ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifnebibdc GIF version

Theorem ifnebibdc 3600
Description: The converse of ifbi 3577 holds if the two values are not equal. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Assertion
Ref Expression
ifnebibdc ((DECID 𝜑DECID 𝜓𝐴𝐵) → (if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵) ↔ (𝜑𝜓)))

Proof of Theorem ifnebibdc
StepHypRef Expression
1 eqifdc 3592 . . . 4 (DECID 𝜓 → (if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵) ↔ ((𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∨ (¬ 𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵))))
213ad2ant2 1021 . . 3 ((DECID 𝜑DECID 𝜓𝐴𝐵) → (if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵) ↔ ((𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∨ (¬ 𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵))))
3 ifnetruedc 3598 . . . . . . . . 9 ((DECID 𝜑𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → 𝜑)
433expia 1207 . . . . . . . 8 ((DECID 𝜑𝐴𝐵) → (if(𝜑, 𝐴, 𝐵) = 𝐴𝜑))
543adant2 1018 . . . . . . 7 ((DECID 𝜑DECID 𝜓𝐴𝐵) → (if(𝜑, 𝐴, 𝐵) = 𝐴𝜑))
65adantld 278 . . . . . 6 ((DECID 𝜑DECID 𝜓𝐴𝐵) → ((𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → 𝜑))
7 simpl 109 . . . . . 6 ((𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → 𝜓)
86, 7jca2 308 . . . . 5 ((DECID 𝜑DECID 𝜓𝐴𝐵) → ((𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → (𝜑𝜓)))
9 pm5.1 601 . . . . 5 ((𝜑𝜓) → (𝜑𝜓))
108, 9syl6 33 . . . 4 ((DECID 𝜑DECID 𝜓𝐴𝐵) → ((𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → (𝜑𝜓)))
11 ifnefals 3599 . . . . . . . . 9 ((𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) → ¬ 𝜑)
1211ex 115 . . . . . . . 8 (𝐴𝐵 → (if(𝜑, 𝐴, 𝐵) = 𝐵 → ¬ 𝜑))
13123ad2ant3 1022 . . . . . . 7 ((DECID 𝜑DECID 𝜓𝐴𝐵) → (if(𝜑, 𝐴, 𝐵) = 𝐵 → ¬ 𝜑))
1413adantld 278 . . . . . 6 ((DECID 𝜑DECID 𝜓𝐴𝐵) → ((¬ 𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) → ¬ 𝜑))
15 simpl 109 . . . . . 6 ((¬ 𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) → ¬ 𝜓)
1614, 15jca2 308 . . . . 5 ((DECID 𝜑DECID 𝜓𝐴𝐵) → ((¬ 𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) → (¬ 𝜑 ∧ ¬ 𝜓)))
17 pm5.21 696 . . . . 5 ((¬ 𝜑 ∧ ¬ 𝜓) → (𝜑𝜓))
1816, 17syl6 33 . . . 4 ((DECID 𝜑DECID 𝜓𝐴𝐵) → ((¬ 𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) → (𝜑𝜓)))
1910, 18jaod 718 . . 3 ((DECID 𝜑DECID 𝜓𝐴𝐵) → (((𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∨ (¬ 𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵)) → (𝜑𝜓)))
202, 19sylbid 150 . 2 ((DECID 𝜑DECID 𝜓𝐴𝐵) → (if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵) → (𝜑𝜓)))
21 ifbi 3577 . 2 ((𝜑𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))
2220, 21impbid1 142 1 ((DECID 𝜑DECID 𝜓𝐴𝐵) → (if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵) ↔ (𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wne 2364  ifcif 3557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-ne 2365  df-if 3558
This theorem is referenced by:  nninfinf  10514
  Copyright terms: Public domain W3C validator