ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climge0 GIF version

Theorem climge0 11062
Description: A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005.)
Hypotheses
Ref Expression
climrecl.1 𝑍 = (ℤ𝑀)
climrecl.2 (𝜑𝑀 ∈ ℤ)
climrecl.3 (𝜑𝐹𝐴)
climrecl.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
climge0.5 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
Assertion
Ref Expression
climge0 (𝜑 → 0 ≤ 𝐴)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍   𝐴,𝑘

Proof of Theorem climge0
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climrecl.1 . . . . . 6 𝑍 = (ℤ𝑀)
2 climrecl.2 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
32adantr 274 . . . . . 6 ((𝜑𝐴 < 0) → 𝑀 ∈ ℤ)
4 climrecl.3 . . . . . . . . . 10 (𝜑𝐹𝐴)
5 climrecl.4 . . . . . . . . . 10 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
61, 2, 4, 5climrecl 11061 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
76adantr 274 . . . . . . . 8 ((𝜑𝐴 < 0) → 𝐴 ∈ ℝ)
87renegcld 8110 . . . . . . 7 ((𝜑𝐴 < 0) → -𝐴 ∈ ℝ)
96lt0neg1d 8245 . . . . . . . 8 (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴))
109biimpa 294 . . . . . . 7 ((𝜑𝐴 < 0) → 0 < -𝐴)
118, 10elrpd 9449 . . . . . 6 ((𝜑𝐴 < 0) → -𝐴 ∈ ℝ+)
12 eqidd 2118 . . . . . 6 (((𝜑𝐴 < 0) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
134adantr 274 . . . . . 6 ((𝜑𝐴 < 0) → 𝐹𝐴)
141, 3, 11, 12, 13climi2 11025 . . . . 5 ((𝜑𝐴 < 0) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < -𝐴)
151r19.2uz 10733 . . . . 5 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < -𝐴 → ∃𝑘𝑍 (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)
1614, 15syl 14 . . . 4 ((𝜑𝐴 < 0) → ∃𝑘𝑍 (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)
17 simprr 506 . . . . . . . 8 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)
185ad2ant2r 500 . . . . . . . . 9 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (𝐹𝑘) ∈ ℝ)
197adantr 274 . . . . . . . . 9 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → 𝐴 ∈ ℝ)
208adantr 274 . . . . . . . . 9 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → -𝐴 ∈ ℝ)
2118, 19, 20absdifltd 10918 . . . . . . . 8 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → ((abs‘((𝐹𝑘) − 𝐴)) < -𝐴 ↔ ((𝐴 − -𝐴) < (𝐹𝑘) ∧ (𝐹𝑘) < (𝐴 + -𝐴))))
2217, 21mpbid 146 . . . . . . 7 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → ((𝐴 − -𝐴) < (𝐹𝑘) ∧ (𝐹𝑘) < (𝐴 + -𝐴)))
2322simprd 113 . . . . . 6 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (𝐹𝑘) < (𝐴 + -𝐴))
2419recnd 7762 . . . . . . 7 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → 𝐴 ∈ ℂ)
2524negidd 8031 . . . . . 6 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (𝐴 + -𝐴) = 0)
2623, 25breqtrd 3924 . . . . 5 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (𝐹𝑘) < 0)
27 climge0.5 . . . . . . 7 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
2827ad2ant2r 500 . . . . . 6 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → 0 ≤ (𝐹𝑘))
29 0red 7735 . . . . . . 7 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → 0 ∈ ℝ)
3029, 18lenltd 7848 . . . . . 6 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → (0 ≤ (𝐹𝑘) ↔ ¬ (𝐹𝑘) < 0))
3128, 30mpbid 146 . . . . 5 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → ¬ (𝐹𝑘) < 0)
3226, 31pm2.21fal 1336 . . . 4 (((𝜑𝐴 < 0) ∧ (𝑘𝑍 ∧ (abs‘((𝐹𝑘) − 𝐴)) < -𝐴)) → ⊥)
3316, 32rexlimddv 2531 . . 3 ((𝜑𝐴 < 0) → ⊥)
3433inegd 1335 . 2 (𝜑 → ¬ 𝐴 < 0)
35 0re 7734 . . 3 0 ∈ ℝ
36 lenlt 7808 . . 3 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
3735, 6, 36sylancr 410 . 2 (𝜑 → (0 ≤ 𝐴 ↔ ¬ 𝐴 < 0))
3834, 37mpbird 166 1 (𝜑 → 0 ≤ 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1316  wfal 1321  wcel 1465  wral 2393  wrex 2394   class class class wbr 3899  cfv 5093  (class class class)co 5742  cr 7587  0cc0 7588   + caddc 7591   < clt 7768  cle 7769  cmin 7901  -cneg 7902  cz 9022  cuz 9294  abscabs 10737  cli 11015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707  ax-caucvg 7708
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-2 8747  df-3 8748  df-4 8749  df-n0 8946  df-z 9023  df-uz 9295  df-rp 9410  df-seqfrec 10187  df-exp 10261  df-cj 10582  df-re 10583  df-im 10584  df-rsqrt 10738  df-abs 10739  df-clim 11016
This theorem is referenced by:  climle  11071
  Copyright terms: Public domain W3C validator