝑅 ∈ Ring)       (𝜑𝑅 ∈ CMnd)
 
Theoremringrng 14007 A unital ring is a non-unital ring. (Contributed by AV, 6-Jan-2020.)
(𝑅 ∈ Ring → 𝑅 ∈ Rng)
 
Theoremringssrng 14008 The unital rings are non-unital rings. (Contributed by AV, 20-Mar-2020.)
Ring ⊆ Rng
 
Theoremringpropd 14009* If two structures have the same group components (properties), one is a ring iff the other one is. (Contributed by Mario Carneiro, 6-Dec-2014.) (Revised by Mario Carneiro, 6-Jan-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))       (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
 
Theoremcrngpropd 14010* If two structures have the same group components (properties), one is a commutative ring iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))       (𝜑 → (𝐾 ∈ CRing ↔ 𝐿 ∈ CRing))
 
Theoremringprop 14011 If two structures have the same ring components (properties), one is a ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.)
(Base‘𝐾) = (Base‘𝐿)    &   (+g𝐾) = (+g𝐿)    &   (.r𝐾) = (.r𝐿)       (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)
 
Theoremisringd 14012* Properties that determine a ring. (Contributed by NM, 2-Aug-2013.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑+ = (+g𝑅))    &   (𝜑· = (.r𝑅))    &   (𝜑𝑅 ∈ Grp)    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))    &   (𝜑1𝐵)    &   ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)    &   ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)       (𝜑𝑅 ∈ Ring)
 
Theoremiscrngd 14013* Properties that determine a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑+ = (+g𝑅))    &   (𝜑· = (.r𝑅))    &   (𝜑𝑅 ∈ Grp)    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))    &   (𝜑1𝐵)    &   ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)    &   ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) = (𝑦 · 𝑥))       (𝜑𝑅 ∈ CRing)
 
Theoremringlz 14014 The zero of a unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )
 
Theoremringrz 14015 The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
 
Theoremringlzd 14016 The zero of a unital ring is a left-absorbing element. (Contributed by SN, 7-Mar-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)       (𝜑 → ( 0 · 𝑋) = 0 )
 
Theoremringrzd 14017 The zero of a unital ring is a right-absorbing element. (Contributed by SN, 7-Mar-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑋 · 0 ) = 0 )
 
Theoremringsrg 14018 Any ring is also a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018.)
(𝑅 ∈ Ring → 𝑅 ∈ SRing)
 
Theoremring1eq0 14019 If one and zero are equal, then any two elements of a ring are equal. Alternately, every ring has one distinct from zero except the zero ring containing the single element {0}. (Contributed by Mario Carneiro, 10-Sep-2014.)
𝐵 = (Base‘𝑅)    &    1 = (1r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ( 1 = 0𝑋 = 𝑌))
 
Theoremringinvnz1ne0 14020* In a unital ring, a left invertible element is different from zero iff 10. (Contributed by FL, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )       (𝜑 → (𝑋010 ))
 
Theoremringinvnzdiv 14021* In a unital ring, a left invertible element is not a zero divisor. (Contributed by FL, 18-Apr-2010.) (Revised by Jeff Madsen, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
 
Theoremringnegl 14022 Negation in a ring is the same as left multiplication by -1. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &   𝑁 = (invg𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)       (𝜑 → ((𝑁1 ) · 𝑋) = (𝑁𝑋))
 
Theoremringnegr 14023 Negation in a ring is the same as right multiplication by -1. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &   𝑁 = (invg𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑋 · (𝑁1 )) = (𝑁𝑋))
 
Theoremringmneg1 14024 Negation of a product in a ring. (mulneg1 8549 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑁 = (invg𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑁𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌)))
 
Theoremringmneg2 14025 Negation of a product in a ring. (mulneg2 8550 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑁 = (invg𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 · (𝑁𝑌)) = (𝑁‘(𝑋 · 𝑌)))
 
Theoremringm2neg 14026 Double negation of a product in a ring. (mul2neg 8552 analog.) (Contributed by Mario Carneiro, 4-Dec-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑁 = (invg𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑁𝑋) · (𝑁𝑌)) = (𝑋 · 𝑌))
 
Theoremringsubdi 14027 Ring multiplication distributes over subtraction. (subdi 8539 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    = (-g𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → (𝑋 · (𝑌 𝑍)) = ((𝑋 · 𝑌) (𝑋 · 𝑍)))
 
Theoremringsubdir 14028 Ring multiplication distributes over subtraction. (subdir 8540 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    = (-g𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → ((𝑋 𝑌) · 𝑍) = ((𝑋 · 𝑍) (𝑌 · 𝑍)))
 
Theoremmulgass2 14029 An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐵 = (Base‘𝑅)    &    · = (.g𝑅)    &    × = (.r𝑅)       ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌)))
 
Theoremring1 14030 The (smallest) structure representing a zero ring. (Contributed by AV, 28-Apr-2019.)
𝑀 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}       (𝑍𝑉𝑀 ∈ Ring)
 
Theoremringn0 14031 The class of rings is not empty (it is also inhabited, as shown at ring1 14030). (Contributed by AV, 29-Apr-2019.)
Ring ≠ ∅
 
Theoremringlghm 14032* Left-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 GrpHom 𝑅))
 
Theoremringrghm 14033* Right-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 GrpHom 𝑅))
 
Theoremringressid 14034 A ring restricted to its base set is a ring. It will usually be the original ring exactly, of course, but to show that needs additional conditions such as those in strressid 13112. (Contributed by Jim Kingdon, 28-Feb-2025.)
𝐵 = (Base‘𝐺)       (𝐺 ∈ Ring → (𝐺s 𝐵) ∈ Ring)
 
Theoremimasring 14035* The image structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
(𝜑𝑈 = (𝐹s 𝑅))    &   (𝜑𝑉 = (Base‘𝑅))    &    + = (+g𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &   (𝜑𝐹:𝑉onto𝐵)    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))    &   (𝜑𝑅 ∈ Ring)       (𝜑 → (𝑈 ∈ Ring ∧ (𝐹1 ) = (1r𝑈)))
 
Theoremimasringf1 14036 The image of a ring under an injection is a ring. (Contributed by AV, 27-Feb-2025.)
𝑈 = (𝐹s 𝑅)    &   𝑉 = (Base‘𝑅)       ((𝐹:𝑉1-1𝐵𝑅 ∈ Ring) → 𝑈 ∈ Ring)
 
Theoremqusring2 14037* The quotient structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
(𝜑𝑈 = (𝑅 /s ))    &   (𝜑𝑉 = (Base‘𝑅))    &    + = (+g𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &   (𝜑 Er 𝑉)    &   (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))    &   (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))    &   (𝜑𝑅 ∈ Ring)       (𝜑 → (𝑈 ∈ Ring ∧ [ 1 ] = (1r𝑈)))
 
7.3.6  Opposite ring
 
Syntaxcoppr 14038 The opposite ring operation.
class oppr
 
Definitiondf-oppr 14039 Define an opposite ring, which is the same as the original ring but with multiplication written the other way around. (Contributed by Mario Carneiro, 1-Dec-2014.)
oppr = (𝑓 ∈ V ↦ (𝑓 sSet ⟨(.r‘ndx), tpos (.r𝑓)⟩))
 
Theoremopprvalg 14040 Value of the opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑂 = (oppr𝑅)       (𝑅𝑉𝑂 = (𝑅 sSet ⟨(.r‘ndx), tpos · ⟩))
 
Theoremopprmulfvalg 14041 Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑂 = (oppr𝑅)    &    = (.r𝑂)       (𝑅𝑉 = tpos · )
 
Theoremopprmulg 14042 Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑂 = (oppr𝑅)    &    = (.r𝑂)       ((𝑅𝑉𝑋𝑊𝑌𝑈) → (𝑋 𝑌) = (𝑌 · 𝑋))
 
Theoremcrngoppr 14043 In a commutative ring, the opposite ring is equivalent to the original ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑂 = (oppr𝑅)    &    = (.r𝑂)       ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) = (𝑋 𝑌))
 
Theoremopprex 14044 Existence of the opposite ring. If you know that 𝑅 is a ring, see opprring 14050. (Contributed by Jim Kingdon, 10-Jan-2025.)
𝑂 = (oppr𝑅)       (𝑅𝑉𝑂 ∈ V)
 
Theoremopprsllem 14045 Lemma for opprbasg 14046 and oppraddg 14047. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by AV, 6-Nov-2024.)
𝑂 = (oppr𝑅)    &   (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   (𝐸‘ndx) ≠ (.r‘ndx)       (𝑅𝑉 → (𝐸𝑅) = (𝐸𝑂))
 
Theoremopprbasg 14046 Base set of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.)
𝑂 = (oppr𝑅)    &   𝐵 = (Base‘𝑅)       (𝑅𝑉𝐵 = (Base‘𝑂))
 
Theoremoppraddg 14047 Addition operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.)
𝑂 = (oppr𝑅)    &    + = (+g𝑅)       (𝑅𝑉+ = (+g𝑂))
 
Theoremopprrng 14048 An opposite non-unital ring is a non-unital ring. (Contributed by AV, 15-Feb-2025.)
𝑂 = (oppr𝑅)       (𝑅 ∈ Rng → 𝑂 ∈ Rng)
 
Theoremopprrngbg 14049 A set is a non-unital ring if and only if its opposite is a non-unital ring. Bidirectional form of opprrng 14048. (Contributed by AV, 15-Feb-2025.)
𝑂 = (oppr𝑅)       (𝑅𝑉 → (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng))
 
Theoremopprring 14050 An opposite ring is a ring. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.)
𝑂 = (oppr𝑅)       (𝑅 ∈ Ring → 𝑂 ∈ Ring)
 
Theoremopprringbg 14051 Bidirectional form of opprring 14050. (Contributed by Mario Carneiro, 6-Dec-2014.)
𝑂 = (oppr𝑅)       (𝑅𝑉 → (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring))
 
Theoremoppr0g 14052 Additive identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
𝑂 = (oppr𝑅)    &    0 = (0g𝑅)       (𝑅𝑉0 = (0g𝑂))
 
Theoremoppr1g 14053 Multiplicative identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
𝑂 = (oppr𝑅)    &    1 = (1r𝑅)       (𝑅𝑉1 = (1r𝑂))
 
Theoremopprnegg 14054 The negative function in an opposite ring. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝑂 = (oppr𝑅)    &   𝑁 = (invg𝑅)       (𝑅𝑉𝑁 = (invg𝑂))
 
Theoremopprsubgg 14055 Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.)
𝑂 = (oppr𝑅)       (𝑅𝑉 → (SubGrp‘𝑅) = (SubGrp‘𝑂))
 
Theoremmulgass3 14056 An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐵 = (Base‘𝑅)    &    · = (.g𝑅)    &    × = (.r𝑅)       ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑁 · (𝑋 × 𝑌)))
 
7.3.7  Divisibility
 
Syntaxcdsr 14057 Ring divisibility relation.
class r
 
Syntaxcui 14058 Units in a ring.
class Unit
 
Syntaxcir 14059 Ring irreducibles.
class Irred
 
Definitiondf-dvdsr 14060* Define the (right) divisibility relation in a ring. Access to the left divisibility relation is available through (∥r‘(oppr𝑅)). (Contributed by Mario Carneiro, 1-Dec-2014.)
r = (𝑤 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r𝑤)𝑥) = 𝑦)})
 
Definitiondf-unit 14061 Define the set of units in a ring, that is, all elements with a left and right multiplicative inverse. (Contributed by Mario Carneiro, 1-Dec-2014.)
Unit = (𝑤 ∈ V ↦ (((∥r𝑤) ∩ (∥r‘(oppr𝑤))) “ {(1r𝑤)}))
 
Definitiondf-irred 14062* Define the set of irreducible elements in a ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Irred = (𝑤 ∈ V ↦ ((Base‘𝑤) ∖ (Unit‘𝑤)) / 𝑏{𝑧𝑏 ∣ ∀𝑥𝑏𝑦𝑏 (𝑥(.r𝑤)𝑦) ≠ 𝑧})
 
Theoremreldvdsr 14063 The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
= (∥r𝑅)       Rel
 
Theoremreldvdsrsrg 14064 The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2025.)
(𝑅 ∈ SRing → Rel (∥r𝑅))
 
Theoremdvdsrvald 14065* Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 6-Jan-2015.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑 = (∥r𝑅))    &   (𝜑𝑅 ∈ SRing)    &   (𝜑· = (.r𝑅))       (𝜑 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑥) = 𝑦)})
 
Theoremdvdsrd 14066* Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑 = (∥r𝑅))    &   (𝜑𝑅 ∈ SRing)    &   (𝜑· = (.r𝑅))       (𝜑 → (𝑋 𝑌 ↔ (𝑋𝐵 ∧ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌)))
 
Theoremdvdsr2d 14067* Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑 = (∥r𝑅))    &   (𝜑𝑅 ∈ SRing)    &   (𝜑· = (.r𝑅))    &   (𝜑𝑋𝐵)       (𝜑 → (𝑋 𝑌 ↔ ∃𝑧𝐵 (𝑧 · 𝑋) = 𝑌))
 
Theoremdvdsrmuld 14068 A left-multiple of 𝑋 is divisible by 𝑋. (Contributed by Mario Carneiro, 1-Dec-2014.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑 = (∥r𝑅))    &   (𝜑𝑅 ∈ SRing)    &   (𝜑· = (.r𝑅))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑𝑋 (𝑌 · 𝑋))
 
Theoremdvdsrcld 14069 Closure of a dividing element. (Contributed by Mario Carneiro, 5-Dec-2014.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑 = (∥r𝑅))    &   (𝜑𝑅 ∈ SRing)    &   (𝜑𝑋 𝑌)       (𝜑𝑋𝐵)
 
Theoremdvdsrex 14070 Existence of the divisibility relation. (Contributed by Jim Kingdon, 28-Jan-2025.)
(𝑅 ∈ SRing → (∥r𝑅) ∈ V)
 
Theoremdvdsrcl2 14071 Closure of a dividing element. (Contributed by Mario Carneiro, 5-Dec-2014.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋 𝑌) → 𝑌𝐵)
 
Theoremdvdsrid 14072 An element in a (unital) ring divides itself. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋 𝑋)
 
Theoremdvdsrtr 14073 Divisibility is transitive. (Contributed by Mario Carneiro, 1-Dec-2014.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)       ((𝑅 ∈ Ring ∧ 𝑌 𝑍𝑍 𝑋) → 𝑌 𝑋)
 
Theoremdvdsrmul1 14074 The divisibility relation is preserved under right-multiplication. (Contributed by Mario Carneiro, 1-Dec-2014.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑍𝐵𝑋 𝑌) → (𝑋 · 𝑍) (𝑌 · 𝑍))
 
Theoremdvdsrneg 14075 An element divides its negative. (Contributed by Mario Carneiro, 1-Dec-2014.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)    &   𝑁 = (invg𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋 (𝑁𝑋))
 
Theoremdvdsr01 14076 In a ring, zero is divisible by all elements. ("Zero divisor" as a term has a somewhat different meaning.) (Contributed by Stefan O'Rear, 29-Mar-2015.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋 0 )
 
Theoremdvdsr02 14077 Only zero is divisible by zero. (Contributed by Stefan O'Rear, 29-Mar-2015.)
𝐵 = (Base‘𝑅)    &    = (∥r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 𝑋𝑋 = 0 ))
 
Theoremisunitd 14078 Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.)
(𝜑𝑈 = (Unit‘𝑅))    &   (𝜑1 = (1r𝑅))    &   (𝜑 = (∥r𝑅))    &   (𝜑𝑆 = (oppr𝑅))    &   (𝜑𝐸 = (∥r𝑆))    &   (𝜑𝑅 ∈ SRing)       (𝜑 → (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 )))
 
Theorem1unit 14079 The multiplicative identity is a unit. (Contributed by Mario Carneiro, 1-Dec-2014.)
𝑈 = (Unit‘𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ Ring → 1𝑈)
 
Theoremunitcld 14080 A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑𝑈 = (Unit‘𝑅))    &   (𝜑𝑅 ∈ SRing)    &   (𝜑𝑋𝑈)       (𝜑𝑋𝐵)
 
Theoremunitssd 14081 The set of units is contained in the base set. (Contributed by Mario Carneiro, 5-Oct-2015.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑𝑈 = (Unit‘𝑅))    &   (𝜑𝑅 ∈ SRing)       (𝜑𝑈𝐵)
 
Theoremopprunitd 14082 Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
(𝜑𝑈 = (Unit‘𝑅))    &   (𝜑𝑆 = (oppr𝑅))    &   (𝜑𝑅 ∈ Ring)       (𝜑𝑈 = (Unit‘𝑆))
 
Theoremcrngunit 14083 Property of being a unit in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.)
𝑈 = (Unit‘𝑅)    &    1 = (1r𝑅)    &    = (∥r𝑅)       (𝑅 ∈ CRing → (𝑋𝑈𝑋 1 ))
 
Theoremdvdsunit 14084 A divisor of a unit is a unit. (Contributed by Mario Carneiro, 18-Apr-2016.)
𝑈 = (Unit‘𝑅)    &    = (∥r𝑅)       ((𝑅 ∈ CRing ∧ 𝑌 𝑋𝑋𝑈) → 𝑌𝑈)
 
Theoremunitmulcl 14085 The product of units is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝑈 = (Unit‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝑈) → (𝑋 · 𝑌) ∈ 𝑈)
 
Theoremunitmulclb 14086 Reversal of unitmulcl 14085 in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.)
𝑈 = (Unit‘𝑅)    &    · = (.r𝑅)    &   𝐵 = (Base‘𝑅)       ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) ∈ 𝑈 ↔ (𝑋𝑈𝑌𝑈)))
 
Theoremunitgrpbasd 14087 The base set of the group of units. (Contributed by Mario Carneiro, 25-Dec-2014.)
(𝜑𝑈 = (Unit‘𝑅))    &   (𝜑𝐺 = ((mulGrp‘𝑅) ↾s 𝑈))    &   (𝜑𝑅 ∈ SRing)       (𝜑𝑈 = (Base‘𝐺))
 
Theoremunitgrp 14088 The group of units is a group under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝑈 = (Unit‘𝑅)    &   𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)       (𝑅 ∈ Ring → 𝐺 ∈ Grp)
 
Theoremunitabl 14089 The group of units of a commutative ring is abelian. (Contributed by Mario Carneiro, 19-Apr-2016.)
𝑈 = (Unit‘𝑅)    &   𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)       (𝑅 ∈ CRing → 𝐺 ∈ Abel)
 
Theoremunitgrpid 14090 The identity of the group of units of a ring is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝑈 = (Unit‘𝑅)    &   𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)    &    1 = (1r𝑅)       (𝑅 ∈ Ring → 1 = (0g𝐺))
 
Theoremunitsubm 14091 The group of units is a submonoid of the multiplicative monoid of the ring. (Contributed by Mario Carneiro, 18-Jun-2015.)
𝑈 = (Unit‘𝑅)    &   𝑀 = (mulGrp‘𝑅)       (𝑅 ∈ Ring → 𝑈 ∈ (SubMnd‘𝑀))
 
Syntaxcinvr 14092 Extend class notation with multiplicative inverse.
class invr
 
Definitiondf-invr 14093 Define multiplicative inverse. (Contributed by NM, 21-Sep-2011.)
invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))))
 
Theoreminvrfvald 14094 Multiplicative inverse function for a ring. (Contributed by NM, 21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.)
(𝜑𝑈 = (Unit‘𝑅))    &   (𝜑𝐺 = ((mulGrp‘𝑅) ↾s 𝑈))    &   (𝜑𝐼 = (invr𝑅))    &   (𝜑𝑅 ∈ Ring)       (𝜑𝐼 = (invg𝐺))
 
Theoremunitinvcl 14095 The inverse of a unit exists and is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝑈 = (Unit‘𝑅)    &   𝐼 = (invr𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝐼𝑋) ∈ 𝑈)
 
Theoremunitinvinv 14096 The inverse of the inverse of a unit is the same element. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑈 = (Unit‘𝑅)    &   𝐼 = (invr𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝐼‘(𝐼𝑋)) = 𝑋)
 
Theoremringinvcl 14097 The inverse of a unit is an element of the ring. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝑈 = (Unit‘𝑅)    &   𝐼 = (invr𝑅)    &   𝐵 = (Base‘𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝐼𝑋) ∈ 𝐵)
 
Theoremunitlinv 14098 A unit times its inverse is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝑈 = (Unit‘𝑅)    &   𝐼 = (invr𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈) → ((𝐼𝑋) · 𝑋) = 1 )
 
Theoremunitrinv 14099 A unit times its inverse is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝑈 = (Unit‘𝑅)    &   𝐼 = (invr𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑋 · (𝐼𝑋)) = 1 )
 
Theorem1rinv 14100 The inverse of the ring unity is the ring unity. (Contributed by Mario Carneiro, 18-Jun-2015.)
𝐼 = (invr𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ Ring → (𝐼1 ) = 1 )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16482
  Copyright terms: Public domain < Previous  Next >