HomeHome Intuitionistic Logic Explorer
Theorem List (p. 141 of 158)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 14001-14100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsratsetg 14001 Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))    &   (𝜑𝑊𝑋)       (𝜑 → (TopSet‘𝑊) = (TopSet‘𝐴))
 
Theoremsraex 14002 Existence of a subring algebra. (Contributed by Jim Kingdon, 16-Apr-2025.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))    &   (𝜑𝑊𝑋)       (𝜑𝐴 ∈ V)
 
Theoremsratopng 14003 Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))    &   (𝜑𝑊𝑋)       (𝜑 → (TopOpen‘𝑊) = (TopOpen‘𝐴))
 
Theoremsradsg 14004 Distance function of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑𝑆 ⊆ (Base‘𝑊))    &   (𝜑𝑊𝑋)       (𝜑 → (dist‘𝑊) = (dist‘𝐴))
 
Theoremsraring 14005 Condition for a subring algebra to be a ring. (Contributed by Thierry Arnoux, 24-Jul-2023.)
𝐴 = ((subringAlg ‘𝑅)‘𝑉)    &   𝐵 = (Base‘𝑅)       ((𝑅 ∈ Ring ∧ 𝑉𝐵) → 𝐴 ∈ Ring)
 
Theoremsralmod 14006 The subring algebra is a left module. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝐴 = ((subringAlg ‘𝑊)‘𝑆)       (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod)
 
Theoremsralmod0g 14007 The subring module inherits a zero from its ring. (Contributed by Stefan O'Rear, 27-Dec-2014.)
(𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))    &   (𝜑0 = (0g𝑊))    &   (𝜑𝑆 ⊆ (Base‘𝑊))    &   (𝜑𝑊𝑋)       (𝜑0 = (0g𝐴))
 
Theoremissubrgd 14008* Prove a subring by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.)
(𝜑𝑆 = (𝐼s 𝐷))    &   (𝜑0 = (0g𝐼))    &   (𝜑+ = (+g𝐼))    &   (𝜑𝐷 ⊆ (Base‘𝐼))    &   (𝜑0𝐷)    &   ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 + 𝑦) ∈ 𝐷)    &   ((𝜑𝑥𝐷) → ((invg𝐼)‘𝑥) ∈ 𝐷)    &   (𝜑1 = (1r𝐼))    &   (𝜑· = (.r𝐼))    &   (𝜑1𝐷)    &   ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 · 𝑦) ∈ 𝐷)    &   (𝜑𝐼 ∈ Ring)       (𝜑𝐷 ∈ (SubRing‘𝐼))
 
Theoremrlmfn 14009 ringLMod is a function. (Contributed by Stefan O'Rear, 6-Dec-2014.)
ringLMod Fn V
 
Theoremrlmvalg 14010 Value of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
(𝑊𝑉 → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)))
 
Theoremrlmbasg 14011 Base set of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
(𝑅𝑉 → (Base‘𝑅) = (Base‘(ringLMod‘𝑅)))
 
Theoremrlmplusgg 14012 Vector addition in the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
(𝑅𝑉 → (+g𝑅) = (+g‘(ringLMod‘𝑅)))
 
Theoremrlm0g 14013 Zero vector in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
(𝑅𝑉 → (0g𝑅) = (0g‘(ringLMod‘𝑅)))
 
Theoremrlmsubg 14014 Subtraction in the ring module. (Contributed by Thierry Arnoux, 30-Jun-2019.)
(𝑅𝑉 → (-g𝑅) = (-g‘(ringLMod‘𝑅)))
 
Theoremrlmmulrg 14015 Ring multiplication in the ring module. (Contributed by Mario Carneiro, 6-Oct-2015.)
(𝑅𝑉 → (.r𝑅) = (.r‘(ringLMod‘𝑅)))
 
Theoremrlmscabas 14016 Scalars in the ring module have the same base set. (Contributed by Jim Kingdon, 29-Apr-2025.)
(𝑅𝑋 → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅))))
 
Theoremrlmvscag 14017 Scalar multiplication in the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
(𝑅𝑉 → (.r𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅)))
 
Theoremrlmtopng 14018 Topology component of the ring module. (Contributed by Mario Carneiro, 6-Oct-2015.)
(𝑅𝑉 → (TopOpen‘𝑅) = (TopOpen‘(ringLMod‘𝑅)))
 
Theoremrlmdsg 14019 Metric component of the ring module. (Contributed by Mario Carneiro, 6-Oct-2015.)
(𝑅𝑉 → (dist‘𝑅) = (dist‘(ringLMod‘𝑅)))
 
Theoremrlmlmod 14020 The ring module is a module. (Contributed by Stefan O'Rear, 6-Dec-2014.)
(𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
 
Theoremrlmvnegg 14021 Vector negation in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 5-Jun-2015.)
(𝑅𝑉 → (invg𝑅) = (invg‘(ringLMod‘𝑅)))
 
Theoremixpsnbasval 14022* The value of an infinite Cartesian product of the base of a left module over a ring with a singleton. (Contributed by AV, 3-Dec-2018.)
((𝑅𝑉𝑋𝑊) → X𝑥 ∈ {𝑋} (Base‘(({𝑋} × {(ringLMod‘𝑅)})‘𝑥)) = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ (Base‘𝑅))})
 
7.6.2  Ideals and spans
 
Syntaxclidl 14023 Ring left-ideal function.
class LIdeal
 
Syntaxcrsp 14024 Ring span function.
class RSpan
 
Definitiondf-lidl 14025 Define the class of left ideals of a given ring. An ideal is a submodule of the ring viewed as a module over itself. (Contributed by Stefan O'Rear, 31-Mar-2015.)
LIdeal = (LSubSp ∘ ringLMod)
 
Definitiondf-rsp 14026 Define the linear span function in a ring (Ideal generator). (Contributed by Stefan O'Rear, 4-Apr-2015.)
RSpan = (LSpan ∘ ringLMod)
 
Theoremlidlvalg 14027 Value of the set of ring ideals. (Contributed by Stefan O'Rear, 31-Mar-2015.)
(𝑊𝑉 → (LIdeal‘𝑊) = (LSubSp‘(ringLMod‘𝑊)))
 
Theoremrspvalg 14028 Value of the ring span function. (Contributed by Stefan O'Rear, 4-Apr-2015.)
(𝑊𝑉 → (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊)))
 
Theoremlidlex 14029 Existence of the set of left ideals. (Contributed by Jim Kingdon, 27-Apr-2025.)
(𝑊𝑉 → (LIdeal‘𝑊) ∈ V)
 
Theoremrspex 14030 Existence of the ring span. (Contributed by Jim Kingdon, 25-Apr-2025.)
(𝑊𝑉 → (RSpan‘𝑊) ∈ V)
 
Theoremlidlmex 14031 Existence of the set a left ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.)
𝐼 = (LIdeal‘𝑊)       (𝑈𝐼𝑊 ∈ V)
 
Theoremlidlss 14032 An ideal is a subset of the base set. (Contributed by Stefan O'Rear, 28-Mar-2015.)
𝐵 = (Base‘𝑊)    &   𝐼 = (LIdeal‘𝑊)       (𝑈𝐼𝑈𝐵)
 
Theoremlidlssbas 14033 The base set of the restriction of the ring to a (left) ideal is a subset of the base set of the ring. (Contributed by AV, 17-Feb-2020.)
𝐿 = (LIdeal‘𝑅)    &   𝐼 = (𝑅s 𝑈)       (𝑈𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅))
 
Theoremlidlbas 14034 A (left) ideal of a ring is the base set of the restriction of the ring to this ideal. (Contributed by AV, 17-Feb-2020.)
𝐿 = (LIdeal‘𝑅)    &   𝐼 = (𝑅s 𝑈)       (𝑈𝐿 → (Base‘𝐼) = 𝑈)
 
Theoremislidlm 14035* Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015.)
𝑈 = (LIdeal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       (𝐼𝑈 ↔ (𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼))
 
Theoremrnglidlmcl 14036 A (left) ideal containing the zero element is closed under left-multiplication by elements of the full non-unital ring. If the ring is not a unital ring, and the ideal does not contain the zero element of the ring, then the closure cannot be proven. (Contributed by AV, 18-Feb-2025.)
0 = (0g𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑈 = (LIdeal‘𝑅)       (((𝑅 ∈ Rng ∧ 𝐼𝑈0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (𝑋 · 𝑌) ∈ 𝐼)
 
Theoremdflidl2rng 14037* Alternate (the usual textbook) definition of a (left) ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
𝑈 = (LIdeal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼𝑈 ↔ ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼))
 
Theoremisridlrng 14038* A right ideal is a left ideal of the opposite non-unital ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
𝑈 = (LIdeal‘(oppr𝑅))    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼𝑈 ↔ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼))
 
Theoremlidl0cl 14039 An ideal contains 0. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑈 = (LIdeal‘𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 0𝐼)
 
Theoremlidlacl 14040 An ideal is closed under addition. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑈 = (LIdeal‘𝑅)    &    + = (+g𝑅)       (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐼𝑌𝐼)) → (𝑋 + 𝑌) ∈ 𝐼)
 
Theoremlidlnegcl 14041 An ideal contains negatives. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑈 = (LIdeal‘𝑅)    &   𝑁 = (invg𝑅)       ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋𝐼) → (𝑁𝑋) ∈ 𝐼)
 
Theoremlidlsubg 14042 An ideal is a subgroup of the additive group. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑈 = (LIdeal‘𝑅)       ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝐼 ∈ (SubGrp‘𝑅))
 
Theoremlidlsubcl 14043 An ideal is closed under subtraction. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by OpenAI, 25-Mar-2020.)
𝑈 = (LIdeal‘𝑅)    &    = (-g𝑅)       (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐼𝑌𝐼)) → (𝑋 𝑌) ∈ 𝐼)
 
Theoremdflidl2 14044* Alternate (the usual textbook) definition of a (left) ideal of a ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) (Proof shortened by AV, 18-Apr-2025.)
𝑈 = (LIdeal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       (𝑅 ∈ Ring → (𝐼𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼)))
 
Theoremlidl0 14045 Every ring contains a zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑈 = (LIdeal‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Ring → { 0 } ∈ 𝑈)
 
Theoremlidl1 14046 Every ring contains a unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝑈 = (LIdeal‘𝑅)    &   𝐵 = (Base‘𝑅)       (𝑅 ∈ Ring → 𝐵𝑈)
 
Theoremrspcl 14047 The span of a set of ring elements is an ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝐾 = (RSpan‘𝑅)    &   𝐵 = (Base‘𝑅)    &   𝑈 = (LIdeal‘𝑅)       ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐾𝐺) ∈ 𝑈)
 
Theoremrspssid 14048 The span of a set of ring elements contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝐾 = (RSpan‘𝑅)    &   𝐵 = (Base‘𝑅)       ((𝑅 ∈ Ring ∧ 𝐺𝐵) → 𝐺 ⊆ (𝐾𝐺))
 
Theoremrsp0 14049 The span of the zero element is the zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝐾 = (RSpan‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Ring → (𝐾‘{ 0 }) = { 0 })
 
Theoremrspssp 14050 The ideal span of a set of elements in a ring is contained in any subring which contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015.)
𝐾 = (RSpan‘𝑅)    &   𝑈 = (LIdeal‘𝑅)       ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐺𝐼) → (𝐾𝐺) ⊆ 𝐼)
 
Theoremlidlrsppropdg 14051* The left ideals and ring span of a ring depend only on the ring components. Here 𝑊 is expected to be either 𝐵 (when closure is available) or V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   (𝜑𝐵𝑊)    &   ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) ∈ 𝑊)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))    &   (𝜑𝐾𝑋)    &   (𝜑𝐿𝑌)       (𝜑 → ((LIdeal‘𝐾) = (LIdeal‘𝐿) ∧ (RSpan‘𝐾) = (RSpan‘𝐿)))
 
Theoremrnglidlmmgm 14052 The multiplicative group of a (left) ideal of a non-unital ring is a magma. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 0𝑈 is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
𝐿 = (LIdeal‘𝑅)    &   𝐼 = (𝑅s 𝑈)    &    0 = (0g𝑅)       ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (mulGrp‘𝐼) ∈ Mgm)
 
Theoremrnglidlmsgrp 14053 The multiplicative group of a (left) ideal of a non-unital ring is a semigroup. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 0𝑈 is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
𝐿 = (LIdeal‘𝑅)    &   𝐼 = (𝑅s 𝑈)    &    0 = (0g𝑅)       ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (mulGrp‘𝐼) ∈ Smgrp)
 
Theoremrnglidlrng 14054 A (left) ideal of a non-unital ring is a non-unital ring. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 𝑈 ∈ (SubGrp‘𝑅) is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
𝐿 = (LIdeal‘𝑅)    &   𝐼 = (𝑅s 𝑈)       ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ Rng)
 
7.6.3  Two-sided ideals and quotient rings
 
Syntaxc2idl 14055 Ring two-sided ideal function.
class 2Ideal
 
Definitiondf-2idl 14056 Define the class of two-sided ideals of a ring. A two-sided ideal is a left ideal which is also a right ideal (or a left ideal over the opposite ring). (Contributed by Mario Carneiro, 14-Jun-2015.)
2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr𝑟))))
 
Theorem2idlmex 14057 Existence of the set a two-sided ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.)
𝑇 = (2Ideal‘𝑊)       (𝑈𝑇𝑊 ∈ V)
 
Theorem2idlval 14058 Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐼 = (LIdeal‘𝑅)    &   𝑂 = (oppr𝑅)    &   𝐽 = (LIdeal‘𝑂)    &   𝑇 = (2Ideal‘𝑅)       𝑇 = (𝐼𝐽)
 
Theorem2idlvalg 14059 Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐼 = (LIdeal‘𝑅)    &   𝑂 = (oppr𝑅)    &   𝐽 = (LIdeal‘𝑂)    &   𝑇 = (2Ideal‘𝑅)       (𝑅𝑉𝑇 = (𝐼𝐽))
 
Theoremisridl 14060* A right ideal is a left ideal of the opposite ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.)
𝑈 = (LIdeal‘(oppr𝑅))    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       (𝑅 ∈ Ring → (𝐼𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐵𝑦𝐼 (𝑦 · 𝑥) ∈ 𝐼)))
 
Theorem2idlelb 14061 Membership in a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.)
𝐼 = (LIdeal‘𝑅)    &   𝑂 = (oppr𝑅)    &   𝐽 = (LIdeal‘𝑂)    &   𝑇 = (2Ideal‘𝑅)       (𝑈𝑇 ↔ (𝑈𝐼𝑈𝐽))
 
Theorem2idllidld 14062 A two-sided ideal is a left ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.)
(𝜑𝐼 ∈ (2Ideal‘𝑅))       (𝜑𝐼 ∈ (LIdeal‘𝑅))
 
Theorem2idlridld 14063 A two-sided ideal is a right ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.)
(𝜑𝐼 ∈ (2Ideal‘𝑅))    &   𝑂 = (oppr𝑅)       (𝜑𝐼 ∈ (LIdeal‘𝑂))
 
Theoremdf2idl2rng 14064* Alternate (the usual textbook) definition of a two-sided ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
𝑈 = (2Ideal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼𝑈 ↔ ∀𝑥𝐵𝑦𝐼 ((𝑥 · 𝑦) ∈ 𝐼 ∧ (𝑦 · 𝑥) ∈ 𝐼)))
 
Theoremdf2idl2 14065* Alternate (the usual textbook) definition of a two-sided ideal of a ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) (Proof shortened by AV, 18-Apr-2025.)
𝑈 = (2Ideal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       (𝑅 ∈ Ring → (𝐼𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐵𝑦𝐼 ((𝑥 · 𝑦) ∈ 𝐼 ∧ (𝑦 · 𝑥) ∈ 𝐼))))
 
Theoremridl0 14066 Every ring contains a zero right ideal. (Contributed by AV, 13-Feb-2025.)
𝑈 = (LIdeal‘(oppr𝑅))    &    0 = (0g𝑅)       (𝑅 ∈ Ring → { 0 } ∈ 𝑈)
 
Theoremridl1 14067 Every ring contains a unit right ideal. (Contributed by AV, 13-Feb-2025.)
𝑈 = (LIdeal‘(oppr𝑅))    &   𝐵 = (Base‘𝑅)       (𝑅 ∈ Ring → 𝐵𝑈)
 
Theorem2idl0 14068 Every ring contains a zero two-sided ideal. (Contributed by AV, 13-Feb-2025.)
𝐼 = (2Ideal‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Ring → { 0 } ∈ 𝐼)
 
Theorem2idl1 14069 Every ring contains a unit two-sided ideal. (Contributed by AV, 13-Feb-2025.)
𝐼 = (2Ideal‘𝑅)    &   𝐵 = (Base‘𝑅)       (𝑅 ∈ Ring → 𝐵𝐼)
 
Theorem2idlss 14070 A two-sided ideal is a subset of the base set. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.) (Proof shortened by AV, 13-Mar-2025.)
𝐵 = (Base‘𝑊)    &   𝐼 = (2Ideal‘𝑊)       (𝑈𝐼𝑈𝐵)
 
Theorem2idlbas 14071 The base set of a two-sided ideal as structure. (Contributed by AV, 20-Feb-2025.)
(𝜑𝐼 ∈ (2Ideal‘𝑅))    &   𝐽 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝐽)       (𝜑𝐵 = 𝐼)
 
Theorem2idlelbas 14072 The base set of a two-sided ideal as structure is a left and right ideal. (Contributed by AV, 20-Feb-2025.)
(𝜑𝐼 ∈ (2Ideal‘𝑅))    &   𝐽 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝐽)       (𝜑 → (𝐵 ∈ (LIdeal‘𝑅) ∧ 𝐵 ∈ (LIdeal‘(oppr𝑅))))
 
Theoremrng2idlsubrng 14073 A two-sided ideal of a non-unital ring which is a non-unital ring is a subring of the ring. (Contributed by AV, 20-Feb-2025.) (Revised by AV, 11-Mar-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑 → (𝑅s 𝐼) ∈ Rng)       (𝜑𝐼 ∈ (SubRng‘𝑅))
 
Theoremrng2idlnsg 14074 A two-sided ideal of a non-unital ring which is a non-unital ring is a normal subgroup of the ring. (Contributed by AV, 20-Feb-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑 → (𝑅s 𝐼) ∈ Rng)       (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
 
Theoremrng2idl0 14075 The zero (additive identity) of a non-unital ring is an element of each two-sided ideal of the ring which is a non-unital ring. (Contributed by AV, 20-Feb-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑 → (𝑅s 𝐼) ∈ Rng)       (𝜑 → (0g𝑅) ∈ 𝐼)
 
Theoremrng2idlsubgsubrng 14076 A two-sided ideal of a non-unital ring which is a subgroup of the ring is a subring of the ring. (Contributed by AV, 11-Mar-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑𝐼 ∈ (SubGrp‘𝑅))       (𝜑𝐼 ∈ (SubRng‘𝑅))
 
Theoremrng2idlsubgnsg 14077 A two-sided ideal of a non-unital ring which is a subgroup of the ring is a normal subgroup of the ring. (Contributed by AV, 20-Feb-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑𝐼 ∈ (SubGrp‘𝑅))       (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
 
Theoremrng2idlsubg0 14078 The zero (additive identity) of a non-unital ring is an element of each two-sided ideal of the ring which is a subgroup of the ring. (Contributed by AV, 20-Feb-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑𝐼 ∈ (SubGrp‘𝑅))       (𝜑 → (0g𝑅) ∈ 𝐼)
 
Theorem2idlcpblrng 14079 The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) Generalization for non-unital rings and two-sided ideals which are subgroups of the additive group of the non-unital ring. (Revised by AV, 23-Feb-2025.)
𝑋 = (Base‘𝑅)    &   𝐸 = (𝑅 ~QG 𝑆)    &   𝐼 = (2Ideal‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → ((𝐴𝐸𝐶𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)))
 
Theorem2idlcpbl 14080 The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) (Proof shortened by AV, 31-Mar-2025.)
𝑋 = (Base‘𝑅)    &   𝐸 = (𝑅 ~QG 𝑆)    &   𝐼 = (2Ideal‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝐴𝐸𝐶𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)))
 
Theoremqus2idrng 14081 The quotient of a non-unital ring modulo a two-sided ideal, which is a subgroup of the additive group of the non-unital ring, is a non-unital ring (qusring 14083 analog). (Contributed by AV, 23-Feb-2025.)
𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   𝐼 = (2Ideal‘𝑅)       ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑈 ∈ Rng)
 
Theoremqus1 14082 The multiplicative identity of the quotient ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   𝐼 = (2Ideal‘𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝑈 ∈ Ring ∧ [ 1 ](𝑅 ~QG 𝑆) = (1r𝑈)))
 
Theoremqusring 14083 If 𝑆 is a two-sided ideal in 𝑅, then 𝑈 = 𝑅 / 𝑆 is a ring, called the quotient ring of 𝑅 by 𝑆. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   𝐼 = (2Ideal‘𝑅)       ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑈 ∈ Ring)
 
Theoremqusrhm 14084* If 𝑆 is a two-sided ideal in 𝑅, then the "natural map" from elements to their cosets is a ring homomorphism from 𝑅 to 𝑅 / 𝑆. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   𝐼 = (2Ideal‘𝑅)    &   𝑋 = (Base‘𝑅)    &   𝐹 = (𝑥𝑋 ↦ [𝑥](𝑅 ~QG 𝑆))       ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈))
 
Theoremqusmul2 14085 Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024.)
𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    × = (.r𝑄)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼))
 
Theoremcrngridl 14086 In a commutative ring, the left and right ideals coincide. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐼 = (LIdeal‘𝑅)    &   𝑂 = (oppr𝑅)       (𝑅 ∈ CRing → 𝐼 = (LIdeal‘𝑂))
 
Theoremcrng2idl 14087 In a commutative ring, a two-sided ideal is the same as a left ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐼 = (LIdeal‘𝑅)       (𝑅 ∈ CRing → 𝐼 = (2Ideal‘𝑅))
 
Theoremqusmulrng 14088 Value of the multiplication operation in a quotient ring of a non-unital ring. Formerly part of proof for quscrng 14089. Similar to qusmul2 14085. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 28-Feb-2025.)
= (𝑅 ~QG 𝑆)    &   𝐻 = (𝑅 /s )    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    = (.r𝐻)       (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑋𝐵𝑌𝐵)) → ([𝑋] [𝑌] ) = [(𝑋 · 𝑌)] )
 
Theoremquscrng 14089 The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) (Proof shortened by AV, 3-Apr-2025.)
𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   𝐼 = (LIdeal‘𝑅)       ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑈 ∈ CRing)
 
7.6.4  Principal ideal rings. Divisibility in the integers
 
Theoremrspsn 14090* Membership in principal ideals is closely related to divisibility. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.)
𝐵 = (Base‘𝑅)    &   𝐾 = (RSpan‘𝑅)    &    = (∥r𝑅)       ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐾‘{𝐺}) = {𝑥𝐺 𝑥})
 
7.7  The complex numbers as an algebraic extensible structure
 
7.7.1  Definition and basic properties
 
Syntaxcpsmet 14091 Extend class notation with the class of all pseudometric spaces.
class PsMet
 
Syntaxcxmet 14092 Extend class notation with the class of all extended metric spaces.
class ∞Met
 
Syntaxcmet 14093 Extend class notation with the class of all metrics.
class Met
 
Syntaxcbl 14094 Extend class notation with the metric space ball function.
class ball
 
Syntaxcfbas 14095 Extend class definition to include the class of filter bases.
class fBas
 
Syntaxcfg 14096 Extend class definition to include the filter generating function.
class filGen
 
Syntaxcmopn 14097 Extend class notation with a function mapping each metric space to the family of its open sets.
class MetOpen
 
Syntaxcmetu 14098 Extend class notation with the function mapping metrics to the uniform structure generated by that metric.
class metUnif
 
Definitiondf-psmet 14099* Define the set of all pseudometrics on a given base set. In a pseudo metric, two distinct points may have a distance zero. (Contributed by Thierry Arnoux, 7-Feb-2018.)
PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧𝑥𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
 
Definitiondf-xmet 14100* Define the set of all extended metrics on a given base set. The definition is similar to df-met 14101, but we also allow the metric to take on the value +∞. (Contributed by Mario Carneiro, 20-Aug-2015.)
∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15728
  Copyright terms: Public domain < Previous  Next >