| Step | Hyp | Ref
 | Expression | 
| 1 |   | n0i 3456 | 
. . . . . . 7
⊢ (𝑥 ∈ 𝑦 → ¬ 𝑦 = ∅) | 
| 2 | 1 | pm4.71i 391 | 
. . . . . 6
⊢ (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑦 ∧ ¬ 𝑦 = ∅)) | 
| 3 | 2 | anbi1i 458 | 
. . . . 5
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ↔ ((𝑥 ∈ 𝑦 ∧ ¬ 𝑦 = ∅) ∧ 𝑦 ∈ 𝐴)) | 
| 4 |   | an32 562 | 
. . . . 5
⊢ (((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 = ∅) ↔ ((𝑥 ∈ 𝑦 ∧ ¬ 𝑦 = ∅) ∧ 𝑦 ∈ 𝐴)) | 
| 5 |   | anass 401 | 
. . . . 5
⊢ (((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 = ∅) ↔ (𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 = ∅))) | 
| 6 | 3, 4, 5 | 3bitr2ri 209 | 
. . . 4
⊢ ((𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 = ∅)) ↔ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | 
| 7 | 6 | exbii 1619 | 
. . 3
⊢
(∃𝑦(𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 = ∅)) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | 
| 8 |   | eluni 3842 | 
. . . 4
⊢ (𝑥 ∈ ∪ (𝐴
∖ {∅}) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∖ {∅}))) | 
| 9 |   | eldif 3166 | 
. . . . . . 7
⊢ (𝑦 ∈ (𝐴 ∖ {∅}) ↔ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ {∅})) | 
| 10 |   | velsn 3639 | 
. . . . . . . . 9
⊢ (𝑦 ∈ {∅} ↔ 𝑦 = ∅) | 
| 11 | 10 | notbii 669 | 
. . . . . . . 8
⊢ (¬
𝑦 ∈ {∅} ↔
¬ 𝑦 =
∅) | 
| 12 | 11 | anbi2i 457 | 
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ {∅}) ↔ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 = ∅)) | 
| 13 | 9, 12 | bitri 184 | 
. . . . . 6
⊢ (𝑦 ∈ (𝐴 ∖ {∅}) ↔ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 = ∅)) | 
| 14 | 13 | anbi2i 457 | 
. . . . 5
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∖ {∅})) ↔ (𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 = ∅))) | 
| 15 | 14 | exbii 1619 | 
. . . 4
⊢
(∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∖ {∅})) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 = ∅))) | 
| 16 | 8, 15 | bitri 184 | 
. . 3
⊢ (𝑥 ∈ ∪ (𝐴
∖ {∅}) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 = ∅))) | 
| 17 |   | eluni 3842 | 
. . 3
⊢ (𝑥 ∈ ∪ 𝐴
↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | 
| 18 | 7, 16, 17 | 3bitr4i 212 | 
. 2
⊢ (𝑥 ∈ ∪ (𝐴
∖ {∅}) ↔ 𝑥
∈ ∪ 𝐴) | 
| 19 | 18 | eqriv 2193 | 
1
⊢ ∪ (𝐴
∖ {∅}) = ∪ 𝐴 |