![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iin0r | GIF version |
Description: If an indexed intersection of the empty set is empty, the index set is nonempty. (Contributed by Jim Kingdon, 29-Aug-2018.) |
Ref | Expression |
---|---|
iin0r | ⊢ (∩ 𝑥 ∈ 𝐴 ∅ = ∅ → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4156 | . . . . 5 ⊢ ∅ ∈ V | |
2 | n0i 3452 | . . . . 5 ⊢ (∅ ∈ V → ¬ V = ∅) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ ¬ V = ∅ |
4 | 0iin 3971 | . . . . 5 ⊢ ∩ 𝑥 ∈ ∅ ∅ = V | |
5 | 4 | eqeq1i 2201 | . . . 4 ⊢ (∩ 𝑥 ∈ ∅ ∅ = ∅ ↔ V = ∅) |
6 | 3, 5 | mtbir 672 | . . 3 ⊢ ¬ ∩ 𝑥 ∈ ∅ ∅ = ∅ |
7 | iineq1 3926 | . . . 4 ⊢ (𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 ∅ = ∩ 𝑥 ∈ ∅ ∅) | |
8 | 7 | eqeq1d 2202 | . . 3 ⊢ (𝐴 = ∅ → (∩ 𝑥 ∈ 𝐴 ∅ = ∅ ↔ ∩ 𝑥 ∈ ∅ ∅ = ∅)) |
9 | 6, 8 | mtbiri 676 | . 2 ⊢ (𝐴 = ∅ → ¬ ∩ 𝑥 ∈ 𝐴 ∅ = ∅) |
10 | 9 | necon2ai 2418 | 1 ⊢ (∩ 𝑥 ∈ 𝐴 ∅ = ∅ → 𝐴 ≠ ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 Vcvv 2760 ∅c0 3446 ∩ ciin 3913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-nul 4155 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-v 2762 df-dif 3155 df-nul 3447 df-iin 3915 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |