ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climge0 GIF version

Theorem climge0 11333
Description: A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005.)
Hypotheses
Ref Expression
climrecl.1 𝑍 = (ℤ𝑀)
climrecl.2 (𝜑𝑀 ∈ ℤ)
climrecl.3 (𝜑𝐹𝐴)
climrecl.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
climge0.5 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
Assertion
Ref Expression
climge0 (𝜑 → 0 ≤ 𝐴)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍   𝐴,𝑘

Proof of Theorem climge0
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climrecl.1 . . . . . 6 𝑍 = (ℤ𝑀)
2 climrecl.2 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
32adantr 276 . . . . . 6 ((𝜑𝐴 < 0) → 𝑀 ∈ ℤ)
4 climrecl.3 . . . . . . . . . 10 (𝜑𝐹𝐴)
5 climrecl.4 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
61, 2, 4, 5climrecl 11332 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
76adantr 276 . . . . . . . 8 ((𝜑𝐴 < 0) → 𝐴 ∈ ℝ)
87renegcld 8337 . . . . . . 7 ((𝜑𝐴 < 0) → -𝐴 ∈ ℝ)
96lt0neg1d 8472 . . . . . . . 8 (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴))
109biimpa 296 . . . . . . 7 ((𝜑𝐴 < 0) → 0 < -𝐴)
118, 10elrpd 9693 . . . . . 6 ((𝜑𝐴 < 0) → -𝐴 ∈ ℝ+)
12 eqidd 2178 . . . . . 6 (((𝜑𝐴 < 0) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
134adantr 276 . . . . . 6 ((𝜑𝐴 < 0) → 𝐹𝐴)
141, 3, 11, 12, 13climi2 11296 . . . . 5 ((𝜑𝐴 < 0) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < -𝐴)
151r19.2uz 11002 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < -𝐴 → ∃𝑘𝑍 (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)
1614, 15syl 14 . . . 4 ((𝜑𝐴 < 0) → ∃𝑘𝑍 (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)
17 simprr 531 . . . . . . . 8 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)
185ad2ant2r 509 . . . . . . . . 9 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (𝐹𝑘) ∈ ℝ)
197adantr 276 . . . . . . . . 9 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → 𝐴 ∈ ℝ)
208adantr 276 . . . . . . . . 9 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → -𝐴 ∈ ℝ)
2118, 19, 20absdifltd 11187 . . . . . . . 8 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → ((abs‘((𝐹𝑘) − 𝐴)) < -𝐴 ↔ ((𝐴 − -𝐴) < (𝐹𝑘) ∧ (𝐹𝑘) < (𝐴 + -𝐴))))
2217, 21mpbid 147 . . . . . . 7 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → ((𝐴 − -𝐴) < (𝐹𝑘) ∧ (𝐹𝑘) < (𝐴 + -𝐴)))
2322simprd 114 . . . . . 6 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (𝐹𝑘) < (𝐴 + -𝐴))
2419recnd 7986 . . . . . . 7 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → 𝐴 ∈ ℂ)
2524negidd 8258 . . . . . 6 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (𝐴 + -𝐴) = 0)
2623, 25breqtrd 4030 . . . . 5 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (𝐹𝑘) < 0)
27 climge0.5 . . . . . . 7 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
2827ad2ant2r 509 . . . . . 6 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → 0 ≤ (𝐹𝑘))
29 0red 7958 . . . . . . 7 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → 0 ∈ ℝ)
3029, 18lenltd 8075 . . . . . 6 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (0 ≤ (𝐹𝑘) ↔ ¬ (𝐹𝑘) < 0))
3128, 30mpbid 147 . . . . 5 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → ¬ (𝐹𝑘) < 0)
3226, 31pm2.21fal 1373 . . . 4 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → ⊥)
3316, 32rexlimddv 2599 . . 3 ((𝜑𝐴 < 0) → ⊥)
3433inegd 1372 . 2 (𝜑 → ¬ 𝐴 < 0)
35 0re 7957 . . 3 0 ∈ ℝ
36 lenlt 8033 . . 3 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
3735, 6, 36sylancr 414 . 2 (𝜑 → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
3834, 37mpbird 167 1 (𝜑 → 0 ≤ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1353  wfal 1358  wcel 2148  wral 2455  wrex 2456   class class class wbr 4004  cfv 5217  (class class class)co 5875  cr 7810  0cc0 7811   + caddc 7814   < clt 7992  cle 7993  cmin 8128  -cneg 8129  cz 9253  cuz 9528  abscabs 11006  cli 11286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-rp 9654  df-seqfrec 10446  df-exp 10520  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287
This theorem is referenced by:  climle  11342
  Copyright terms: Public domain W3C validator