Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > climge0 | GIF version |
Description: A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005.) |
Ref | Expression |
---|---|
climrecl.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climrecl.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climrecl.3 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climrecl.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
climge0.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) |
Ref | Expression |
---|---|
climge0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climrecl.1 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climrecl.2 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | 2 | adantr 274 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 < 0) → 𝑀 ∈ ℤ) |
4 | climrecl.3 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
5 | climrecl.4 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | |
6 | 1, 2, 4, 5 | climrecl 11287 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
7 | 6 | adantr 274 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 < 0) → 𝐴 ∈ ℝ) |
8 | 7 | renegcld 8299 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 < 0) → -𝐴 ∈ ℝ) |
9 | 6 | lt0neg1d 8434 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴)) |
10 | 9 | biimpa 294 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 < 0) → 0 < -𝐴) |
11 | 8, 10 | elrpd 9650 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 < 0) → -𝐴 ∈ ℝ+) |
12 | eqidd 2171 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
13 | 4 | adantr 274 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 < 0) → 𝐹 ⇝ 𝐴) |
14 | 1, 3, 11, 12, 13 | climi2 11251 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 < 0) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴) |
15 | 1 | r19.2uz 10957 | . . . . 5 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴 → ∃𝑘 ∈ 𝑍 (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴) |
16 | 14, 15 | syl 14 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 0) → ∃𝑘 ∈ 𝑍 (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴) |
17 | simprr 527 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴) | |
18 | 5 | ad2ant2r 506 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → (𝐹‘𝑘) ∈ ℝ) |
19 | 7 | adantr 274 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → 𝐴 ∈ ℝ) |
20 | 8 | adantr 274 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → -𝐴 ∈ ℝ) |
21 | 18, 19, 20 | absdifltd 11142 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → ((abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴 ↔ ((𝐴 − -𝐴) < (𝐹‘𝑘) ∧ (𝐹‘𝑘) < (𝐴 + -𝐴)))) |
22 | 17, 21 | mpbid 146 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → ((𝐴 − -𝐴) < (𝐹‘𝑘) ∧ (𝐹‘𝑘) < (𝐴 + -𝐴))) |
23 | 22 | simprd 113 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → (𝐹‘𝑘) < (𝐴 + -𝐴)) |
24 | 19 | recnd 7948 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → 𝐴 ∈ ℂ) |
25 | 24 | negidd 8220 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → (𝐴 + -𝐴) = 0) |
26 | 23, 25 | breqtrd 4015 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → (𝐹‘𝑘) < 0) |
27 | climge0.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) | |
28 | 27 | ad2ant2r 506 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → 0 ≤ (𝐹‘𝑘)) |
29 | 0red 7921 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → 0 ∈ ℝ) | |
30 | 29, 18 | lenltd 8037 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → (0 ≤ (𝐹‘𝑘) ↔ ¬ (𝐹‘𝑘) < 0)) |
31 | 28, 30 | mpbid 146 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → ¬ (𝐹‘𝑘) < 0) |
32 | 26, 31 | pm2.21fal 1368 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → ⊥) |
33 | 16, 32 | rexlimddv 2592 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 0) → ⊥) |
34 | 33 | inegd 1367 | . 2 ⊢ (𝜑 → ¬ 𝐴 < 0) |
35 | 0re 7920 | . . 3 ⊢ 0 ∈ ℝ | |
36 | lenlt 7995 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0)) | |
37 | 35, 6, 36 | sylancr 412 | . 2 ⊢ (𝜑 → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0)) |
38 | 34, 37 | mpbird 166 | 1 ⊢ (𝜑 → 0 ≤ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ⊥wfal 1353 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 class class class wbr 3989 ‘cfv 5198 (class class class)co 5853 ℝcr 7773 0cc0 7774 + caddc 7777 < clt 7954 ≤ cle 7955 − cmin 8090 -cneg 8091 ℤcz 9212 ℤ≥cuz 9487 abscabs 10961 ⇝ cli 11241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-rp 9611 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-clim 11242 |
This theorem is referenced by: climle 11297 |
Copyright terms: Public domain | W3C validator |