| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iin0r | GIF version | ||
| Description: If an indexed intersection of the empty set is empty, the index set is nonempty. (Contributed by Jim Kingdon, 29-Aug-2018.) |
| Ref | Expression |
|---|---|
| iin0r | ⊢ (∩ 𝑥 ∈ 𝐴 ∅ = ∅ → 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4175 | . . . . 5 ⊢ ∅ ∈ V | |
| 2 | n0i 3467 | . . . . 5 ⊢ (∅ ∈ V → ¬ V = ∅) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ ¬ V = ∅ |
| 4 | 0iin 3988 | . . . . 5 ⊢ ∩ 𝑥 ∈ ∅ ∅ = V | |
| 5 | 4 | eqeq1i 2214 | . . . 4 ⊢ (∩ 𝑥 ∈ ∅ ∅ = ∅ ↔ V = ∅) |
| 6 | 3, 5 | mtbir 673 | . . 3 ⊢ ¬ ∩ 𝑥 ∈ ∅ ∅ = ∅ |
| 7 | iineq1 3943 | . . . 4 ⊢ (𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 ∅ = ∩ 𝑥 ∈ ∅ ∅) | |
| 8 | 7 | eqeq1d 2215 | . . 3 ⊢ (𝐴 = ∅ → (∩ 𝑥 ∈ 𝐴 ∅ = ∅ ↔ ∩ 𝑥 ∈ ∅ ∅ = ∅)) |
| 9 | 6, 8 | mtbiri 677 | . 2 ⊢ (𝐴 = ∅ → ¬ ∩ 𝑥 ∈ 𝐴 ∅ = ∅) |
| 10 | 9 | necon2ai 2431 | 1 ⊢ (∩ 𝑥 ∈ 𝐴 ∅ = ∅ → 𝐴 ≠ ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 Vcvv 2773 ∅c0 3461 ∩ ciin 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-nul 4174 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-v 2775 df-dif 3169 df-nul 3462 df-iin 3932 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |