![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > climge0 | GIF version |
Description: A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005.) |
Ref | Expression |
---|---|
climrecl.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climrecl.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climrecl.3 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climrecl.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
climge0.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) |
Ref | Expression |
---|---|
climge0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climrecl.1 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climrecl.2 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | 2 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 < 0) → 𝑀 ∈ ℤ) |
4 | climrecl.3 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
5 | climrecl.4 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) | |
6 | 1, 2, 4, 5 | climrecl 11467 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
7 | 6 | adantr 276 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 < 0) → 𝐴 ∈ ℝ) |
8 | 7 | renegcld 8399 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 < 0) → -𝐴 ∈ ℝ) |
9 | 6 | lt0neg1d 8534 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴)) |
10 | 9 | biimpa 296 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 < 0) → 0 < -𝐴) |
11 | 8, 10 | elrpd 9759 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 < 0) → -𝐴 ∈ ℝ+) |
12 | eqidd 2194 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
13 | 4 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 < 0) → 𝐹 ⇝ 𝐴) |
14 | 1, 3, 11, 12, 13 | climi2 11431 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 < 0) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴) |
15 | 1 | r19.2uz 11137 | . . . . 5 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴 → ∃𝑘 ∈ 𝑍 (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴) |
16 | 14, 15 | syl 14 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 0) → ∃𝑘 ∈ 𝑍 (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴) |
17 | simprr 531 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴) | |
18 | 5 | ad2ant2r 509 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → (𝐹‘𝑘) ∈ ℝ) |
19 | 7 | adantr 276 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → 𝐴 ∈ ℝ) |
20 | 8 | adantr 276 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → -𝐴 ∈ ℝ) |
21 | 18, 19, 20 | absdifltd 11322 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → ((abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴 ↔ ((𝐴 − -𝐴) < (𝐹‘𝑘) ∧ (𝐹‘𝑘) < (𝐴 + -𝐴)))) |
22 | 17, 21 | mpbid 147 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → ((𝐴 − -𝐴) < (𝐹‘𝑘) ∧ (𝐹‘𝑘) < (𝐴 + -𝐴))) |
23 | 22 | simprd 114 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → (𝐹‘𝑘) < (𝐴 + -𝐴)) |
24 | 19 | recnd 8048 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → 𝐴 ∈ ℂ) |
25 | 24 | negidd 8320 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → (𝐴 + -𝐴) = 0) |
26 | 23, 25 | breqtrd 4055 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → (𝐹‘𝑘) < 0) |
27 | climge0.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) | |
28 | 27 | ad2ant2r 509 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → 0 ≤ (𝐹‘𝑘)) |
29 | 0red 8020 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → 0 ∈ ℝ) | |
30 | 29, 18 | lenltd 8137 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → (0 ≤ (𝐹‘𝑘) ↔ ¬ (𝐹‘𝑘) < 0)) |
31 | 28, 30 | mpbid 147 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → ¬ (𝐹‘𝑘) < 0) |
32 | 26, 31 | pm2.21fal 1384 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 < 0) ∧ (𝑘 ∈ 𝑍 ∧ (abs‘((𝐹‘𝑘) − 𝐴)) < -𝐴)) → ⊥) |
33 | 16, 32 | rexlimddv 2616 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 0) → ⊥) |
34 | 33 | inegd 1383 | . 2 ⊢ (𝜑 → ¬ 𝐴 < 0) |
35 | 0re 8019 | . . 3 ⊢ 0 ∈ ℝ | |
36 | lenlt 8095 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0)) | |
37 | 35, 6, 36 | sylancr 414 | . 2 ⊢ (𝜑 → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0)) |
38 | 34, 37 | mpbird 167 | 1 ⊢ (𝜑 → 0 ≤ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ⊥wfal 1369 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 ℝcr 7871 0cc0 7872 + caddc 7875 < clt 8054 ≤ cle 8055 − cmin 8190 -cneg 8191 ℤcz 9317 ℤ≥cuz 9592 abscabs 11141 ⇝ cli 11421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-rp 9720 df-seqfrec 10519 df-exp 10610 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-clim 11422 |
This theorem is referenced by: climle 11477 |
Copyright terms: Public domain | W3C validator |