| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > climge0 | GIF version | ||
| Description: A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005.) |
| Ref | Expression |
|---|---|
| climrecl.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climrecl.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climrecl.3 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| climrecl.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
| climge0.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) |
| Ref | Expression |
|---|---|
| climge0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climrecl.1 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climrecl.2 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | 2 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 < 0) → 𝑀 ∈ ℤ) |
| 4 | climrecl.3 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
| 5 | climrecl.4 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | |
| 6 | 1, 2, 4, 5 | climrecl 11843 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 7 | 6 | adantr 276 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 < 0) → 𝐴 ∈ ℝ) |
| 8 | 7 | renegcld 8534 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 < 0) → -𝐴 ∈ ℝ) |
| 9 | 6 | lt0neg1d 8670 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴)) |
| 10 | 9 | biimpa 296 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 < 0) → 0 < -𝐴) |
| 11 | 8, 10 | elrpd 9897 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 < 0) → -𝐴 ∈ ℝ+) |
| 12 | eqidd 2230 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
| 13 | 4 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 < 0) → 𝐹 ⇝ 𝐴) |
| 14 | 1, 3, 11, 12, 13 | climi2 11807 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 < 0) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴) |
| 15 | 1 | r19.2uz 11512 | . . . . 5 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴 → ∃𝑘 ∈ 𝑍 (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴) |
| 16 | 14, 15 | syl 14 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 0) → ∃𝑘 ∈ 𝑍 (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴) |
| 17 | simprr 531 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴) | |
| 18 | 5 | ad2ant2r 509 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → (𝐹‘𝑘) ∈ ℝ) |
| 19 | 7 | adantr 276 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → 𝐴 ∈ ℝ) |
| 20 | 8 | adantr 276 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → -𝐴 ∈ ℝ) |
| 21 | 18, 19, 20 | absdifltd 11697 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → ((abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴 ↔ ((𝐴 − -𝐴) < (𝐹‘𝑘) ∧ (𝐹‘𝑘) < (𝐴 + -𝐴)))) |
| 22 | 17, 21 | mpbid 147 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → ((𝐴 − -𝐴) < (𝐹‘𝑘) ∧ (𝐹‘𝑘) < (𝐴 + -𝐴))) |
| 23 | 22 | simprd 114 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → (𝐹‘𝑘) < (𝐴 + -𝐴)) |
| 24 | 19 | recnd 8183 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → 𝐴 ∈ ℂ) |
| 25 | 24 | negidd 8455 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → (𝐴 + -𝐴) = 0) |
| 26 | 23, 25 | breqtrd 4109 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → (𝐹‘𝑘) < 0) |
| 27 | climge0.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) | |
| 28 | 27 | ad2ant2r 509 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → 0 ≤ (𝐹‘𝑘)) |
| 29 | 0red 8155 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → 0 ∈ ℝ) | |
| 30 | 29, 18 | lenltd 8272 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → (0 ≤ (𝐹‘𝑘) ↔ ¬ (𝐹‘𝑘) < 0)) |
| 31 | 28, 30 | mpbid 147 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → ¬ (𝐹‘𝑘) < 0) |
| 32 | 26, 31 | pm2.21fal 1415 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → ⊥) |
| 33 | 16, 32 | rexlimddv 2653 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 0) → ⊥) |
| 34 | 33 | inegd 1414 | . 2 ⊢ (𝜑 → ¬ 𝐴 < 0) |
| 35 | 0re 8154 | . . 3 ⊢ 0 ∈ ℝ | |
| 36 | lenlt 8230 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0)) | |
| 37 | 35, 6, 36 | sylancr 414 | . 2 ⊢ (𝜑 → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0)) |
| 38 | 34, 37 | mpbird 167 | 1 ⊢ (𝜑 → 0 ≤ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ⊥wfal 1400 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 class class class wbr 4083 ‘cfv 5318 (class class class)co 6007 ℝcr 8006 0cc0 8007 + caddc 8010 < clt 8189 ≤ cle 8190 − cmin 8325 -cneg 8326 ℤcz 9454 ℤ≥cuz 9730 abscabs 11516 ⇝ cli 11797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-rp 9858 df-seqfrec 10678 df-exp 10769 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-clim 11798 |
| This theorem is referenced by: climle 11853 |
| Copyright terms: Public domain | W3C validator |