ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifnebibdc GIF version

Theorem ifnebibdc 3648
Description: The converse of ifbi 3623 holds if the two values are not equal. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Assertion
Ref Expression
ifnebibdc ((DECID 𝜑DECID 𝜓𝐴𝐵) → (if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵) ↔ (𝜑𝜓)))

Proof of Theorem ifnebibdc
StepHypRef Expression
1 eqifdc 3639 . . . 4 (DECID 𝜓 → (if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵) ↔ ((𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∨ (¬ 𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵))))
213ad2ant2 1043 . . 3 ((DECID 𝜑DECID 𝜓𝐴𝐵) → (if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵) ↔ ((𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∨ (¬ 𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵))))
3 ifnetruedc 3646 . . . . . . . . 9 ((DECID 𝜑𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → 𝜑)
433expia 1229 . . . . . . . 8 ((DECID 𝜑𝐴𝐵) → (if(𝜑, 𝐴, 𝐵) = 𝐴𝜑))
543adant2 1040 . . . . . . 7 ((DECID 𝜑DECID 𝜓𝐴𝐵) → (if(𝜑, 𝐴, 𝐵) = 𝐴𝜑))
65adantld 278 . . . . . 6 ((DECID 𝜑DECID 𝜓𝐴𝐵) → ((𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → 𝜑))
7 simpl 109 . . . . . 6 ((𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → 𝜓)
86, 7jca2 308 . . . . 5 ((DECID 𝜑DECID 𝜓𝐴𝐵) → ((𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → (𝜑𝜓)))
9 pm5.1 603 . . . . 5 ((𝜑𝜓) → (𝜑𝜓))
108, 9syl6 33 . . . 4 ((DECID 𝜑DECID 𝜓𝐴𝐵) → ((𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) → (𝜑𝜓)))
11 ifnefals 3647 . . . . . . . . 9 ((𝐴𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) → ¬ 𝜑)
1211ex 115 . . . . . . . 8 (𝐴𝐵 → (if(𝜑, 𝐴, 𝐵) = 𝐵 → ¬ 𝜑))
13123ad2ant3 1044 . . . . . . 7 ((DECID 𝜑DECID 𝜓𝐴𝐵) → (if(𝜑, 𝐴, 𝐵) = 𝐵 → ¬ 𝜑))
1413adantld 278 . . . . . 6 ((DECID 𝜑DECID 𝜓𝐴𝐵) → ((¬ 𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) → ¬ 𝜑))
15 simpl 109 . . . . . 6 ((¬ 𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) → ¬ 𝜓)
1614, 15jca2 308 . . . . 5 ((DECID 𝜑DECID 𝜓𝐴𝐵) → ((¬ 𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) → (¬ 𝜑 ∧ ¬ 𝜓)))
17 pm5.21 700 . . . . 5 ((¬ 𝜑 ∧ ¬ 𝜓) → (𝜑𝜓))
1816, 17syl6 33 . . . 4 ((DECID 𝜑DECID 𝜓𝐴𝐵) → ((¬ 𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) → (𝜑𝜓)))
1910, 18jaod 722 . . 3 ((DECID 𝜑DECID 𝜓𝐴𝐵) → (((𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐴) ∨ (¬ 𝜓 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵)) → (𝜑𝜓)))
202, 19sylbid 150 . 2 ((DECID 𝜑DECID 𝜓𝐴𝐵) → (if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵) → (𝜑𝜓)))
21 ifbi 3623 . 2 ((𝜑𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))
2220, 21impbid1 142 1 ((DECID 𝜑DECID 𝜓𝐴𝐵) → (if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵) ↔ (𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839  w3a 1002   = wceq 1395  wne 2400  ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-ne 2401  df-if 3603
This theorem is referenced by:  nninfinf  10660
  Copyright terms: Public domain W3C validator