HomeHome Intuitionistic Logic Explorer
Theorem List (p. 141 of 156)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 14001-14100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem2idlelb 14001 Membership in a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.)
𝐼 = (LIdeal‘𝑅)    &   𝑂 = (oppr𝑅)    &   𝐽 = (LIdeal‘𝑂)    &   𝑇 = (2Ideal‘𝑅)       (𝑈𝑇 ↔ (𝑈𝐼𝑈𝐽))
 
Theorem2idllidld 14002 A two-sided ideal is a left ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.)
(𝜑𝐼 ∈ (2Ideal‘𝑅))       (𝜑𝐼 ∈ (LIdeal‘𝑅))
 
Theorem2idlridld 14003 A two-sided ideal is a right ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.)
(𝜑𝐼 ∈ (2Ideal‘𝑅))    &   𝑂 = (oppr𝑅)       (𝜑𝐼 ∈ (LIdeal‘𝑂))
 
Theoremdf2idl2rng 14004* Alternate (the usual textbook) definition of a two-sided ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
𝑈 = (2Ideal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼𝑈 ↔ ∀𝑥𝐵𝑦𝐼 ((𝑥 · 𝑦) ∈ 𝐼 ∧ (𝑦 · 𝑥) ∈ 𝐼)))
 
Theoremdf2idl2 14005* Alternate (the usual textbook) definition of a two-sided ideal of a ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) (Proof shortened by AV, 18-Apr-2025.)
𝑈 = (2Ideal‘𝑅)    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       (𝑅 ∈ Ring → (𝐼𝑈 ↔ (𝐼 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐵𝑦𝐼 ((𝑥 · 𝑦) ∈ 𝐼 ∧ (𝑦 · 𝑥) ∈ 𝐼))))
 
Theoremridl0 14006 Every ring contains a zero right ideal. (Contributed by AV, 13-Feb-2025.)
𝑈 = (LIdeal‘(oppr𝑅))    &    0 = (0g𝑅)       (𝑅 ∈ Ring → { 0 } ∈ 𝑈)
 
Theoremridl1 14007 Every ring contains a unit right ideal. (Contributed by AV, 13-Feb-2025.)
𝑈 = (LIdeal‘(oppr𝑅))    &   𝐵 = (Base‘𝑅)       (𝑅 ∈ Ring → 𝐵𝑈)
 
Theorem2idl0 14008 Every ring contains a zero two-sided ideal. (Contributed by AV, 13-Feb-2025.)
𝐼 = (2Ideal‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Ring → { 0 } ∈ 𝐼)
 
Theorem2idl1 14009 Every ring contains a unit two-sided ideal. (Contributed by AV, 13-Feb-2025.)
𝐼 = (2Ideal‘𝑅)    &   𝐵 = (Base‘𝑅)       (𝑅 ∈ Ring → 𝐵𝐼)
 
Theorem2idlss 14010 A two-sided ideal is a subset of the base set. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.) (Proof shortened by AV, 13-Mar-2025.)
𝐵 = (Base‘𝑊)    &   𝐼 = (2Ideal‘𝑊)       (𝑈𝐼𝑈𝐵)
 
Theorem2idlbas 14011 The base set of a two-sided ideal as structure. (Contributed by AV, 20-Feb-2025.)
(𝜑𝐼 ∈ (2Ideal‘𝑅))    &   𝐽 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝐽)       (𝜑𝐵 = 𝐼)
 
Theorem2idlelbas 14012 The base set of a two-sided ideal as structure is a left and right ideal. (Contributed by AV, 20-Feb-2025.)
(𝜑𝐼 ∈ (2Ideal‘𝑅))    &   𝐽 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝐽)       (𝜑 → (𝐵 ∈ (LIdeal‘𝑅) ∧ 𝐵 ∈ (LIdeal‘(oppr𝑅))))
 
Theoremrng2idlsubrng 14013 A two-sided ideal of a non-unital ring which is a non-unital ring is a subring of the ring. (Contributed by AV, 20-Feb-2025.) (Revised by AV, 11-Mar-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑 → (𝑅s 𝐼) ∈ Rng)       (𝜑𝐼 ∈ (SubRng‘𝑅))
 
Theoremrng2idlnsg 14014 A two-sided ideal of a non-unital ring which is a non-unital ring is a normal subgroup of the ring. (Contributed by AV, 20-Feb-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑 → (𝑅s 𝐼) ∈ Rng)       (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
 
Theoremrng2idl0 14015 The zero (additive identity) of a non-unital ring is an element of each two-sided ideal of the ring which is a non-unital ring. (Contributed by AV, 20-Feb-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑 → (𝑅s 𝐼) ∈ Rng)       (𝜑 → (0g𝑅) ∈ 𝐼)
 
Theoremrng2idlsubgsubrng 14016 A two-sided ideal of a non-unital ring which is a subgroup of the ring is a subring of the ring. (Contributed by AV, 11-Mar-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑𝐼 ∈ (SubGrp‘𝑅))       (𝜑𝐼 ∈ (SubRng‘𝑅))
 
Theoremrng2idlsubgnsg 14017 A two-sided ideal of a non-unital ring which is a subgroup of the ring is a normal subgroup of the ring. (Contributed by AV, 20-Feb-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑𝐼 ∈ (SubGrp‘𝑅))       (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
 
Theoremrng2idlsubg0 14018 The zero (additive identity) of a non-unital ring is an element of each two-sided ideal of the ring which is a subgroup of the ring. (Contributed by AV, 20-Feb-2025.)
(𝜑𝑅 ∈ Rng)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑𝐼 ∈ (SubGrp‘𝑅))       (𝜑 → (0g𝑅) ∈ 𝐼)
 
Theorem2idlcpblrng 14019 The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) Generalization for non-unital rings and two-sided ideals which are subgroups of the additive group of the non-unital ring. (Revised by AV, 23-Feb-2025.)
𝑋 = (Base‘𝑅)    &   𝐸 = (𝑅 ~QG 𝑆)    &   𝐼 = (2Ideal‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → ((𝐴𝐸𝐶𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)))
 
Theorem2idlcpbl 14020 The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) (Proof shortened by AV, 31-Mar-2025.)
𝑋 = (Base‘𝑅)    &   𝐸 = (𝑅 ~QG 𝑆)    &   𝐼 = (2Ideal‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝐴𝐸𝐶𝐵𝐸𝐷) → (𝐴 · 𝐵)𝐸(𝐶 · 𝐷)))
 
Theoremqus2idrng 14021 The quotient of a non-unital ring modulo a two-sided ideal, which is a subgroup of the additive group of the non-unital ring, is a non-unital ring (qusring 14023 analog). (Contributed by AV, 23-Feb-2025.)
𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   𝐼 = (2Ideal‘𝑅)       ((𝑅 ∈ Rng ∧ 𝑆𝐼𝑆 ∈ (SubGrp‘𝑅)) → 𝑈 ∈ Rng)
 
Theoremqus1 14022 The multiplicative identity of the quotient ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   𝐼 = (2Ideal‘𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝑈 ∈ Ring ∧ [ 1 ](𝑅 ~QG 𝑆) = (1r𝑈)))
 
Theoremqusring 14023 If 𝑆 is a two-sided ideal in 𝑅, then 𝑈 = 𝑅 / 𝑆 is a ring, called the quotient ring of 𝑅 by 𝑆. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   𝐼 = (2Ideal‘𝑅)       ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑈 ∈ Ring)
 
Theoremqusrhm 14024* If 𝑆 is a two-sided ideal in 𝑅, then the "natural map" from elements to their cosets is a ring homomorphism from 𝑅 to 𝑅 / 𝑆. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   𝐼 = (2Ideal‘𝑅)    &   𝑋 = (Base‘𝑅)    &   𝐹 = (𝑥𝑋 ↦ [𝑥](𝑅 ~QG 𝑆))       ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈))
 
Theoremqusmul2 14025 Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024.)
𝑄 = (𝑅 /s (𝑅 ~QG 𝐼))    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    × = (.r𝑄)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐼 ∈ (2Ideal‘𝑅))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ([𝑋](𝑅 ~QG 𝐼) × [𝑌](𝑅 ~QG 𝐼)) = [(𝑋 · 𝑌)](𝑅 ~QG 𝐼))
 
Theoremcrngridl 14026 In a commutative ring, the left and right ideals coincide. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐼 = (LIdeal‘𝑅)    &   𝑂 = (oppr𝑅)       (𝑅 ∈ CRing → 𝐼 = (LIdeal‘𝑂))
 
Theoremcrng2idl 14027 In a commutative ring, a two-sided ideal is the same as a left ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐼 = (LIdeal‘𝑅)       (𝑅 ∈ CRing → 𝐼 = (2Ideal‘𝑅))
 
Theoremqusmulrng 14028 Value of the multiplication operation in a quotient ring of a non-unital ring. Formerly part of proof for quscrng 14029. Similar to qusmul2 14025. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 28-Feb-2025.)
= (𝑅 ~QG 𝑆)    &   𝐻 = (𝑅 /s )    &   𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    = (.r𝐻)       (((𝑅 ∈ Rng ∧ 𝑆 ∈ (2Ideal‘𝑅) ∧ 𝑆 ∈ (SubGrp‘𝑅)) ∧ (𝑋𝐵𝑌𝐵)) → ([𝑋] [𝑌] ) = [(𝑋 · 𝑌)] )
 
Theoremquscrng 14029 The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) (Proof shortened by AV, 3-Apr-2025.)
𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))    &   𝐼 = (LIdeal‘𝑅)       ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑈 ∈ CRing)
 
7.6.4  Principal ideal rings. Divisibility in the integers
 
Theoremrspsn 14030* Membership in principal ideals is closely related to divisibility. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.)
𝐵 = (Base‘𝑅)    &   𝐾 = (RSpan‘𝑅)    &    = (∥r𝑅)       ((𝑅 ∈ Ring ∧ 𝐺𝐵) → (𝐾‘{𝐺}) = {𝑥𝐺 𝑥})
 
7.7  The complex numbers as an algebraic extensible structure
 
7.7.1  Definition and basic properties
 
Syntaxcpsmet 14031 Extend class notation with the class of all pseudometric spaces.
class PsMet
 
Syntaxcxmet 14032 Extend class notation with the class of all extended metric spaces.
class ∞Met
 
Syntaxcmet 14033 Extend class notation with the class of all metrics.
class Met
 
Syntaxcbl 14034 Extend class notation with the metric space ball function.
class ball
 
Syntaxcfbas 14035 Extend class definition to include the class of filter bases.
class fBas
 
Syntaxcfg 14036 Extend class definition to include the filter generating function.
class filGen
 
Syntaxcmopn 14037 Extend class notation with a function mapping each metric space to the family of its open sets.
class MetOpen
 
Syntaxcmetu 14038 Extend class notation with the function mapping metrics to the uniform structure generated by that metric.
class metUnif
 
Definitiondf-psmet 14039* Define the set of all pseudometrics on a given base set. In a pseudo metric, two distinct points may have a distance zero. (Contributed by Thierry Arnoux, 7-Feb-2018.)
PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧𝑥𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
 
Definitiondf-xmet 14040* Define the set of all extended metrics on a given base set. The definition is similar to df-met 14041, but we also allow the metric to take on the value +∞. (Contributed by Mario Carneiro, 20-Aug-2015.)
∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
 
Definitiondf-met 14041* Define the (proper) class of all metrics. (A metric space is the metric's base set paired with the metric. However, we will often also call the metric itself a "metric space".) Equivalent to Definition 14-1.1 of [Gleason] p. 223. (Contributed by NM, 25-Aug-2006.)
Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ ↑𝑚 (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)))})
 
Definitiondf-bl 14042* Define the metric space ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Thierry Arnoux, 11-Feb-2018.)
ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑧 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑧}))
 
Definitiondf-mopn 14043 Define a function whose value is the family of open sets of a metric space. (Contributed by NM, 1-Sep-2006.)
MetOpen = (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
 
Definitiondf-fbas 14044* Define the class of all filter bases. Note that a filter base on one set is also a filter base for any superset, so there is not a unique base set that can be recovered. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.)
fBas = (𝑤 ∈ V ↦ {𝑥 ∈ 𝒫 𝒫 𝑤 ∣ (𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑥 ∩ 𝒫 (𝑦𝑧)) ≠ ∅)})
 
Definitiondf-fg 14045* Define the filter generating function. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.)
filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅})
 
Definitiondf-metu 14046* Define the function mapping metrics to the uniform structure generated by that metric. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
metUnif = (𝑑 ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎)))))
 
Syntaxccnfld 14047 Extend class notation with the field of complex numbers.
class fld
 
Definitiondf-icnfld 14048 The field of complex numbers. Other number fields and rings can be constructed by applying the s restriction operator.

The contract of this set is defined entirely by cnfldex 14050, cnfldadd 14052, cnfldmul 14054, cnfldcj 14056, and cnfldbas 14051.

We may add additional members to this in the future.

At least for now, this structure does not include a topology, order, a distance function, or function mapping metrics.

(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) (New usage is discouraged.)

fld = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), · ⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩})
 
Theoremcnfldstr 14049 The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
fld Struct ⟨1, 13⟩
 
Theoremcnfldex 14050 The field of complex numbers is a set. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
fld ∈ V
 
Theoremcnfldbas 14051 The base set of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
ℂ = (Base‘ℂfld)
 
Theoremcnfldadd 14052 The addition operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
+ = (+g‘ℂfld)
 
Theoremmpocnfldadd 14053* The addition operation of the field of complex numbers. Version of cnfldadd 14052 using maps-to notation. (Contributed by GG, 31-Mar-2025.)
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) = (+g‘ℂfld)
 
Theoremcnfldmul 14054 The multiplication operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
· = (.r‘ℂfld)
 
Theoremmpocnfldmul 14055* The multiplication operation of the field of complex numbers. Version of cnfldmul 14054 using maps-to notation. (Contributed by GG, 31-Mar-2025.)
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) = (.r‘ℂfld)
 
Theoremcnfldcj 14056 The conjugation operation of the field of complex numbers. (Contributed by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 17-Dec-2017.)
∗ = (*𝑟‘ℂfld)
 
Theoremcncrng 14057 The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015.)
fld ∈ CRing
 
Theoremcnring 14058 The complex numbers form a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)
fld ∈ Ring
 
Theoremcnfld0 14059 Zero is the zero element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
0 = (0g‘ℂfld)
 
Theoremcnfld1 14060 One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
1 = (1r‘ℂfld)
 
Theoremcnfldneg 14061 The additive inverse in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
(𝑋 ∈ ℂ → ((invg‘ℂfld)‘𝑋) = -𝑋)
 
Theoremcnfldplusf 14062 The functionalized addition operation of the field of complex numbers. (Contributed by Mario Carneiro, 2-Sep-2015.)
+ = (+𝑓‘ℂfld)
 
Theoremcnfldsub 14063 The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015.)
− = (-g‘ℂfld)
 
Theoremcnfldmulg 14064 The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ) → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵))
 
Theoremcnfldexp 14065 The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴𝐵))
 
Theoremcnsubmlem 14066* Lemma for nn0subm 14071 and friends. (Contributed by Mario Carneiro, 18-Jun-2015.)
(𝑥𝐴𝑥 ∈ ℂ)    &   ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)    &   0 ∈ 𝐴       𝐴 ∈ (SubMnd‘ℂfld)
 
Theoremcnsubglem 14067* Lemma for cnsubrglem 14068 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.)
(𝑥𝐴𝑥 ∈ ℂ)    &   ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)    &   (𝑥𝐴 → -𝑥𝐴)    &   𝐵𝐴       𝐴 ∈ (SubGrp‘ℂfld)
 
Theoremcnsubrglem 14068* Lemma for zsubrg 14069 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.)
(𝑥𝐴𝑥 ∈ ℂ)    &   ((𝑥𝐴𝑦𝐴) → (𝑥 + 𝑦) ∈ 𝐴)    &   (𝑥𝐴 → -𝑥𝐴)    &   1 ∈ 𝐴    &   ((𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)       𝐴 ∈ (SubRing‘ℂfld)
 
Theoremzsubrg 14069 The integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.)
ℤ ∈ (SubRing‘ℂfld)
 
Theoremgzsubrg 14070 The gaussian integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.)
ℤ[i] ∈ (SubRing‘ℂfld)
 
Theoremnn0subm 14071 The nonnegative integers form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 18-Jun-2015.)
0 ∈ (SubMnd‘ℂfld)
 
Theoremrege0subm 14072 The nonnegative reals form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 20-Jun-2015.)
(0[,)+∞) ∈ (SubMnd‘ℂfld)
 
Theoremzsssubrg 14073 The integers are a subset of any subring of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.)
(𝑅 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑅)
 
Theoremgsumfzfsumlem0 14074* Lemma for gsumfzfsum 14076. The case where the sum is empty. (Contributed by Jim Kingdon, 9-Sep-2025.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑁 < 𝑀)       (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
 
Theoremgsumfzfsumlemm 14075* Lemma for gsumfzfsum 14076. The case where the sum is inhabited. (Contributed by Jim Kingdon, 9-Sep-2025.)
(𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ)       (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
 
Theoremgsumfzfsum 14076* Relate a group sum on fld to a finite sum on the complex numbers. (Contributed by Mario Carneiro, 28-Dec-2014.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ)       (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
 
Theoremcnfldui 14077 The invertible complex numbers are exactly those apart from zero. This is recapb 8690 but expressed in terms of fld. (Contributed by Jim Kingdon, 11-Sep-2025.)
{𝑧 ∈ ℂ ∣ 𝑧 # 0} = (Unit‘ℂfld)
 
7.7.2  Ring of integers

According to Wikipedia ("Integer", 25-May-2019, https://en.wikipedia.org/wiki/Integer) "The integers form a unital ring which is the most basic one, in the following sense: for any unital ring, there is a unique ring homomorphism from the integers into this ring. This universal property, namely to be an initial object in the category of [unital] rings, characterizes the ring 𝑍." In set.mm, there was no explicit definition for the ring of integers until June 2019, but it was denoted by (ℂflds ℤ), the field of complex numbers restricted to the integers. In zringring 14081 it is shown that this restriction is a ring, and zringbas 14084 shows that its base set is the integers. As of June 2019, there is an abbreviation of this expression as Definition df-zring 14079 of the ring of integers.

Remark: Instead of using the symbol "ZZrng" analogous to fld used for the field of complex numbers, we have chosen the version with an "i" to indicate that the ring of integers is a unital ring, see also Wikipedia ("Rng (algebra)", 9-Jun-2019, https://en.wikipedia.org/wiki/Rng_(algebra) 14079).

 
Syntaxczring 14078 Extend class notation with the (unital) ring of integers.
class ring
 
Definitiondf-zring 14079 The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.)
ring = (ℂflds ℤ)
 
Theoremzringcrng 14080 The ring of integers is a commutative ring. (Contributed by AV, 13-Jun-2019.)
ring ∈ CRing
 
Theoremzringring 14081 The ring of integers is a ring. (Contributed by AV, 20-May-2019.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 13-Jun-2019.)
ring ∈ Ring
 
Theoremzringabl 14082 The ring of integers is an (additive) abelian group. (Contributed by AV, 13-Jun-2019.)
ring ∈ Abel
 
Theoremzringgrp 14083 The ring of integers is an (additive) group. (Contributed by AV, 10-Jun-2019.)
ring ∈ Grp
 
Theoremzringbas 14084 The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.)
ℤ = (Base‘ℤring)
 
Theoremzringplusg 14085 The addition operation of the ring of integers. (Contributed by Thierry Arnoux, 8-Nov-2017.) (Revised by AV, 9-Jun-2019.)
+ = (+g‘ℤring)
 
Theoremzringmulg 14086 The multiplication (group power) operation of the group of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴(.g‘ℤring)𝐵) = (𝐴 · 𝐵))
 
Theoremzringmulr 14087 The multiplication operation of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
· = (.r‘ℤring)
 
Theoremzring0 14088 The zero element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
0 = (0g‘ℤring)
 
Theoremzring1 14089 The unity element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
1 = (1r‘ℤring)
 
Theoremzringnzr 14090 The ring of integers is a nonzero ring. (Contributed by AV, 18-Apr-2020.)
ring ∈ NzRing
 
Theoremdvdsrzring 14091 Ring divisibility in the ring of integers corresponds to ordinary divisibility in . (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.)
∥ = (∥r‘ℤring)
 
Theoremzringinvg 14092 The additive inverse of an element of the ring of integers. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
(𝐴 ∈ ℤ → -𝐴 = ((invg‘ℤring)‘𝐴))
 
Theoremzringsubgval 14093 Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019.)
= (-g‘ℤring)       ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑋𝑌) = (𝑋 𝑌))
 
Theoremzringmpg 14094 The multiplicative group of the ring of integers is the restriction of the multiplicative group of the complex numbers to the integers. (Contributed by AV, 15-Jun-2019.)
((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
 
Theoremexpghmap 14095* Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) (Revised by Jim Kingdon, 11-Sep-2025.)
𝑀 = (mulGrp‘ℂfld)    &   𝑈 = (𝑀s {𝑧 ∈ ℂ ∣ 𝑧 # 0})       ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝑥 ∈ ℤ ↦ (𝐴𝑥)) ∈ (ℤring GrpHom 𝑈))
 
Theoremmulgghm2 14096* The powers of a group element give a homomorphism from to a group. The name 1 should not be taken as a constraint as it may be any group element. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
· = (.g𝑅)    &   𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))    &   𝐵 = (Base‘𝑅)       ((𝑅 ∈ Grp ∧ 1𝐵) → 𝐹 ∈ (ℤring GrpHom 𝑅))
 
Theoremmulgrhm 14097* The powers of the element 1 give a ring homomorphism from to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
· = (.g𝑅)    &   𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))    &    1 = (1r𝑅)       (𝑅 ∈ Ring → 𝐹 ∈ (ℤring RingHom 𝑅))
 
Theoremmulgrhm2 14098* The powers of the element 1 give the unique ring homomorphism from to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
· = (.g𝑅)    &   𝐹 = (𝑛 ∈ ℤ ↦ (𝑛 · 1 ))    &    1 = (1r𝑅)       (𝑅 ∈ Ring → (ℤring RingHom 𝑅) = {𝐹})
 
7.7.3  Algebraic constructions based on the complex numbers
 
Syntaxczrh 14099 Map the rationals into a field, or the integers into a ring.
class ℤRHom
 
Syntaxczlm 14100 Augment an abelian group with vector space operations to turn it into a -module.
class ℤMod
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >