Theorem List for Intuitionistic Logic Explorer - 14001-14100 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | ringacl 14001 |
Closure of the addition operation of a ring. (Contributed by Mario
Carneiro, 14-Jan-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ + =
(+g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| |
| Theorem | ringcom 14002 |
Commutativity of the additive group of a ring. (Contributed by
Gérard Lang, 4-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ + =
(+g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
| |
| Theorem | ringabl 14003 |
A ring is an Abelian group. (Contributed by NM, 26-Aug-2011.)
|
| ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Abel) |
| |
| Theorem | ringcmn 14004 |
A ring is a commutative monoid. (Contributed by Mario Carneiro,
7-Jan-2015.)
|
| ⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
| |
| Theorem | ringabld 14005 |
A ring is an Abelian group. (Contributed by SN, 1-Jun-2024.)
|
| ⊢ (𝜑 → 𝑅 ∈ Ring)
⇒ ⊢ (𝜑 → 𝑅 ∈ Abel) |
| |
| Theorem | ringcmnd 14006 |
A ring is a commutative monoid. (Contributed by SN, 1-Jun-2024.)
|
| ⊢ (𝜑 → 𝑅 ∈ Ring)
⇒ ⊢ (𝜑 → 𝑅 ∈ CMnd) |
| |
| Theorem | ringrng 14007 |
A unital ring is a non-unital ring. (Contributed by AV, 6-Jan-2020.)
|
| ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Rng) |
| |
| Theorem | ringssrng 14008 |
The unital rings are non-unital rings. (Contributed by AV,
20-Mar-2020.)
|
| ⊢ Ring ⊆ Rng |
| |
| Theorem | ringpropd 14009* |
If two structures have the same group components (properties), one is a
ring iff the other one is. (Contributed by Mario Carneiro, 6-Dec-2014.)
(Revised by Mario Carneiro, 6-Jan-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)) |
| |
| Theorem | crngpropd 14010* |
If two structures have the same group components (properties), one is a
commutative ring iff the other one is. (Contributed by Mario Carneiro,
8-Feb-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ CRing ↔ 𝐿 ∈ CRing)) |
| |
| Theorem | ringprop 14011 |
If two structures have the same ring components (properties), one is a
ring iff the other one is. (Contributed by Mario Carneiro,
11-Oct-2013.)
|
| ⊢ (Base‘𝐾) = (Base‘𝐿)
& ⊢ (+g‘𝐾) = (+g‘𝐿)
& ⊢ (.r‘𝐾) = (.r‘𝐿) ⇒ ⊢ (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring) |
| |
| Theorem | isringd 14012* |
Properties that determine a ring. (Contributed by NM, 2-Aug-2013.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → + =
(+g‘𝑅)) & ⊢ (𝜑 → · =
(.r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) & ⊢ (𝜑 → 1 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) = 𝑥)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 1 ) = 𝑥) ⇒ ⊢ (𝜑 → 𝑅 ∈ Ring) |
| |
| Theorem | iscrngd 14013* |
Properties that determine a commutative ring. (Contributed by Mario
Carneiro, 7-Jan-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → + =
(+g‘𝑅)) & ⊢ (𝜑 → · =
(.r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) & ⊢ (𝜑 → 1 ∈ 𝐵)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) = 𝑥)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 1 ) = 𝑥)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) ⇒ ⊢ (𝜑 → 𝑅 ∈ CRing) |
| |
| Theorem | ringlz 14014 |
The zero of a unital ring is a left-absorbing element. (Contributed by
FL, 31-Aug-2009.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 0 =
(0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) |
| |
| Theorem | ringrz 14015 |
The zero of a unital ring is a right-absorbing element. (Contributed by
FL, 31-Aug-2009.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 0 =
(0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
| |
| Theorem | ringlzd 14016 |
The zero of a unital ring is a left-absorbing element. (Contributed by
SN, 7-Mar-2025.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 0 =
(0g‘𝑅)
& ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ( 0 · 𝑋) = 0 ) |
| |
| Theorem | ringrzd 14017 |
The zero of a unital ring is a right-absorbing element. (Contributed by
SN, 7-Mar-2025.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 0 =
(0g‘𝑅)
& ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 0 ) = 0 ) |
| |
| Theorem | ringsrg 14018 |
Any ring is also a semiring. (Contributed by Thierry Arnoux,
1-Apr-2018.)
|
| ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) |
| |
| Theorem | ring1eq0 14019 |
If one and zero are equal, then any two elements of a ring are equal.
Alternately, every ring has one distinct from zero except the zero ring
containing the single element {0}. (Contributed
by Mario
Carneiro, 10-Sep-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ 1 =
(1r‘𝑅)
& ⊢ 0 =
(0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( 1 = 0 → 𝑋 = 𝑌)) |
| |
| Theorem | ringinvnz1ne0 14020* |
In a unital ring, a left invertible element is different from zero iff
1 ≠ 0. (Contributed by
FL, 18-Apr-2010.) (Revised by AV,
24-Aug-2021.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 1 =
(1r‘𝑅)
& ⊢ 0 =
(0g‘𝑅)
& ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → ∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1
) ⇒ ⊢ (𝜑 → (𝑋 ≠ 0 ↔ 1 ≠ 0 )) |
| |
| Theorem | ringinvnzdiv 14021* |
In a unital ring, a left invertible element is not a zero divisor.
(Contributed by FL, 18-Apr-2010.) (Revised by Jeff Madsen,
18-Apr-2010.) (Revised by AV, 24-Aug-2021.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 1 =
(1r‘𝑅)
& ⊢ 0 =
(0g‘𝑅)
& ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → ∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 ) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) |
| |
| Theorem | ringnegl 14022 |
Negation in a ring is the same as left multiplication by -1.
(Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro,
2-Jul-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 1 =
(1r‘𝑅)
& ⊢ 𝑁 = (invg‘𝑅)
& ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑁‘ 1 ) · 𝑋) = (𝑁‘𝑋)) |
| |
| Theorem | ringnegr 14023 |
Negation in a ring is the same as right multiplication by -1.
(Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro,
2-Jul-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 1 =
(1r‘𝑅)
& ⊢ 𝑁 = (invg‘𝑅)
& ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · (𝑁‘ 1 )) = (𝑁‘𝑋)) |
| |
| Theorem | ringmneg1 14024 |
Negation of a product in a ring. (mulneg1 8549 analog.) (Contributed by
Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 𝑁 = (invg‘𝑅)
& ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑁‘𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌))) |
| |
| Theorem | ringmneg2 14025 |
Negation of a product in a ring. (mulneg2 8550 analog.) (Contributed by
Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 𝑁 = (invg‘𝑅)
& ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) = (𝑁‘(𝑋 · 𝑌))) |
| |
| Theorem | ringm2neg 14026 |
Double negation of a product in a ring. (mul2neg 8552 analog.)
(Contributed by Mario Carneiro, 4-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 𝑁 = (invg‘𝑅)
& ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑁‘𝑋) · (𝑁‘𝑌)) = (𝑋 · 𝑌)) |
| |
| Theorem | ringsubdi 14027 |
Ring multiplication distributes over subtraction. (subdi 8539 analog.)
(Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro,
2-Jul-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ − =
(-g‘𝑅)
& ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · (𝑌 − 𝑍)) = ((𝑋 · 𝑌) − (𝑋 · 𝑍))) |
| |
| Theorem | ringsubdir 14028 |
Ring multiplication distributes over subtraction. (subdir 8540 analog.)
(Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro,
2-Jul-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ − =
(-g‘𝑅)
& ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 − 𝑌) · 𝑍) = ((𝑋 · 𝑍) − (𝑌 · 𝑍))) |
| |
| Theorem | mulgass2 14029 |
An associative property between group multiple and ring multiplication.
(Contributed by Mario Carneiro, 14-Jun-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.g‘𝑅)
& ⊢ × =
(.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))) |
| |
| Theorem | ring1 14030 |
The (smallest) structure representing a zero ring. (Contributed by
AV, 28-Apr-2019.)
|
| ⊢ 𝑀 = {〈(Base‘ndx), {𝑍}〉,
〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉,
〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉}
⇒ ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∈ Ring) |
| |
| Theorem | ringn0 14031 |
The class of rings is not empty (it is also inhabited, as shown at
ring1 14030). (Contributed by AV, 29-Apr-2019.)
|
| ⊢ Ring ≠ ∅ |
| |
| Theorem | ringlghm 14032* |
Left-multiplication in a ring by a fixed element of the ring is a group
homomorphism. (It is not usually a ring homomorphism.) (Contributed by
Mario Carneiro, 4-May-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 GrpHom 𝑅)) |
| |
| Theorem | ringrghm 14033* |
Right-multiplication in a ring by a fixed element of the ring is a group
homomorphism. (It is not usually a ring homomorphism.) (Contributed by
Mario Carneiro, 4-May-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 GrpHom 𝑅)) |
| |
| Theorem | ringressid 14034 |
A ring restricted to its base set is a ring. It will usually be the
original ring exactly, of course, but to show that needs additional
conditions such as those in strressid 13112. (Contributed by Jim Kingdon,
28-Feb-2025.)
|
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Ring → (𝐺 ↾s 𝐵) ∈ Ring) |
| |
| Theorem | imasring 14035* |
The image structure of a ring is a ring. (Contributed by Mario
Carneiro, 14-Jun-2015.)
|
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ + =
(+g‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 1 =
(1r‘𝑅)
& ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵)
& ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) & ⊢ (𝜑 → 𝑅 ∈ Ring)
⇒ ⊢ (𝜑 → (𝑈 ∈ Ring ∧ (𝐹‘ 1 ) =
(1r‘𝑈))) |
| |
| Theorem | imasringf1 14036 |
The image of a ring under an injection is a ring. (Contributed by AV,
27-Feb-2025.)
|
| ⊢ 𝑈 = (𝐹 “s 𝑅) & ⊢ 𝑉 = (Base‘𝑅)
⇒ ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Ring) → 𝑈 ∈ Ring) |
| |
| Theorem | qusring2 14037* |
The quotient structure of a ring is a ring. (Contributed by Mario
Carneiro, 14-Jun-2015.)
|
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ + =
(+g‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 1 =
(1r‘𝑅)
& ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 + 𝑏) ∼ (𝑝 + 𝑞))) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞))) & ⊢ (𝜑 → 𝑅 ∈ Ring)
⇒ ⊢ (𝜑 → (𝑈 ∈ Ring ∧ [ 1 ] ∼ =
(1r‘𝑈))) |
| |
| 7.3.6 Opposite ring
|
| |
| Syntax | coppr 14038 |
The opposite ring operation.
|
| class oppr |
| |
| Definition | df-oppr 14039 |
Define an opposite ring, which is the same as the original ring but with
multiplication written the other way around. (Contributed by Mario
Carneiro, 1-Dec-2014.)
|
| ⊢ oppr = (𝑓 ∈ V ↦ (𝑓 sSet 〈(.r‘ndx), tpos
(.r‘𝑓)〉)) |
| |
| Theorem | opprvalg 14040 |
Value of the opposite ring. (Contributed by Mario Carneiro,
1-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 𝑂 = (oppr‘𝑅)
⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos
·
〉)) |
| |
| Theorem | opprmulfvalg 14041 |
Value of the multiplication operation of an opposite ring. (Contributed
by Mario Carneiro, 1-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 𝑂 = (oppr‘𝑅) & ⊢ ∙ =
(.r‘𝑂) ⇒ ⊢ (𝑅 ∈ 𝑉 → ∙ = tpos ·
) |
| |
| Theorem | opprmulg 14042 |
Value of the multiplication operation of an opposite ring. Hypotheses
eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed
by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro,
30-Aug-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 𝑂 = (oppr‘𝑅) & ⊢ ∙ =
(.r‘𝑂) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → (𝑋 ∙ 𝑌) = (𝑌 · 𝑋)) |
| |
| Theorem | crngoppr 14043 |
In a commutative ring, the opposite ring is equivalent to the original
ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 𝑂 = (oppr‘𝑅) & ⊢ ∙ =
(.r‘𝑂) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (𝑋 ∙ 𝑌)) |
| |
| Theorem | opprex 14044 |
Existence of the opposite ring. If you know that 𝑅 is a ring, see
opprring 14050. (Contributed by Jim Kingdon, 10-Jan-2025.)
|
| ⊢ 𝑂 = (oppr‘𝑅)
⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑂 ∈ V) |
| |
| Theorem | opprsllem 14045 |
Lemma for opprbasg 14046 and oppraddg 14047. (Contributed by Mario Carneiro,
1-Dec-2014.) (Revised by AV, 6-Nov-2024.)
|
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝐸‘ndx) ≠
(.r‘ndx) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘𝑂)) |
| |
| Theorem | opprbasg 14046 |
Base set of an opposite ring. (Contributed by Mario Carneiro,
1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.)
|
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝐵 = (Base‘𝑅)
⇒ ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (Base‘𝑂)) |
| |
| Theorem | oppraddg 14047 |
Addition operation of an opposite ring. (Contributed by Mario
Carneiro, 1-Dec-2014.) (Proof shortened by AV, 6-Nov-2024.)
|
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ + =
(+g‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → + =
(+g‘𝑂)) |
| |
| Theorem | opprrng 14048 |
An opposite non-unital ring is a non-unital ring. (Contributed by AV,
15-Feb-2025.)
|
| ⊢ 𝑂 = (oppr‘𝑅)
⇒ ⊢ (𝑅 ∈ Rng → 𝑂 ∈ Rng) |
| |
| Theorem | opprrngbg 14049 |
A set is a non-unital ring if and only if its opposite is a non-unital
ring. Bidirectional form of opprrng 14048. (Contributed by AV,
15-Feb-2025.)
|
| ⊢ 𝑂 = (oppr‘𝑅)
⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng)) |
| |
| Theorem | opprring 14050 |
An opposite ring is a ring. (Contributed by Mario Carneiro,
1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.)
|
| ⊢ 𝑂 = (oppr‘𝑅)
⇒ ⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) |
| |
| Theorem | opprringbg 14051 |
Bidirectional form of opprring 14050. (Contributed by Mario Carneiro,
6-Dec-2014.)
|
| ⊢ 𝑂 = (oppr‘𝑅)
⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring)) |
| |
| Theorem | oppr0g 14052 |
Additive identity of an opposite ring. (Contributed by Mario
Carneiro, 1-Dec-2014.)
|
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 0 =
(0g‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 0 =
(0g‘𝑂)) |
| |
| Theorem | oppr1g 14053 |
Multiplicative identity of an opposite ring. (Contributed by Mario
Carneiro, 1-Dec-2014.)
|
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 1 =
(1r‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 1 =
(1r‘𝑂)) |
| |
| Theorem | opprnegg 14054 |
The negative function in an opposite ring. (Contributed by Mario
Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
|
| ⊢ 𝑂 = (oppr‘𝑅) & ⊢ 𝑁 = (invg‘𝑅)
⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑁 = (invg‘𝑂)) |
| |
| Theorem | opprsubgg 14055 |
Being a subgroup is a symmetric property. (Contributed by Mario
Carneiro, 6-Dec-2014.)
|
| ⊢ 𝑂 = (oppr‘𝑅)
⇒ ⊢ (𝑅 ∈ 𝑉 → (SubGrp‘𝑅) = (SubGrp‘𝑂)) |
| |
| Theorem | mulgass3 14056 |
An associative property between group multiple and ring multiplication.
(Contributed by Mario Carneiro, 14-Jun-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ · =
(.g‘𝑅)
& ⊢ × =
(.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑁 · (𝑋 × 𝑌))) |
| |
| 7.3.7 Divisibility
|
| |
| Syntax | cdsr 14057 |
Ring divisibility relation.
|
| class ∥r |
| |
| Syntax | cui 14058 |
Units in a ring.
|
| class Unit |
| |
| Syntax | cir 14059 |
Ring irreducibles.
|
| class Irred |
| |
| Definition | df-dvdsr 14060* |
Define the (right) divisibility relation in a ring. Access to the left
divisibility relation is available through
(∥r‘(oppr‘𝑅)). (Contributed by
Mario Carneiro,
1-Dec-2014.)
|
| ⊢ ∥r = (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦)}) |
| |
| Definition | df-unit 14061 |
Define the set of units in a ring, that is, all elements with a left and
right multiplicative inverse. (Contributed by Mario Carneiro,
1-Dec-2014.)
|
| ⊢ Unit = (𝑤 ∈ V ↦ (◡((∥r‘𝑤) ∩
(∥r‘(oppr‘𝑤))) “ {(1r‘𝑤)})) |
| |
| Definition | df-irred 14062* |
Define the set of irreducible elements in a ring. (Contributed by Mario
Carneiro, 4-Dec-2014.)
|
| ⊢ Irred = (𝑤 ∈ V ↦
⦋((Base‘𝑤) ∖ (Unit‘𝑤)) / 𝑏⦌{𝑧 ∈ 𝑏 ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑤)𝑦) ≠ 𝑧}) |
| |
| Theorem | reldvdsr 14063 |
The divides relation is a relation. (Contributed by Mario Carneiro,
1-Dec-2014.)
|
| ⊢ ∥ =
(∥r‘𝑅) ⇒ ⊢ Rel ∥ |
| |
| Theorem | reldvdsrsrg 14064 |
The divides relation is a relation. (Contributed by Mario Carneiro,
1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2025.)
|
| ⊢ (𝑅 ∈ SRing → Rel
(∥r‘𝑅)) |
| |
| Theorem | dvdsrvald 14065* |
Value of the divides relation. (Contributed by Mario Carneiro,
1-Dec-2014.) (Revised by Mario Carneiro, 6-Jan-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → ∥ =
(∥r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ SRing) & ⊢ (𝜑 → · =
(.r‘𝑅)) ⇒ ⊢ (𝜑 → ∥ = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦)}) |
| |
| Theorem | dvdsrd 14066* |
Value of the divides relation. (Contributed by Mario Carneiro,
1-Dec-2014.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → ∥ =
(∥r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ SRing) & ⊢ (𝜑 → · =
(.r‘𝑅)) ⇒ ⊢ (𝜑 → (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌))) |
| |
| Theorem | dvdsr2d 14067* |
Value of the divides relation. (Contributed by Mario Carneiro,
1-Dec-2014.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → ∥ =
(∥r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ SRing) & ⊢ (𝜑 → · =
(.r‘𝑅)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∥ 𝑌 ↔ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) |
| |
| Theorem | dvdsrmuld 14068 |
A left-multiple of 𝑋 is divisible by 𝑋.
(Contributed by
Mario Carneiro, 1-Dec-2014.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → ∥ =
(∥r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ SRing) & ⊢ (𝜑 → · =
(.r‘𝑅)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 ∥ (𝑌 · 𝑋)) |
| |
| Theorem | dvdsrcld 14069 |
Closure of a dividing element. (Contributed by Mario Carneiro,
5-Dec-2014.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → ∥ =
(∥r‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ SRing) & ⊢ (𝜑 → 𝑋 ∥ 𝑌) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| |
| Theorem | dvdsrex 14070 |
Existence of the divisibility relation. (Contributed by Jim Kingdon,
28-Jan-2025.)
|
| ⊢ (𝑅 ∈ SRing →
(∥r‘𝑅) ∈ V) |
| |
| Theorem | dvdsrcl2 14071 |
Closure of a dividing element. (Contributed by Mario Carneiro,
5-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ ∥ =
(∥r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∥ 𝑌) → 𝑌 ∈ 𝐵) |
| |
| Theorem | dvdsrid 14072 |
An element in a (unital) ring divides itself. (Contributed by Mario
Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ ∥ =
(∥r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∥ 𝑋) |
| |
| Theorem | dvdsrtr 14073 |
Divisibility is transitive. (Contributed by Mario Carneiro,
1-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ ∥ =
(∥r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋) → 𝑌 ∥ 𝑋) |
| |
| Theorem | dvdsrmul1 14074 |
The divisibility relation is preserved under right-multiplication.
(Contributed by Mario Carneiro, 1-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ ∥ =
(∥r‘𝑅)
& ⊢ · =
(.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∥ 𝑌) → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍)) |
| |
| Theorem | dvdsrneg 14075 |
An element divides its negative. (Contributed by Mario Carneiro,
1-Dec-2014.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ ∥ =
(∥r‘𝑅)
& ⊢ 𝑁 = (invg‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∥ (𝑁‘𝑋)) |
| |
| Theorem | dvdsr01 14076 |
In a ring, zero is divisible by all elements. ("Zero divisor" as a
term
has a somewhat different meaning.) (Contributed by Stefan O'Rear,
29-Mar-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ ∥ =
(∥r‘𝑅)
& ⊢ 0 =
(0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∥ 0 ) |
| |
| Theorem | dvdsr02 14077 |
Only zero is divisible by zero. (Contributed by Stefan O'Rear,
29-Mar-2015.)
|
| ⊢ 𝐵 = (Base‘𝑅)
& ⊢ ∥ =
(∥r‘𝑅)
& ⊢ 0 =
(0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 ∥ 𝑋 ↔ 𝑋 = 0 )) |
| |
| Theorem | isunitd 14078 |
Property of being a unit of a ring. A unit is an element that left-
and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.)
(Revised by Mario Carneiro, 8-Dec-2015.)
|
| ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) & ⊢ (𝜑 → 1 =
(1r‘𝑅)) & ⊢ (𝜑 → ∥ =
(∥r‘𝑅)) & ⊢ (𝜑 → 𝑆 = (oppr‘𝑅)) & ⊢ (𝜑 → 𝐸 = (∥r‘𝑆)) & ⊢ (𝜑 → 𝑅 ∈ SRing)
⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∥ 1 ∧ 𝑋𝐸 1 ))) |
| |
| Theorem | 1unit 14079 |
The multiplicative identity is a unit. (Contributed by Mario Carneiro,
1-Dec-2014.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ 1 =
(1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 1 ∈ 𝑈) |
| |
| Theorem | unitcld 14080 |
A unit is an element of the base set. (Contributed by Mario Carneiro,
1-Dec-2014.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ SRing) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| |
| Theorem | unitssd 14081 |
The set of units is contained in the base set. (Contributed by Mario
Carneiro, 5-Oct-2015.)
|
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ SRing)
⇒ ⊢ (𝜑 → 𝑈 ⊆ 𝐵) |
| |
| Theorem | opprunitd 14082 |
Being a unit is a symmetric property, so it transfers to the opposite
ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
|
| ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) & ⊢ (𝜑 → 𝑆 = (oppr‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring)
⇒ ⊢ (𝜑 → 𝑈 = (Unit‘𝑆)) |
| |
| Theorem | crngunit 14083 |
Property of being a unit in a commutative ring. (Contributed by Mario
Carneiro, 18-Apr-2016.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ 1 =
(1r‘𝑅)
& ⊢ ∥ =
(∥r‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → (𝑋 ∈ 𝑈 ↔ 𝑋 ∥ 1 )) |
| |
| Theorem | dvdsunit 14084 |
A divisor of a unit is a unit. (Contributed by Mario Carneiro,
18-Apr-2016.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ ∥ =
(∥r‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑌 ∥ 𝑋 ∧ 𝑋 ∈ 𝑈) → 𝑌 ∈ 𝑈) |
| |
| Theorem | unitmulcl 14085 |
The product of units is a unit. (Contributed by Mario Carneiro,
2-Dec-2014.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ · =
(.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌) ∈ 𝑈) |
| |
| Theorem | unitmulclb 14086 |
Reversal of unitmulcl 14085 in a commutative ring. (Contributed by
Mario
Carneiro, 18-Apr-2016.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝑈 ↔ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈))) |
| |
| Theorem | unitgrpbasd 14087 |
The base set of the group of units. (Contributed by Mario Carneiro,
25-Dec-2014.)
|
| ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) & ⊢ (𝜑 → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)) & ⊢ (𝜑 → 𝑅 ∈ SRing)
⇒ ⊢ (𝜑 → 𝑈 = (Base‘𝐺)) |
| |
| Theorem | unitgrp 14088 |
The group of units is a group under multiplication. (Contributed by
Mario Carneiro, 2-Dec-2014.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) ⇒ ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Grp) |
| |
| Theorem | unitabl 14089 |
The group of units of a commutative ring is abelian. (Contributed by
Mario Carneiro, 19-Apr-2016.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈) ⇒ ⊢ (𝑅 ∈ CRing → 𝐺 ∈ Abel) |
| |
| Theorem | unitgrpid 14090 |
The identity of the group of units of a ring is the ring unity.
(Contributed by Mario Carneiro, 2-Dec-2014.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
& ⊢ 1 =
(1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 1 =
(0g‘𝐺)) |
| |
| Theorem | unitsubm 14091 |
The group of units is a submonoid of the multiplicative monoid of the
ring. (Contributed by Mario Carneiro, 18-Jun-2015.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑈 ∈ (SubMnd‘𝑀)) |
| |
| Syntax | cinvr 14092 |
Extend class notation with multiplicative inverse.
|
| class invr |
| |
| Definition | df-invr 14093 |
Define multiplicative inverse. (Contributed by NM, 21-Sep-2011.)
|
| ⊢ invr = (𝑟 ∈ V ↦
(invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟)))) |
| |
| Theorem | invrfvald 14094 |
Multiplicative inverse function for a ring. (Contributed by NM,
21-Sep-2011.) (Revised by Mario Carneiro, 25-Dec-2014.)
|
| ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) & ⊢ (𝜑 → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)) & ⊢ (𝜑 → 𝐼 = (invr‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring)
⇒ ⊢ (𝜑 → 𝐼 = (invg‘𝐺)) |
| |
| Theorem | unitinvcl 14095 |
The inverse of a unit exists and is a unit. (Contributed by Mario
Carneiro, 2-Dec-2014.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) ∈ 𝑈) |
| |
| Theorem | unitinvinv 14096 |
The inverse of the inverse of a unit is the same element. (Contributed
by Mario Carneiro, 4-Dec-2014.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ 𝐼 = (invr‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘(𝐼‘𝑋)) = 𝑋) |
| |
| Theorem | ringinvcl 14097 |
The inverse of a unit is an element of the ring. (Contributed by
Mario Carneiro, 2-Dec-2014.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ 𝐼 = (invr‘𝑅)
& ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) ∈ 𝐵) |
| |
| Theorem | unitlinv 14098 |
A unit times its inverse is the ring unity. (Contributed by Mario
Carneiro, 2-Dec-2014.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ 𝐼 = (invr‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 1 =
(1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((𝐼‘𝑋) · 𝑋) = 1 ) |
| |
| Theorem | unitrinv 14099 |
A unit times its inverse is the ring unity. (Contributed by Mario
Carneiro, 2-Dec-2014.)
|
| ⊢ 𝑈 = (Unit‘𝑅)
& ⊢ 𝐼 = (invr‘𝑅)
& ⊢ · =
(.r‘𝑅)
& ⊢ 1 =
(1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑋 · (𝐼‘𝑋)) = 1 ) |
| |
| Theorem | 1rinv 14100 |
The inverse of the ring unity is the ring unity. (Contributed by Mario
Carneiro, 18-Jun-2015.)
|
| ⊢ 𝐼 = (invr‘𝑅)
& ⊢ 1 =
(1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐼‘ 1 ) = 1 ) |