![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iin0r | GIF version |
Description: If an indexed intersection of the empty set is empty, the index set is nonempty. (Contributed by Jim Kingdon, 29-Aug-2018.) |
Ref | Expression |
---|---|
iin0r | ⊢ (∩ 𝑥 ∈ 𝐴 ∅ = ∅ → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 3995 | . . . . 5 ⊢ ∅ ∈ V | |
2 | n0i 3315 | . . . . 5 ⊢ (∅ ∈ V → ¬ V = ∅) | |
3 | 1, 2 | ax-mp 7 | . . . 4 ⊢ ¬ V = ∅ |
4 | 0iin 3818 | . . . . 5 ⊢ ∩ 𝑥 ∈ ∅ ∅ = V | |
5 | 4 | eqeq1i 2107 | . . . 4 ⊢ (∩ 𝑥 ∈ ∅ ∅ = ∅ ↔ V = ∅) |
6 | 3, 5 | mtbir 637 | . . 3 ⊢ ¬ ∩ 𝑥 ∈ ∅ ∅ = ∅ |
7 | iineq1 3774 | . . . 4 ⊢ (𝐴 = ∅ → ∩ 𝑥 ∈ 𝐴 ∅ = ∩ 𝑥 ∈ ∅ ∅) | |
8 | 7 | eqeq1d 2108 | . . 3 ⊢ (𝐴 = ∅ → (∩ 𝑥 ∈ 𝐴 ∅ = ∅ ↔ ∩ 𝑥 ∈ ∅ ∅ = ∅)) |
9 | 6, 8 | mtbiri 641 | . 2 ⊢ (𝐴 = ∅ → ¬ ∩ 𝑥 ∈ 𝐴 ∅ = ∅) |
10 | 9 | necon2ai 2321 | 1 ⊢ (∩ 𝑥 ∈ 𝐴 ∅ = ∅ → 𝐴 ≠ ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1299 ∈ wcel 1448 ≠ wne 2267 Vcvv 2641 ∅c0 3310 ∩ ciin 3761 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-nul 3994 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-ral 2380 df-v 2643 df-dif 3023 df-nul 3311 df-iin 3763 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |