![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > idomringd | GIF version |
Description: An integral domain is a ring. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
Ref | Expression |
---|---|
idomringd.1 | ⊢ (𝜑 → 𝑅 ∈ IDomn) |
Ref | Expression |
---|---|
idomringd | ⊢ (𝜑 → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idomringd.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ IDomn) | |
2 | 1 | idomcringd 13810 | . 2 ⊢ (𝜑 → 𝑅 ∈ CRing) |
3 | 2 | crngringd 13541 | 1 ⊢ (𝜑 → 𝑅 ∈ Ring) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2167 Ringcrg 13528 IDomncidom 13789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-cring 13531 df-idom 13792 |
This theorem is referenced by: lgseisenlem3 15280 |
Copyright terms: Public domain | W3C validator |