ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemdisj GIF version

Theorem caucvgprlemdisj 7800
Description: Lemma for caucvgpr 7808. The putative limit is disjoint. (Contributed by Jim Kingdon, 27-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
Assertion
Ref Expression
caucvgprlemdisj (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑘   𝐹,𝑙,𝑗   𝑢,𝐹,𝑗   𝑛,𝐹   𝑗,𝐿,𝑘   𝜑,𝑗,𝑠,𝑘   𝑠,𝑙   𝑢,𝑠   𝑘,𝑛
Allowed substitution hints:   𝜑(𝑢,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑠,𝑙)   𝐹(𝑠)   𝐿(𝑢,𝑛,𝑠,𝑙)

Proof of Theorem caucvgprlemdisj
StepHypRef Expression
1 oveq1 5961 . . . . . . . . . . . 12 (𝑙 = 𝑠 → (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
21breq1d 4058 . . . . . . . . . . 11 (𝑙 = 𝑠 → ((𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
32rexbidv 2508 . . . . . . . . . 10 (𝑙 = 𝑠 → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
4 caucvgpr.lim . . . . . . . . . . . 12 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
54fveq2i 5589 . . . . . . . . . . 11 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩)
6 nqex 7489 . . . . . . . . . . . . 13 Q ∈ V
76rabex 4193 . . . . . . . . . . . 12 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ∈ V
86rabex 4193 . . . . . . . . . . . 12 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ∈ V
97, 8op1st 6242 . . . . . . . . . . 11 (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}
105, 9eqtri 2227 . . . . . . . . . 10 (1st𝐿) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}
113, 10elrab2 2934 . . . . . . . . 9 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
1211simprbi 275 . . . . . . . 8 (𝑠 ∈ (1st𝐿) → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
13 opeq1 3822 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → ⟨𝑗, 1o⟩ = ⟨𝑘, 1o⟩)
1413eceq1d 6666 . . . . . . . . . . . 12 (𝑗 = 𝑘 → [⟨𝑗, 1o⟩] ~Q = [⟨𝑘, 1o⟩] ~Q )
1514fveq2d 5590 . . . . . . . . . . 11 (𝑗 = 𝑘 → (*Q‘[⟨𝑗, 1o⟩] ~Q ) = (*Q‘[⟨𝑘, 1o⟩] ~Q ))
1615oveq2d 5970 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )))
17 fveq2 5586 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
1816, 17breq12d 4061 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘)))
1918cbvrexv 2740 . . . . . . . 8 (∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑘N (𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘))
2012, 19sylib 122 . . . . . . 7 (𝑠 ∈ (1st𝐿) → ∃𝑘N (𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘))
21 breq2 4052 . . . . . . . . . 10 (𝑢 = 𝑠 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
2221rexbidv 2508 . . . . . . . . 9 (𝑢 = 𝑠 → (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
234fveq2i 5589 . . . . . . . . . 10 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩)
247, 8op2nd 6243 . . . . . . . . . 10 (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
2523, 24eqtri 2227 . . . . . . . . 9 (2nd𝐿) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
2622, 25elrab2 2934 . . . . . . . 8 (𝑠 ∈ (2nd𝐿) ↔ (𝑠Q ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
2726simprbi 275 . . . . . . 7 (𝑠 ∈ (2nd𝐿) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠)
2820, 27anim12i 338 . . . . . 6 ((𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) → (∃𝑘N (𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘) ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
29 reeanv 2677 . . . . . 6 (∃𝑘N𝑗N ((𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘) ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠) ↔ (∃𝑘N (𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘) ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
3028, 29sylibr 134 . . . . 5 ((𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) → ∃𝑘N𝑗N ((𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘) ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
3130adantl 277 . . . 4 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → ∃𝑘N𝑗N ((𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘) ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
32 caucvgpr.f . . . . . . . 8 (𝜑𝐹:NQ)
3332ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑘N𝑗N)) → 𝐹:NQ)
34 caucvgpr.cau . . . . . . . 8 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
3534ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑘N𝑗N)) → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
36 simprl 529 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑘N𝑗N)) → 𝑘N)
37 simprr 531 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑘N𝑗N)) → 𝑗N)
3811simplbi 274 . . . . . . . . 9 (𝑠 ∈ (1st𝐿) → 𝑠Q)
3938ad2antrl 490 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → 𝑠Q)
4039adantr 276 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑘N𝑗N)) → 𝑠Q)
4133, 35, 36, 37, 40caucvgprlemnkj 7792 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑘N𝑗N)) → ¬ ((𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘) ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
4241pm2.21d 620 . . . . 5 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑘N𝑗N)) → (((𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘) ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠) → ⊥))
4342rexlimdvva 2632 . . . 4 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → (∃𝑘N𝑗N ((𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘) ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠) → ⊥))
4431, 43mpd 13 . . 3 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → ⊥)
4544inegd 1392 . 2 (𝜑 → ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
4645ralrimivw 2581 1 (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1373  wfal 1378  wcel 2177  wral 2485  wrex 2486  {crab 2489  cop 3638   class class class wbr 4048  wf 5273  cfv 5277  (class class class)co 5954  1st c1st 6234  2nd c2nd 6235  1oc1o 6505  [cec 6628  Ncnpi 7398   <N clti 7401   ~Q ceq 7405  Qcnq 7406   +Q cplq 7408  *Qcrq 7410   <Q cltq 7411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-eprel 4341  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-1o 6512  df-oadd 6516  df-omul 6517  df-er 6630  df-ec 6632  df-qs 6636  df-ni 7430  df-pli 7431  df-mi 7432  df-lti 7433  df-plpq 7470  df-mpq 7471  df-enq 7473  df-nqqs 7474  df-plqqs 7475  df-mqqs 7476  df-1nqqs 7477  df-rq 7478  df-ltnqqs 7479
This theorem is referenced by:  caucvgprlemcl  7802
  Copyright terms: Public domain W3C validator