Theorem List for Intuitionistic Logic Explorer - 14001-14100   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | sratsetg 14001 | 
Topology component of a subring algebra.  (Contributed by Mario
       Carneiro, 4-Oct-2015.)  (Revised by Thierry Arnoux, 16-Jun-2019.)
       (Revised by AV, 29-Oct-2024.)
 | 
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊))    &   ⊢ (𝜑 → 𝑊 ∈ 𝑋)    ⇒   ⊢ (𝜑 → (TopSet‘𝑊) = (TopSet‘𝐴)) | 
|   | 
| Theorem | sraex 14002 | 
Existence of a subring algebra.  (Contributed by Jim Kingdon,
       16-Apr-2025.)
 | 
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊))    &   ⊢ (𝜑 → 𝑊 ∈ 𝑋)    ⇒   ⊢ (𝜑 → 𝐴 ∈ V) | 
|   | 
| Theorem | sratopng 14003 | 
Topology component of a subring algebra.  (Contributed by Mario
       Carneiro, 4-Oct-2015.)  (Revised by Thierry Arnoux, 16-Jun-2019.)
 | 
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊))    &   ⊢ (𝜑 → 𝑊 ∈ 𝑋)    ⇒   ⊢ (𝜑 → (TopOpen‘𝑊) = (TopOpen‘𝐴)) | 
|   | 
| Theorem | sradsg 14004 | 
Distance function of a subring algebra.  (Contributed by Mario Carneiro,
       4-Oct-2015.)  (Revised by Thierry Arnoux, 16-Jun-2019.)  (Revised by AV,
       29-Oct-2024.)
 | 
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊))    &   ⊢ (𝜑 → 𝑊 ∈ 𝑋)    ⇒   ⊢ (𝜑 → (dist‘𝑊) = (dist‘𝐴)) | 
|   | 
| Theorem | sraring 14005 | 
Condition for a subring algebra to be a ring.  (Contributed by Thierry
       Arnoux, 24-Jul-2023.)
 | 
| ⊢ 𝐴 = ((subringAlg ‘𝑅)‘𝑉)   
 &   ⊢ 𝐵 = (Base‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → 𝐴 ∈ Ring) | 
|   | 
| Theorem | sralmod 14006 | 
The subring algebra is a left module.  (Contributed by Stefan O'Rear,
       27-Nov-2014.)
 | 
| ⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆)    ⇒   ⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod) | 
|   | 
| Theorem | sralmod0g 14007 | 
The subring module inherits a zero from its ring.  (Contributed by
       Stefan O'Rear, 27-Dec-2014.)
 | 
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   ⊢ (𝜑 → 0 =
 (0g‘𝑊))    &   ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊))    &   ⊢ (𝜑 → 𝑊 ∈ 𝑋)    ⇒   ⊢ (𝜑 → 0 =
 (0g‘𝐴)) | 
|   | 
| Theorem | issubrgd 14008* | 
Prove a subring by closure (definition version).  (Contributed by Stefan
       O'Rear, 7-Dec-2014.)
 | 
| ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷))    &   ⊢ (𝜑 → 0 =
 (0g‘𝐼))    &   ⊢ (𝜑 → + =
 (+g‘𝐼))    &   ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼))    &   ⊢ (𝜑 → 0 ∈ 𝐷)   
 &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷)   
 &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷)   
 &   ⊢ (𝜑 → 1 =
 (1r‘𝐼))    &   ⊢ (𝜑 → · =
 (.r‘𝐼))    &   ⊢ (𝜑 → 1 ∈ 𝐷)   
 &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 · 𝑦) ∈ 𝐷)   
 &   ⊢ (𝜑 → 𝐼 ∈ Ring)   
 ⇒   ⊢ (𝜑 → 𝐷 ∈ (SubRing‘𝐼)) | 
|   | 
| Theorem | rlmfn 14009 | 
ringLMod is a function.  (Contributed by Stefan O'Rear,
       6-Dec-2014.)
 | 
| ⊢ ringLMod Fn V | 
|   | 
| Theorem | rlmvalg 14010 | 
Value of the ring module.  (Contributed by Stefan O'Rear,
       31-Mar-2015.)
 | 
| ⊢ (𝑊 ∈ 𝑉 → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))) | 
|   | 
| Theorem | rlmbasg 14011 | 
Base set of the ring module.  (Contributed by Stefan O'Rear,
     31-Mar-2015.)
 | 
| ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘(ringLMod‘𝑅))) | 
|   | 
| Theorem | rlmplusgg 14012 | 
Vector addition in the ring module.  (Contributed by Stefan O'Rear,
     31-Mar-2015.)
 | 
| ⊢ (𝑅 ∈ 𝑉 → (+g‘𝑅) =
 (+g‘(ringLMod‘𝑅))) | 
|   | 
| Theorem | rlm0g 14013 | 
Zero vector in the ring module.  (Contributed by Stefan O'Rear,
     6-Dec-2014.)  (Revised by Mario Carneiro, 2-Oct-2015.)
 | 
| ⊢ (𝑅 ∈ 𝑉 → (0g‘𝑅) =
 (0g‘(ringLMod‘𝑅))) | 
|   | 
| Theorem | rlmsubg 14014 | 
Subtraction in the ring module.  (Contributed by Thierry Arnoux,
     30-Jun-2019.)
 | 
| ⊢ (𝑅 ∈ 𝑉 → (-g‘𝑅) =
 (-g‘(ringLMod‘𝑅))) | 
|   | 
| Theorem | rlmmulrg 14015 | 
Ring multiplication in the ring module.  (Contributed by Mario Carneiro,
     6-Oct-2015.)
 | 
| ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) =
 (.r‘(ringLMod‘𝑅))) | 
|   | 
| Theorem | rlmscabas 14016 | 
Scalars in the ring module have the same base set.  (Contributed by Jim
     Kingdon, 29-Apr-2025.)
 | 
| ⊢ (𝑅 ∈ 𝑋 → (Base‘𝑅) =
 (Base‘(Scalar‘(ringLMod‘𝑅)))) | 
|   | 
| Theorem | rlmvscag 14017 | 
Scalar multiplication in the ring module.  (Contributed by Stefan O'Rear,
     31-Mar-2015.)
 | 
| ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) = (
 ·𝑠 ‘(ringLMod‘𝑅))) | 
|   | 
| Theorem | rlmtopng 14018 | 
Topology component of the ring module.  (Contributed by Mario Carneiro,
     6-Oct-2015.)
 | 
| ⊢ (𝑅 ∈ 𝑉 → (TopOpen‘𝑅) = (TopOpen‘(ringLMod‘𝑅))) | 
|   | 
| Theorem | rlmdsg 14019 | 
Metric component of the ring module.  (Contributed by Mario Carneiro,
     6-Oct-2015.)
 | 
| ⊢ (𝑅 ∈ 𝑉 → (dist‘𝑅) = (dist‘(ringLMod‘𝑅))) | 
|   | 
| Theorem | rlmlmod 14020 | 
The ring module is a module.  (Contributed by Stefan O'Rear,
     6-Dec-2014.)
 | 
| ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | 
|   | 
| Theorem | rlmvnegg 14021 | 
Vector negation in the ring module.  (Contributed by Stefan O'Rear,
       6-Dec-2014.)  (Revised by Mario Carneiro, 5-Jun-2015.)
 | 
| ⊢ (𝑅 ∈ 𝑉 → (invg‘𝑅) =
 (invg‘(ringLMod‘𝑅))) | 
|   | 
| Theorem | ixpsnbasval 14022* | 
The value of an infinite Cartesian product of the base of a left module
       over a ring with a singleton.  (Contributed by AV, 3-Dec-2018.)
 | 
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ (Base‘𝑅))}) | 
|   | 
| 7.6.2  Ideals and spans
 | 
|   | 
| Syntax | clidl 14023 | 
Ring left-ideal function.
 | 
| class LIdeal | 
|   | 
| Syntax | crsp 14024 | 
Ring span function.
 | 
| class RSpan | 
|   | 
| Definition | df-lidl 14025 | 
Define the class of left ideals of a given ring.  An ideal is a submodule
     of the ring viewed as a module over itself.  (Contributed by Stefan
     O'Rear, 31-Mar-2015.)
 | 
| ⊢ LIdeal = (LSubSp ∘
 ringLMod) | 
|   | 
| Definition | df-rsp 14026 | 
Define the linear span function in a ring (Ideal generator).  (Contributed
     by Stefan O'Rear, 4-Apr-2015.)
 | 
| ⊢ RSpan = (LSpan ∘
 ringLMod) | 
|   | 
| Theorem | lidlvalg 14027 | 
Value of the set of ring ideals.  (Contributed by Stefan O'Rear,
       31-Mar-2015.)
 | 
| ⊢ (𝑊 ∈ 𝑉 → (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊))) | 
|   | 
| Theorem | rspvalg 14028 | 
Value of the ring span function.  (Contributed by Stefan O'Rear,
       4-Apr-2015.)
 | 
| ⊢ (𝑊 ∈ 𝑉 → (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊))) | 
|   | 
| Theorem | lidlex 14029 | 
Existence of the set of left ideals.  (Contributed by Jim Kingdon,
     27-Apr-2025.)
 | 
| ⊢ (𝑊 ∈ 𝑉 → (LIdeal‘𝑊) ∈ V) | 
|   | 
| Theorem | rspex 14030 | 
Existence of the ring span.  (Contributed by Jim Kingdon, 25-Apr-2025.)
 | 
| ⊢ (𝑊 ∈ 𝑉 → (RSpan‘𝑊) ∈ V) | 
|   | 
| Theorem | lidlmex 14031 | 
Existence of the set a left ideal is built from (when the ideal is
       inhabited).  (Contributed by Jim Kingdon, 18-Apr-2025.)
 | 
| ⊢ 𝐼 = (LIdeal‘𝑊)    ⇒   ⊢ (𝑈 ∈ 𝐼 → 𝑊 ∈ V) | 
|   | 
| Theorem | lidlss 14032 | 
An ideal is a subset of the base set.  (Contributed by Stefan O'Rear,
       28-Mar-2015.)
 | 
| ⊢ 𝐵 = (Base‘𝑊)   
 &   ⊢ 𝐼 = (LIdeal‘𝑊)    ⇒   ⊢ (𝑈 ∈ 𝐼 → 𝑈 ⊆ 𝐵) | 
|   | 
| Theorem | lidlssbas 14033 | 
The base set of the restriction of the ring to a (left) ideal is a
       subset of the base set of the ring.  (Contributed by AV,
       17-Feb-2020.)
 | 
| ⊢ 𝐿 = (LIdeal‘𝑅)   
 &   ⊢ 𝐼 = (𝑅 ↾s 𝑈)    ⇒   ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅)) | 
|   | 
| Theorem | lidlbas 14034 | 
A (left) ideal of a ring is the base set of the restriction of the ring
       to this ideal.  (Contributed by AV, 17-Feb-2020.)
 | 
| ⊢ 𝐿 = (LIdeal‘𝑅)   
 &   ⊢ 𝐼 = (𝑅 ↾s 𝑈)    ⇒   ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) = 𝑈) | 
|   | 
| Theorem | islidlm 14035* | 
Predicate of being a (left) ideal.  (Contributed by Stefan O'Rear,
       1-Apr-2015.)
 | 
| ⊢ 𝑈 = (LIdeal‘𝑅)   
 &   ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  + =
 (+g‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)    ⇒   ⊢ (𝐼 ∈ 𝑈 ↔ (𝐼 ⊆ 𝐵 ∧ ∃𝑗 𝑗 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐵 ∀𝑎 ∈ 𝐼 ∀𝑏 ∈ 𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼)) | 
|   | 
| Theorem | rnglidlmcl 14036 | 
A (left) ideal containing the zero element is closed under
         left-multiplication by elements of the full non-unital ring.  If the
         ring is not a unital ring, and the ideal does not contain the zero
         element of the ring, then the closure cannot be proven.  (Contributed
         by AV, 18-Feb-2025.)
 | 
| ⊢  0 =
 (0g‘𝑅)   
 &   ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)   
 &   ⊢ 𝑈 = (LIdeal‘𝑅)    ⇒   ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ 0 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐼)) → (𝑋 · 𝑌) ∈ 𝐼) | 
|   | 
| Theorem | dflidl2rng 14037* | 
Alternate (the usual textbook) definition of a (left) ideal of a
       non-unital ring to be a subgroup of the additive group of the ring which
       is closed under left-multiplication by elements of the full ring.
       (Contributed by AV, 21-Mar-2025.)
 | 
| ⊢ 𝑈 = (LIdeal‘𝑅)   
 &   ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼)) | 
|   | 
| Theorem | isridlrng 14038* | 
A right ideal is a left ideal of the opposite non-unital ring.  This
       theorem shows that this definition corresponds to the usual textbook
       definition of a right ideal of a ring to be a subgroup of the additive
       group of the ring which is closed under right-multiplication by elements
       of the full ring.  (Contributed by AV, 21-Mar-2025.)
 | 
| ⊢ 𝑈 =
 (LIdeal‘(oppr‘𝑅))    &   ⊢ 𝐵 = (Base‘𝑅)    &   ⊢  · =
 (.r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼)) | 
|   | 
| Theorem | lidl0cl 14039 | 
An ideal contains 0.  (Contributed by Stefan O'Rear, 3-Jan-2015.)
 | 
| ⊢ 𝑈 = (LIdeal‘𝑅)   
 &   ⊢  0 =
 (0g‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 0 ∈ 𝐼) | 
|   | 
| Theorem | lidlacl 14040 | 
An ideal is closed under addition.  (Contributed by Stefan O'Rear,
         3-Jan-2015.)
 | 
| ⊢ 𝑈 = (LIdeal‘𝑅)   
 &   ⊢  + =
 (+g‘𝑅)    ⇒   ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼)) → (𝑋 + 𝑌) ∈ 𝐼) | 
|   | 
| Theorem | lidlnegcl 14041 | 
An ideal contains negatives.  (Contributed by Stefan O'Rear,
         3-Jan-2015.)
 | 
| ⊢ 𝑈 = (LIdeal‘𝑅)   
 &   ⊢ 𝑁 = (invg‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ 𝐼) → (𝑁‘𝑋) ∈ 𝐼) | 
|   | 
| Theorem | lidlsubg 14042 | 
An ideal is a subgroup of the additive group.  (Contributed by Mario
       Carneiro, 14-Jun-2015.)
 | 
| ⊢ 𝑈 = (LIdeal‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ (SubGrp‘𝑅)) | 
|   | 
| Theorem | lidlsubcl 14043 | 
An ideal is closed under subtraction.  (Contributed by Stefan O'Rear,
         28-Mar-2015.)  (Proof shortened by OpenAI, 25-Mar-2020.)
 | 
| ⊢ 𝑈 = (LIdeal‘𝑅)   
 &   ⊢  − =
 (-g‘𝑅)    ⇒   ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼)) → (𝑋 − 𝑌) ∈ 𝐼) | 
|   | 
| Theorem | dflidl2 14044* | 
Alternate (the usual textbook) definition of a (left) ideal of a ring to
       be a subgroup of the additive group of the ring which is closed under
       left-multiplication by elements of the full ring.  (Contributed by AV,
       13-Feb-2025.)  (Proof shortened by AV, 18-Apr-2025.)
 | 
| ⊢ 𝑈 = (LIdeal‘𝑅)   
 &   ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)    ⇒   ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼))) | 
|   | 
| Theorem | lidl0 14045 | 
Every ring contains a zero ideal.  (Contributed by Stefan O'Rear,
         3-Jan-2015.)
 | 
| ⊢ 𝑈 = (LIdeal‘𝑅)   
 &   ⊢  0 =
 (0g‘𝑅)    ⇒   ⊢ (𝑅 ∈ Ring → { 0 } ∈ 𝑈) | 
|   | 
| Theorem | lidl1 14046 | 
Every ring contains a unit ideal.  (Contributed by Stefan O'Rear,
       3-Jan-2015.)
 | 
| ⊢ 𝑈 = (LIdeal‘𝑅)   
 &   ⊢ 𝐵 = (Base‘𝑅)    ⇒   ⊢ (𝑅 ∈ Ring → 𝐵 ∈ 𝑈) | 
|   | 
| Theorem | rspcl 14047 | 
The span of a set of ring elements is an ideal.  (Contributed by
           Stefan O'Rear, 3-Jan-2015.)  (Revised by Mario Carneiro,
           2-Oct-2015.)
 | 
| ⊢ 𝐾 = (RSpan‘𝑅)   
 &   ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢ 𝑈 = (LIdeal‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ⊆ 𝐵) → (𝐾‘𝐺) ∈ 𝑈) | 
|   | 
| Theorem | rspssid 14048 | 
The span of a set of ring elements contains those elements.
         (Contributed by Stefan O'Rear, 3-Jan-2015.)
 | 
| ⊢ 𝐾 = (RSpan‘𝑅)   
 &   ⊢ 𝐵 = (Base‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ⊆ 𝐵) → 𝐺 ⊆ (𝐾‘𝐺)) | 
|   | 
| Theorem | rsp0 14049 | 
The span of the zero element is the zero ideal.  (Contributed by
         Stefan O'Rear, 3-Jan-2015.)
 | 
| ⊢ 𝐾 = (RSpan‘𝑅)   
 &   ⊢  0 =
 (0g‘𝑅)    ⇒   ⊢ (𝑅 ∈ Ring → (𝐾‘{ 0 }) = { 0 }) | 
|   | 
| Theorem | rspssp 14050 | 
The ideal span of a set of elements in a ring is contained in any
         subring which contains those elements.  (Contributed by Stefan O'Rear,
         3-Jan-2015.)
 | 
| ⊢ 𝐾 = (RSpan‘𝑅)   
 &   ⊢ 𝑈 = (LIdeal‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ⊆ 𝐼) → (𝐾‘𝐺) ⊆ 𝐼) | 
|   | 
| Theorem | lidlrsppropdg 14051* | 
The left ideals and ring span of a ring depend only on the ring
       components.  Here 𝑊 is expected to be either 𝐵 (when
closure is
       available) or V (when strong equality is
available).  (Contributed
       by Mario Carneiro, 14-Jun-2015.)
 | 
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾))    &   ⊢ (𝜑 → 𝐵 = (Base‘𝐿))    &   ⊢ (𝜑 → 𝐵 ⊆ 𝑊)   
 &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦))   
 &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) ∈ 𝑊)   
 &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦))   
 &   ⊢ (𝜑 → 𝐾 ∈ 𝑋)   
 &   ⊢ (𝜑 → 𝐿 ∈ 𝑌)    ⇒   ⊢ (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿))) | 
|   | 
| Theorem | rnglidlmmgm 14052 | 
The multiplicative group of a (left) ideal of a non-unital ring is a
         magma.  (Contributed by AV, 17-Feb-2020.)  Generalization for
         non-unital rings.  The assumption 0  ∈ 𝑈 is required because a
         left ideal of a non-unital ring does not have to be a subgroup.
         (Revised by AV, 11-Mar-2025.)
 | 
| ⊢ 𝐿 = (LIdeal‘𝑅)   
 &   ⊢ 𝐼 = (𝑅 ↾s 𝑈)   
 &   ⊢  0 =
 (0g‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (mulGrp‘𝐼) ∈ Mgm) | 
|   | 
| Theorem | rnglidlmsgrp 14053 | 
The multiplicative group of a (left) ideal of a non-unital ring is a
         semigroup.  (Contributed by AV, 17-Feb-2020.)  Generalization for
         non-unital rings.  The assumption 0  ∈ 𝑈 is required because a
         left ideal of a non-unital ring does not have to be a subgroup.
         (Revised by AV, 11-Mar-2025.)
 | 
| ⊢ 𝐿 = (LIdeal‘𝑅)   
 &   ⊢ 𝐼 = (𝑅 ↾s 𝑈)   
 &   ⊢  0 =
 (0g‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (mulGrp‘𝐼) ∈ Smgrp) | 
|   | 
| Theorem | rnglidlrng 14054 | 
A (left) ideal of a non-unital ring is a non-unital ring.  (Contributed
       by AV, 17-Feb-2020.)  Generalization for non-unital rings.  The
       assumption 𝑈 ∈ (SubGrp‘𝑅) is required because a left ideal of
       a non-unital ring does not have to be a subgroup.  (Revised by AV,
       11-Mar-2025.)
 | 
| ⊢ 𝐿 = (LIdeal‘𝑅)   
 &   ⊢ 𝐼 = (𝑅 ↾s 𝑈)    ⇒   ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ Rng) | 
|   | 
| 7.6.3  Two-sided ideals and quotient
 rings
 | 
|   | 
| Syntax | c2idl 14055 | 
Ring two-sided ideal function.
 | 
| class 2Ideal | 
|   | 
| Definition | df-2idl 14056 | 
Define the class of two-sided ideals of a ring.  A two-sided ideal is a
     left ideal which is also a right ideal (or a left ideal over the opposite
     ring).  (Contributed by Mario Carneiro, 14-Jun-2015.)
 | 
| ⊢ 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩
 (LIdeal‘(oppr‘𝑟)))) | 
|   | 
| Theorem | 2idlmex 14057 | 
Existence of the set a two-sided ideal is built from (when the ideal is
       inhabited).  (Contributed by Jim Kingdon, 18-Apr-2025.)
 | 
| ⊢ 𝑇 = (2Ideal‘𝑊)    ⇒   ⊢ (𝑈 ∈ 𝑇 → 𝑊 ∈ V) | 
|   | 
| Theorem | 2idlval 14058 | 
Definition of a two-sided ideal.  (Contributed by Mario Carneiro,
       14-Jun-2015.)
 | 
| ⊢ 𝐼 = (LIdeal‘𝑅)   
 &   ⊢ 𝑂 = (oppr‘𝑅)    &   ⊢ 𝐽 = (LIdeal‘𝑂)    &   ⊢ 𝑇 = (2Ideal‘𝑅)   
 ⇒   ⊢ 𝑇 = (𝐼 ∩ 𝐽) | 
|   | 
| Theorem | 2idlvalg 14059 | 
Definition of a two-sided ideal.  (Contributed by Mario Carneiro,
       14-Jun-2015.)
 | 
| ⊢ 𝐼 = (LIdeal‘𝑅)   
 &   ⊢ 𝑂 = (oppr‘𝑅)    &   ⊢ 𝐽 = (LIdeal‘𝑂)    &   ⊢ 𝑇 = (2Ideal‘𝑅)   
 ⇒   ⊢ (𝑅 ∈ 𝑉 → 𝑇 = (𝐼 ∩ 𝐽)) | 
|   | 
| Theorem | isridl 14060* | 
A right ideal is a left ideal of the opposite ring.  This theorem shows
       that this definition corresponds to the usual textbook definition of a
       right ideal of a ring to be a subgroup of the additive group of the ring
       which is closed under right-multiplication by elements of the full ring.
       (Contributed by AV, 13-Feb-2025.)
 | 
| ⊢ 𝑈 =
 (LIdeal‘(oppr‘𝑅))    &   ⊢ 𝐵 = (Base‘𝑅)    &   ⊢  · =
 (.r‘𝑅)    ⇒   ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑦 · 𝑥) ∈ 𝐼))) | 
|   | 
| Theorem | 2idlelb 14061 | 
Membership in a two-sided ideal.  (Contributed by Mario Carneiro,
       14-Jun-2015.)  (Revised by AV, 20-Feb-2025.)
 | 
| ⊢ 𝐼 = (LIdeal‘𝑅)   
 &   ⊢ 𝑂 = (oppr‘𝑅)    &   ⊢ 𝐽 = (LIdeal‘𝑂)    &   ⊢ 𝑇 = (2Ideal‘𝑅)   
 ⇒   ⊢ (𝑈 ∈ 𝑇 ↔ (𝑈 ∈ 𝐼 ∧ 𝑈 ∈ 𝐽)) | 
|   | 
| Theorem | 2idllidld 14062 | 
A two-sided ideal is a left ideal.  (Contributed by Thierry Arnoux,
       9-Mar-2025.)
 | 
| ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅))    ⇒   ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) | 
|   | 
| Theorem | 2idlridld 14063 | 
A two-sided ideal is a right ideal.  (Contributed by Thierry Arnoux,
       9-Mar-2025.)
 | 
| ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅))    &   ⊢ 𝑂 =
 (oppr‘𝑅)    ⇒   ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑂)) | 
|   | 
| Theorem | df2idl2rng 14064* | 
Alternate (the usual textbook) definition of a two-sided ideal of a
       non-unital ring to be a subgroup of the additive group of the ring which
       is closed under left- and right-multiplication by elements of the full
       ring.  (Contributed by AV, 21-Mar-2025.)
 | 
| ⊢ 𝑈 = (2Ideal‘𝑅)   
 &   ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 ((𝑥 · 𝑦) ∈ 𝐼 ∧ (𝑦 · 𝑥) ∈ 𝐼))) | 
|   | 
| Theorem | df2idl2 14065* | 
Alternate (the usual textbook) definition of a two-sided ideal of a ring
       to be a subgroup of the additive group of the ring which is closed under
       left- and right-multiplication by elements of the full ring.
       (Contributed by AV, 13-Feb-2025.)  (Proof shortened by AV,
       18-Apr-2025.)
 | 
| ⊢ 𝑈 = (2Ideal‘𝑅)   
 &   ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)    ⇒   ⊢ (𝑅 ∈ Ring → (𝐼 ∈ 𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 ((𝑥 · 𝑦) ∈ 𝐼 ∧ (𝑦 · 𝑥) ∈ 𝐼)))) | 
|   | 
| Theorem | ridl0 14066 | 
Every ring contains a zero right ideal.  (Contributed by AV,
         13-Feb-2025.)
 | 
| ⊢ 𝑈 =
 (LIdeal‘(oppr‘𝑅))    &   ⊢  0 =
 (0g‘𝑅)    ⇒   ⊢ (𝑅 ∈ Ring → { 0 } ∈ 𝑈) | 
|   | 
| Theorem | ridl1 14067 | 
Every ring contains a unit right ideal.  (Contributed by AV,
       13-Feb-2025.)
 | 
| ⊢ 𝑈 =
 (LIdeal‘(oppr‘𝑅))    &   ⊢ 𝐵 = (Base‘𝑅)   
 ⇒   ⊢ (𝑅 ∈ Ring → 𝐵 ∈ 𝑈) | 
|   | 
| Theorem | 2idl0 14068 | 
Every ring contains a zero two-sided ideal.  (Contributed by AV,
         13-Feb-2025.)
 | 
| ⊢ 𝐼 = (2Ideal‘𝑅)   
 &   ⊢  0 =
 (0g‘𝑅)    ⇒   ⊢ (𝑅 ∈ Ring → { 0 } ∈ 𝐼) | 
|   | 
| Theorem | 2idl1 14069 | 
Every ring contains a unit two-sided ideal.  (Contributed by AV,
       13-Feb-2025.)
 | 
| ⊢ 𝐼 = (2Ideal‘𝑅)   
 &   ⊢ 𝐵 = (Base‘𝑅)    ⇒   ⊢ (𝑅 ∈ Ring → 𝐵 ∈ 𝐼) | 
|   | 
| Theorem | 2idlss 14070 | 
A two-sided ideal is a subset of the base set.  (Contributed by Mario
       Carneiro, 14-Jun-2015.)  (Revised by AV, 20-Feb-2025.)  (Proof shortened
       by AV, 13-Mar-2025.)
 | 
| ⊢ 𝐵 = (Base‘𝑊)   
 &   ⊢ 𝐼 = (2Ideal‘𝑊)    ⇒   ⊢ (𝑈 ∈ 𝐼 → 𝑈 ⊆ 𝐵) | 
|   | 
| Theorem | 2idlbas 14071 | 
The base set of a two-sided ideal as structure.  (Contributed by AV,
       20-Feb-2025.)
 | 
| ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅))    &   ⊢ 𝐽 = (𝑅 ↾s 𝐼)   
 &   ⊢ 𝐵 = (Base‘𝐽)    ⇒   ⊢ (𝜑 → 𝐵 = 𝐼) | 
|   | 
| Theorem | 2idlelbas 14072 | 
The base set of a two-sided ideal as structure is a left and right
       ideal.  (Contributed by AV, 20-Feb-2025.)
 | 
| ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅))    &   ⊢ 𝐽 = (𝑅 ↾s 𝐼)   
 &   ⊢ 𝐵 = (Base‘𝐽)    ⇒   ⊢ (𝜑 → (𝐵 ∈ (LIdeal‘𝑅) ∧ 𝐵 ∈
 (LIdeal‘(oppr‘𝑅)))) | 
|   | 
| Theorem | rng2idlsubrng 14073 | 
A two-sided ideal of a non-unital ring which is a non-unital ring is a
       subring of the ring.  (Contributed by AV, 20-Feb-2025.)  (Revised by AV,
       11-Mar-2025.)
 | 
| ⊢ (𝜑 → 𝑅 ∈ Rng)    &   ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅))    &   ⊢ (𝜑 → (𝑅 ↾s 𝐼) ∈ Rng)   
 ⇒   ⊢ (𝜑 → 𝐼 ∈ (SubRng‘𝑅)) | 
|   | 
| Theorem | rng2idlnsg 14074 | 
A two-sided ideal of a non-unital ring which is a non-unital ring is a
       normal subgroup of the ring.  (Contributed by AV, 20-Feb-2025.)
 | 
| ⊢ (𝜑 → 𝑅 ∈ Rng)    &   ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅))    &   ⊢ (𝜑 → (𝑅 ↾s 𝐼) ∈ Rng)   
 ⇒   ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) | 
|   | 
| Theorem | rng2idl0 14075 | 
The zero (additive identity) of a non-unital ring is an element of each
       two-sided ideal of the ring which is a non-unital ring.  (Contributed by
       AV, 20-Feb-2025.)
 | 
| ⊢ (𝜑 → 𝑅 ∈ Rng)    &   ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅))    &   ⊢ (𝜑 → (𝑅 ↾s 𝐼) ∈ Rng)   
 ⇒   ⊢ (𝜑 → (0g‘𝑅) ∈ 𝐼) | 
|   | 
| Theorem | rng2idlsubgsubrng 14076 | 
A two-sided ideal of a non-unital ring which is a subgroup of the ring
       is a subring of the ring.  (Contributed by AV, 11-Mar-2025.)
 | 
| ⊢ (𝜑 → 𝑅 ∈ Rng)    &   ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅))    &   ⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅))    ⇒   ⊢ (𝜑 → 𝐼 ∈ (SubRng‘𝑅)) | 
|   | 
| Theorem | rng2idlsubgnsg 14077 | 
A two-sided ideal of a non-unital ring which is a subgroup of the ring
       is a normal subgroup of the ring.  (Contributed by AV, 20-Feb-2025.)
 | 
| ⊢ (𝜑 → 𝑅 ∈ Rng)    &   ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅))    &   ⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅))    ⇒   ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) | 
|   | 
| Theorem | rng2idlsubg0 14078 | 
The zero (additive identity) of a non-unital ring is an element of each
       two-sided ideal of the ring which is a subgroup of the ring.
       (Contributed by AV, 20-Feb-2025.)
 | 
| ⊢ (𝜑 → 𝑅 ∈ Rng)    &   ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅))    &   ⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅))    ⇒   ⊢ (𝜑 → (0g‘𝑅) ∈ 𝐼) | 
|   | 
| Theorem | 2idlcpblrng 14079 | 
The coset equivalence relation for a two-sided ideal is compatible with
       ring multiplication.  (Contributed by Mario Carneiro, 14-Jun-2015.)
       Generalization for non-unital rings and two-sided ideals which are
       subgroups of the additive group of the non-unital ring.  (Revised by AV,
       23-Feb-2025.)
 | 
| ⊢ 𝑋 = (Base‘𝑅)   
 &   ⊢ 𝐸 = (𝑅 ~QG 𝑆)   
 &   ⊢ 𝐼 = (2Ideal‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → ((𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷))) | 
|   | 
| Theorem | 2idlcpbl 14080 | 
The coset equivalence relation for a two-sided ideal is compatible with
       ring multiplication.  (Contributed by Mario Carneiro, 14-Jun-2015.)
       (Proof shortened by AV, 31-Mar-2025.)
 | 
| ⊢ 𝑋 = (Base‘𝑅)   
 &   ⊢ 𝐸 = (𝑅 ~QG 𝑆)   
 &   ⊢ 𝐼 = (2Ideal‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → ((𝐴𝐸𝐶 ∧ 𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷))) | 
|   | 
| Theorem | qus2idrng 14081 | 
The quotient of a non-unital ring modulo a two-sided ideal, which is a
       subgroup of the additive group of the non-unital ring, is a non-unital
       ring (qusring 14083 analog).  (Contributed by AV, 23-Feb-2025.)
 | 
| ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   ⊢ 𝐼 = (2Ideal‘𝑅)   
 ⇒   ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑈 ∈ Rng) | 
|   | 
| Theorem | qus1 14082 | 
The multiplicative identity of the quotient ring.  (Contributed by
         Mario Carneiro, 14-Jun-2015.)
 | 
| ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   ⊢ 𝐼 = (2Ideal‘𝑅)    &   ⊢  1 =
 (1r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝑈 ∈ Ring ∧ [ 1 ](𝑅 ~QG 𝑆) = (1r‘𝑈))) | 
|   | 
| Theorem | qusring 14083 | 
If 𝑆 is a two-sided ideal in 𝑅, then
𝑈 = 𝑅 / 𝑆 is a ring,
       called the quotient ring of 𝑅 by 𝑆.  (Contributed by Mario
       Carneiro, 14-Jun-2015.)
 | 
| ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   ⊢ 𝐼 = (2Ideal‘𝑅)   
 ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑈 ∈ Ring) | 
|   | 
| Theorem | qusrhm 14084* | 
If 𝑆 is a two-sided ideal in 𝑅, then
the "natural map" from
       elements to their cosets is a ring homomorphism from 𝑅 to
       𝑅 /
𝑆.  (Contributed by
Mario Carneiro, 15-Jun-2015.)
 | 
| ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   ⊢ 𝐼 = (2Ideal‘𝑅)    &   ⊢ 𝑋 = (Base‘𝑅)    &   ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝑅 ~QG 𝑆))    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈)) | 
|   | 
| Theorem | qusmul2 14085 | 
Value of the ring operation in a quotient ring.  (Contributed by Thierry
       Arnoux, 1-Sep-2024.)
 | 
| ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))    &   ⊢ 𝐵 = (Base‘𝑅)    &   ⊢  · =
 (.r‘𝑅)   
 &   ⊢  × =
 (.r‘𝑄)   
 &   ⊢ (𝜑 → 𝑅 ∈ Ring)    &   ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅))    &   ⊢ (𝜑 → 𝑋 ∈ 𝐵)   
 &   ⊢ (𝜑 → 𝑌 ∈ 𝐵)    ⇒   ⊢ (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼)) | 
|   | 
| Theorem | crngridl 14086 | 
In a commutative ring, the left and right ideals coincide.
         (Contributed by Mario Carneiro, 14-Jun-2015.)
 | 
| ⊢ 𝐼 = (LIdeal‘𝑅)   
 &   ⊢ 𝑂 = (oppr‘𝑅)   
 ⇒   ⊢ (𝑅 ∈ CRing → 𝐼 = (LIdeal‘𝑂)) | 
|   | 
| Theorem | crng2idl 14087 | 
In a commutative ring, a two-sided ideal is the same as a left ideal.
       (Contributed by Mario Carneiro, 14-Jun-2015.)
 | 
| ⊢ 𝐼 = (LIdeal‘𝑅)    ⇒   ⊢ (𝑅 ∈ CRing → 𝐼 = (2Ideal‘𝑅)) | 
|   | 
| Theorem | qusmulrng 14088 | 
Value of the multiplication operation in a quotient ring of a non-unital
       ring.  Formerly part of proof for quscrng 14089.  Similar to qusmul2 14085.
       (Contributed by Mario Carneiro, 15-Jun-2015.)  (Revised by AV,
       28-Feb-2025.)
 | 
| ⊢  ∼ = (𝑅 ~QG 𝑆)    &   ⊢ 𝐻 = (𝑅 /s ∼ )    &   ⊢ 𝐵 = (Base‘𝑅)    &   ⊢  · =
 (.r‘𝑅)   
 &   ⊢  ∙ =
 (.r‘𝐻)    ⇒   ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ([𝑋] ∼ ∙ [𝑌] ∼ ) = [(𝑋 · 𝑌)] ∼ ) | 
|   | 
| Theorem | quscrng 14089 | 
The quotient of a commutative ring by an ideal is a commutative ring.
       (Contributed by Mario Carneiro, 15-Jun-2015.)  (Proof shortened by AV,
       3-Apr-2025.)
 | 
| ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   ⊢ 𝐼 = (LIdeal‘𝑅)   
 ⇒   ⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → 𝑈 ∈ CRing) | 
|   | 
| 7.6.4  Principal ideal rings.  Divisibility in
 the integers
 | 
|   | 
| Theorem | rspsn 14090* | 
Membership in principal ideals is closely related to divisibility.
       (Contributed by Stefan O'Rear, 3-Jan-2015.)  (Revised by Mario Carneiro,
       6-May-2015.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢ 𝐾 = (RSpan‘𝑅)   
 &   ⊢  ∥ =
 (∥r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝐾‘{𝐺}) = {𝑥 ∣ 𝐺 ∥ 𝑥}) | 
|   | 
| 7.7  The complex numbers as an algebraic
 extensible structure
 | 
|   | 
| 7.7.1  Definition and basic
 properties
 | 
|   | 
| Syntax | cpsmet 14091 | 
Extend class notation with the class of all pseudometric spaces.
 | 
| class PsMet | 
|   | 
| Syntax | cxmet 14092 | 
Extend class notation with the class of all extended metric spaces.
 | 
| class ∞Met | 
|   | 
| Syntax | cmet 14093 | 
Extend class notation with the class of all metrics.
 | 
| class Met | 
|   | 
| Syntax | cbl 14094 | 
Extend class notation with the metric space ball function.
 | 
| class ball | 
|   | 
| Syntax | cfbas 14095 | 
Extend class definition to include the class of filter bases.
 | 
| class fBas | 
|   | 
| Syntax | cfg 14096 | 
Extend class definition to include the filter generating function.
 | 
| class filGen | 
|   | 
| Syntax | cmopn 14097 | 
Extend class notation with a function mapping each metric space to the
     family of its open sets.
 | 
| class MetOpen | 
|   | 
| Syntax | cmetu 14098 | 
Extend class notation with the function mapping metrics to the uniform
     structure generated by that metric.
 | 
| class metUnif | 
|   | 
| Definition | df-psmet 14099* | 
Define the set of all pseudometrics on a given base set.  In a pseudo
       metric, two distinct points may have a distance zero.  (Contributed by
       Thierry Arnoux, 7-Feb-2018.)
 | 
| ⊢ PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*
 ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) | 
|   | 
| Definition | df-xmet 14100* | 
Define the set of all extended metrics on a given base set.  The
       definition is similar to df-met 14101, but we also allow the metric to
take
       on the value +∞.  (Contributed by Mario
Carneiro, 20-Aug-2015.)
 | 
| ⊢ ∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*
 ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) |