ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iin0r GIF version

Theorem iin0r 4148
Description: If an indexed intersection of the empty set is empty, the index set is nonempty. (Contributed by Jim Kingdon, 29-Aug-2018.)
Assertion
Ref Expression
iin0r ( 𝑥𝐴 ∅ = ∅ → 𝐴 ≠ ∅)
Distinct variable group:   𝑥,𝐴

Proof of Theorem iin0r
StepHypRef Expression
1 0ex 4109 . . . . 5 ∅ ∈ V
2 n0i 3414 . . . . 5 (∅ ∈ V → ¬ V = ∅)
31, 2ax-mp 5 . . . 4 ¬ V = ∅
4 0iin 3924 . . . . 5 𝑥 ∈ ∅ ∅ = V
54eqeq1i 2173 . . . 4 ( 𝑥 ∈ ∅ ∅ = ∅ ↔ V = ∅)
63, 5mtbir 661 . . 3 ¬ 𝑥 ∈ ∅ ∅ = ∅
7 iineq1 3880 . . . 4 (𝐴 = ∅ → 𝑥𝐴 ∅ = 𝑥 ∈ ∅ ∅)
87eqeq1d 2174 . . 3 (𝐴 = ∅ → ( 𝑥𝐴 ∅ = ∅ ↔ 𝑥 ∈ ∅ ∅ = ∅))
96, 8mtbiri 665 . 2 (𝐴 = ∅ → ¬ 𝑥𝐴 ∅ = ∅)
109necon2ai 2390 1 ( 𝑥𝐴 ∅ = ∅ → 𝐴 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1343  wcel 2136  wne 2336  Vcvv 2726  c0 3409   ciin 3867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-nul 4108
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-v 2728  df-dif 3118  df-nul 3410  df-iin 3869
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator