ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climge0 GIF version

Theorem climge0 11266
Description: A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005.)
Hypotheses
Ref Expression
climrecl.1 𝑍 = (ℤ𝑀)
climrecl.2 (𝜑𝑀 ∈ ℤ)
climrecl.3 (𝜑𝐹𝐴)
climrecl.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
climge0.5 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
Assertion
Ref Expression
climge0 (𝜑 → 0 ≤ 𝐴)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍   𝐴,𝑘

Proof of Theorem climge0
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climrecl.1 . . . . . 6 𝑍 = (ℤ𝑀)
2 climrecl.2 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
32adantr 274 . . . . . 6 ((𝜑𝐴 < 0) → 𝑀 ∈ ℤ)
4 climrecl.3 . . . . . . . . . 10 (𝜑𝐹𝐴)
5 climrecl.4 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
61, 2, 4, 5climrecl 11265 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
76adantr 274 . . . . . . . 8 ((𝜑𝐴 < 0) → 𝐴 ∈ ℝ)
87renegcld 8278 . . . . . . 7 ((𝜑𝐴 < 0) → -𝐴 ∈ ℝ)
96lt0neg1d 8413 . . . . . . . 8 (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴))
109biimpa 294 . . . . . . 7 ((𝜑𝐴 < 0) → 0 < -𝐴)
118, 10elrpd 9629 . . . . . 6 ((𝜑𝐴 < 0) → -𝐴 ∈ ℝ+)
12 eqidd 2166 . . . . . 6 (((𝜑𝐴 < 0) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
134adantr 274 . . . . . 6 ((𝜑𝐴 < 0) → 𝐹𝐴)
141, 3, 11, 12, 13climi2 11229 . . . . 5 ((𝜑𝐴 < 0) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < -𝐴)
151r19.2uz 10935 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < -𝐴 → ∃𝑘𝑍 (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)
1614, 15syl 14 . . . 4 ((𝜑𝐴 < 0) → ∃𝑘𝑍 (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)
17 simprr 522 . . . . . . . 8 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)
185ad2ant2r 501 . . . . . . . . 9 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (𝐹𝑘) ∈ ℝ)
197adantr 274 . . . . . . . . 9 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → 𝐴 ∈ ℝ)
208adantr 274 . . . . . . . . 9 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → -𝐴 ∈ ℝ)
2118, 19, 20absdifltd 11120 . . . . . . . 8 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → ((abs‘((𝐹𝑘) − 𝐴)) < -𝐴 ↔ ((𝐴 − -𝐴) < (𝐹𝑘) ∧ (𝐹𝑘) < (𝐴 + -𝐴))))
2217, 21mpbid 146 . . . . . . 7 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → ((𝐴 − -𝐴) < (𝐹𝑘) ∧ (𝐹𝑘) < (𝐴 + -𝐴)))
2322simprd 113 . . . . . 6 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (𝐹𝑘) < (𝐴 + -𝐴))
2419recnd 7927 . . . . . . 7 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → 𝐴 ∈ ℂ)
2524negidd 8199 . . . . . 6 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (𝐴 + -𝐴) = 0)
2623, 25breqtrd 4008 . . . . 5 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (𝐹𝑘) < 0)
27 climge0.5 . . . . . . 7 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
2827ad2ant2r 501 . . . . . 6 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → 0 ≤ (𝐹𝑘))
29 0red 7900 . . . . . . 7 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → 0 ∈ ℝ)
3029, 18lenltd 8016 . . . . . 6 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (0 ≤ (𝐹𝑘) ↔ ¬ (𝐹𝑘) < 0))
3128, 30mpbid 146 . . . . 5 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → ¬ (𝐹𝑘) < 0)
3226, 31pm2.21fal 1363 . . . 4 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → ⊥)
3316, 32rexlimddv 2588 . . 3 ((𝜑𝐴 < 0) → ⊥)
3433inegd 1362 . 2 (𝜑 → ¬ 𝐴 < 0)
35 0re 7899 . . 3 0 ∈ ℝ
36 lenlt 7974 . . 3 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
3735, 6, 36sylancr 411 . 2 (𝜑 → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
3834, 37mpbird 166 1 (𝜑 → 0 ≤ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1343  wfal 1348  wcel 2136  wral 2444  wrex 2445   class class class wbr 3982  cfv 5188  (class class class)co 5842  cr 7752  0cc0 7753   + caddc 7756   < clt 7933  cle 7934  cmin 8069  -cneg 8070  cz 9191  cuz 9466  abscabs 10939  cli 11219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220
This theorem is referenced by:  climle  11275
  Copyright terms: Public domain W3C validator