ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unidif0 GIF version

Theorem unidif0 4196
Description: The removal of the empty set from a class does not affect its union. (Contributed by NM, 22-Mar-2004.)
Assertion
Ref Expression
unidif0 (𝐴 ∖ {∅}) = 𝐴

Proof of Theorem unidif0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 3452 . . . . . . 7 (𝑥𝑦 → ¬ 𝑦 = ∅)
21pm4.71i 391 . . . . . 6 (𝑥𝑦 ↔ (𝑥𝑦 ∧ ¬ 𝑦 = ∅))
32anbi1i 458 . . . . 5 ((𝑥𝑦𝑦𝐴) ↔ ((𝑥𝑦 ∧ ¬ 𝑦 = ∅) ∧ 𝑦𝐴))
4 an32 562 . . . . 5 (((𝑥𝑦𝑦𝐴) ∧ ¬ 𝑦 = ∅) ↔ ((𝑥𝑦 ∧ ¬ 𝑦 = ∅) ∧ 𝑦𝐴))
5 anass 401 . . . . 5 (((𝑥𝑦𝑦𝐴) ∧ ¬ 𝑦 = ∅) ↔ (𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦 = ∅)))
63, 4, 53bitr2ri 209 . . . 4 ((𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦 = ∅)) ↔ (𝑥𝑦𝑦𝐴))
76exbii 1616 . . 3 (∃𝑦(𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦 = ∅)) ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
8 eluni 3838 . . . 4 (𝑥 (𝐴 ∖ {∅}) ↔ ∃𝑦(𝑥𝑦𝑦 ∈ (𝐴 ∖ {∅})))
9 eldif 3162 . . . . . . 7 (𝑦 ∈ (𝐴 ∖ {∅}) ↔ (𝑦𝐴 ∧ ¬ 𝑦 ∈ {∅}))
10 velsn 3635 . . . . . . . . 9 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
1110notbii 669 . . . . . . . 8 𝑦 ∈ {∅} ↔ ¬ 𝑦 = ∅)
1211anbi2i 457 . . . . . . 7 ((𝑦𝐴 ∧ ¬ 𝑦 ∈ {∅}) ↔ (𝑦𝐴 ∧ ¬ 𝑦 = ∅))
139, 12bitri 184 . . . . . 6 (𝑦 ∈ (𝐴 ∖ {∅}) ↔ (𝑦𝐴 ∧ ¬ 𝑦 = ∅))
1413anbi2i 457 . . . . 5 ((𝑥𝑦𝑦 ∈ (𝐴 ∖ {∅})) ↔ (𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦 = ∅)))
1514exbii 1616 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ (𝐴 ∖ {∅})) ↔ ∃𝑦(𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦 = ∅)))
168, 15bitri 184 . . 3 (𝑥 (𝐴 ∖ {∅}) ↔ ∃𝑦(𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦 = ∅)))
17 eluni 3838 . . 3 (𝑥 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
187, 16, 173bitr4i 212 . 2 (𝑥 (𝐴 ∖ {∅}) ↔ 𝑥 𝐴)
1918eqriv 2190 1 (𝐴 ∖ {∅}) = 𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104   = wceq 1364  wex 1503  wcel 2164  cdif 3150  c0 3446  {csn 3618   cuni 3835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-nul 3447  df-sn 3624  df-uni 3836
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator