| Step | Hyp | Ref
| Expression |
| 1 | | n0i 3457 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑦 → ¬ 𝑦 = ∅) |
| 2 | 1 | pm4.71i 391 |
. . . . . 6
⊢ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑦 ∧ ¬ 𝑦 = ∅)) |
| 3 | 2 | anbi1i 458 |
. . . . 5
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ↔ ((𝑥 ∈ 𝑦 ∧ ¬ 𝑦 = ∅) ∧ 𝑦 ∈ 𝐴)) |
| 4 | | an32 562 |
. . . . 5
⊢ (((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 = ∅) ↔ ((𝑥 ∈ 𝑦 ∧ ¬ 𝑦 = ∅) ∧ 𝑦 ∈ 𝐴)) |
| 5 | | anass 401 |
. . . . 5
⊢ (((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 = ∅) ↔ (𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 = ∅))) |
| 6 | 3, 4, 5 | 3bitr2ri 209 |
. . . 4
⊢ ((𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 = ∅)) ↔ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) |
| 7 | 6 | exbii 1619 |
. . 3
⊢
(∃𝑦(𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 = ∅)) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) |
| 8 | | eluni 3843 |
. . . 4
⊢ (𝑥 ∈ ∪ (𝐴
∖ {∅}) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∖ {∅}))) |
| 9 | | eldif 3166 |
. . . . . . 7
⊢ (𝑦 ∈ (𝐴 ∖ {∅}) ↔ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ {∅})) |
| 10 | | velsn 3640 |
. . . . . . . . 9
⊢ (𝑦 ∈ {∅} ↔ 𝑦 = ∅) |
| 11 | 10 | notbii 669 |
. . . . . . . 8
⊢ (¬
𝑦 ∈ {∅} ↔
¬ 𝑦 =
∅) |
| 12 | 11 | anbi2i 457 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ {∅}) ↔ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 = ∅)) |
| 13 | 9, 12 | bitri 184 |
. . . . . 6
⊢ (𝑦 ∈ (𝐴 ∖ {∅}) ↔ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 = ∅)) |
| 14 | 13 | anbi2i 457 |
. . . . 5
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∖ {∅})) ↔ (𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 = ∅))) |
| 15 | 14 | exbii 1619 |
. . . 4
⊢
(∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∖ {∅})) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 = ∅))) |
| 16 | 8, 15 | bitri 184 |
. . 3
⊢ (𝑥 ∈ ∪ (𝐴
∖ {∅}) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 = ∅))) |
| 17 | | eluni 3843 |
. . 3
⊢ (𝑥 ∈ ∪ 𝐴
↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) |
| 18 | 7, 16, 17 | 3bitr4i 212 |
. 2
⊢ (𝑥 ∈ ∪ (𝐴
∖ {∅}) ↔ 𝑥
∈ ∪ 𝐴) |
| 19 | 18 | eqriv 2193 |
1
⊢ ∪ (𝐴
∖ {∅}) = ∪ 𝐴 |