ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iin0r GIF version

Theorem iin0r 4232
Description: If an indexed intersection of the empty set is empty, the index set is nonempty. (Contributed by Jim Kingdon, 29-Aug-2018.)
Assertion
Ref Expression
iin0r ( 𝑥𝐴 ∅ = ∅ → 𝐴 ≠ ∅)
Distinct variable group:   𝑥,𝐴

Proof of Theorem iin0r
StepHypRef Expression
1 0ex 4190 . . . . 5 ∅ ∈ V
2 n0i 3477 . . . . 5 (∅ ∈ V → ¬ V = ∅)
31, 2ax-mp 5 . . . 4 ¬ V = ∅
4 0iin 4003 . . . . 5 𝑥 ∈ ∅ ∅ = V
54eqeq1i 2217 . . . 4 ( 𝑥 ∈ ∅ ∅ = ∅ ↔ V = ∅)
63, 5mtbir 675 . . 3 ¬ 𝑥 ∈ ∅ ∅ = ∅
7 iineq1 3958 . . . 4 (𝐴 = ∅ → 𝑥𝐴 ∅ = 𝑥 ∈ ∅ ∅)
87eqeq1d 2218 . . 3 (𝐴 = ∅ → ( 𝑥𝐴 ∅ = ∅ ↔ 𝑥 ∈ ∅ ∅ = ∅))
96, 8mtbiri 679 . 2 (𝐴 = ∅ → ¬ 𝑥𝐴 ∅ = ∅)
109necon2ai 2434 1 ( 𝑥𝐴 ∅ = ∅ → 𝐴 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1375  wcel 2180  wne 2380  Vcvv 2779  c0 3471   ciin 3945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191  ax-nul 4189
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-v 2781  df-dif 3179  df-nul 3472  df-iin 3947
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator