ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unidif0 GIF version

Theorem unidif0 4146
Description: The removal of the empty set from a class does not affect its union. (Contributed by NM, 22-Mar-2004.)
Assertion
Ref Expression
unidif0 (𝐴 ∖ {∅}) = 𝐴

Proof of Theorem unidif0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 3414 . . . . . . 7 (𝑥𝑦 → ¬ 𝑦 = ∅)
21pm4.71i 389 . . . . . 6 (𝑥𝑦 ↔ (𝑥𝑦 ∧ ¬ 𝑦 = ∅))
32anbi1i 454 . . . . 5 ((𝑥𝑦𝑦𝐴) ↔ ((𝑥𝑦 ∧ ¬ 𝑦 = ∅) ∧ 𝑦𝐴))
4 an32 552 . . . . 5 (((𝑥𝑦𝑦𝐴) ∧ ¬ 𝑦 = ∅) ↔ ((𝑥𝑦 ∧ ¬ 𝑦 = ∅) ∧ 𝑦𝐴))
5 anass 399 . . . . 5 (((𝑥𝑦𝑦𝐴) ∧ ¬ 𝑦 = ∅) ↔ (𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦 = ∅)))
63, 4, 53bitr2ri 208 . . . 4 ((𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦 = ∅)) ↔ (𝑥𝑦𝑦𝐴))
76exbii 1593 . . 3 (∃𝑦(𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦 = ∅)) ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
8 eluni 3792 . . . 4 (𝑥 (𝐴 ∖ {∅}) ↔ ∃𝑦(𝑥𝑦𝑦 ∈ (𝐴 ∖ {∅})))
9 eldif 3125 . . . . . . 7 (𝑦 ∈ (𝐴 ∖ {∅}) ↔ (𝑦𝐴 ∧ ¬ 𝑦 ∈ {∅}))
10 velsn 3593 . . . . . . . . 9 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
1110notbii 658 . . . . . . . 8 𝑦 ∈ {∅} ↔ ¬ 𝑦 = ∅)
1211anbi2i 453 . . . . . . 7 ((𝑦𝐴 ∧ ¬ 𝑦 ∈ {∅}) ↔ (𝑦𝐴 ∧ ¬ 𝑦 = ∅))
139, 12bitri 183 . . . . . 6 (𝑦 ∈ (𝐴 ∖ {∅}) ↔ (𝑦𝐴 ∧ ¬ 𝑦 = ∅))
1413anbi2i 453 . . . . 5 ((𝑥𝑦𝑦 ∈ (𝐴 ∖ {∅})) ↔ (𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦 = ∅)))
1514exbii 1593 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ (𝐴 ∖ {∅})) ↔ ∃𝑦(𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦 = ∅)))
168, 15bitri 183 . . 3 (𝑥 (𝐴 ∖ {∅}) ↔ ∃𝑦(𝑥𝑦 ∧ (𝑦𝐴 ∧ ¬ 𝑦 = ∅)))
17 eluni 3792 . . 3 (𝑥 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
187, 16, 173bitr4i 211 . 2 (𝑥 (𝐴 ∖ {∅}) ↔ 𝑥 𝐴)
1918eqriv 2162 1 (𝐴 ∖ {∅}) = 𝐴
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103   = wceq 1343  wex 1480  wcel 2136  cdif 3113  c0 3409  {csn 3576   cuni 3789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-nul 3410  df-sn 3582  df-uni 3790
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator