Proof of Theorem caucvgprlemdisj
| Step | Hyp | Ref
 | Expression | 
| 1 |   | oveq1 5929 | 
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑠 → (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) | 
| 2 | 1 | breq1d 4043 | 
. . . . . . . . . . 11
⊢ (𝑙 = 𝑠 → ((𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) | 
| 3 | 2 | rexbidv 2498 | 
. . . . . . . . . 10
⊢ (𝑙 = 𝑠 → (∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ ∃𝑗 ∈ N (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) | 
| 4 |   | caucvgpr.lim | 
. . . . . . . . . . . 12
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 | 
| 5 | 4 | fveq2i 5561 | 
. . . . . . . . . . 11
⊢
(1st ‘𝐿) = (1st ‘〈{𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) | 
| 6 |   | nqex 7430 | 
. . . . . . . . . . . . 13
⊢
Q ∈ V | 
| 7 | 6 | rabex 4177 | 
. . . . . . . . . . . 12
⊢ {𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} ∈ V | 
| 8 | 6 | rabex 4177 | 
. . . . . . . . . . . 12
⊢ {𝑢 ∈ Q ∣
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} ∈ V | 
| 9 | 7, 8 | op1st 6204 | 
. . . . . . . . . . 11
⊢
(1st ‘〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) = {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} | 
| 10 | 5, 9 | eqtri 2217 | 
. . . . . . . . . 10
⊢
(1st ‘𝐿) = {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} | 
| 11 | 3, 10 | elrab2 2923 | 
. . . . . . . . 9
⊢ (𝑠 ∈ (1st
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑗 ∈
N (𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) | 
| 12 | 11 | simprbi 275 | 
. . . . . . . 8
⊢ (𝑠 ∈ (1st
‘𝐿) →
∃𝑗 ∈
N (𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) | 
| 13 |   | opeq1 3808 | 
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑘 → 〈𝑗, 1o〉 = 〈𝑘,
1o〉) | 
| 14 | 13 | eceq1d 6628 | 
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → [〈𝑗, 1o〉]
~Q = [〈𝑘, 1o〉]
~Q ) | 
| 15 | 14 | fveq2d 5562 | 
. . . . . . . . . . 11
⊢ (𝑗 = 𝑘 →
(*Q‘[〈𝑗, 1o〉]
~Q ) = (*Q‘[〈𝑘, 1o〉]
~Q )) | 
| 16 | 15 | oveq2d 5938 | 
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = (𝑠 +Q
(*Q‘[〈𝑘, 1o〉]
~Q ))) | 
| 17 |   | fveq2 5558 | 
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (𝐹‘𝑗) = (𝐹‘𝑘)) | 
| 18 | 16, 17 | breq12d 4046 | 
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ (𝑠 +Q
(*Q‘[〈𝑘, 1o〉]
~Q )) <Q (𝐹‘𝑘))) | 
| 19 | 18 | cbvrexv 2730 | 
. . . . . . . 8
⊢
(∃𝑗 ∈
N (𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ ∃𝑘 ∈ N (𝑠 +Q
(*Q‘[〈𝑘, 1o〉]
~Q )) <Q (𝐹‘𝑘)) | 
| 20 | 12, 19 | sylib 122 | 
. . . . . . 7
⊢ (𝑠 ∈ (1st
‘𝐿) →
∃𝑘 ∈
N (𝑠
+Q (*Q‘[〈𝑘, 1o〉]
~Q )) <Q (𝐹‘𝑘)) | 
| 21 |   | breq2 4037 | 
. . . . . . . . . 10
⊢ (𝑢 = 𝑠 → (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) | 
| 22 | 21 | rexbidv 2498 | 
. . . . . . . . 9
⊢ (𝑢 = 𝑠 → (∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) | 
| 23 | 4 | fveq2i 5561 | 
. . . . . . . . . 10
⊢
(2nd ‘𝐿) = (2nd ‘〈{𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) | 
| 24 | 7, 8 | op2nd 6205 | 
. . . . . . . . . 10
⊢
(2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) = {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} | 
| 25 | 23, 24 | eqtri 2217 | 
. . . . . . . . 9
⊢
(2nd ‘𝐿) = {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} | 
| 26 | 22, 25 | elrab2 2923 | 
. . . . . . . 8
⊢ (𝑠 ∈ (2nd
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) | 
| 27 | 26 | simprbi 275 | 
. . . . . . 7
⊢ (𝑠 ∈ (2nd
‘𝐿) →
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠) | 
| 28 | 20, 27 | anim12i 338 | 
. . . . . 6
⊢ ((𝑠 ∈ (1st
‘𝐿) ∧ 𝑠 ∈ (2nd
‘𝐿)) →
(∃𝑘 ∈
N (𝑠
+Q (*Q‘[〈𝑘, 1o〉]
~Q )) <Q (𝐹‘𝑘) ∧ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) | 
| 29 |   | reeanv 2667 | 
. . . . . 6
⊢
(∃𝑘 ∈
N ∃𝑗
∈ N ((𝑠
+Q (*Q‘[〈𝑘, 1o〉]
~Q )) <Q (𝐹‘𝑘) ∧ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠) ↔ (∃𝑘 ∈ N (𝑠 +Q
(*Q‘[〈𝑘, 1o〉]
~Q )) <Q (𝐹‘𝑘) ∧ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) | 
| 30 | 28, 29 | sylibr 134 | 
. . . . 5
⊢ ((𝑠 ∈ (1st
‘𝐿) ∧ 𝑠 ∈ (2nd
‘𝐿)) →
∃𝑘 ∈
N ∃𝑗
∈ N ((𝑠
+Q (*Q‘[〈𝑘, 1o〉]
~Q )) <Q (𝐹‘𝑘) ∧ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) | 
| 31 | 30 | adantl 277 | 
. . . 4
⊢ ((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) → ∃𝑘 ∈ N
∃𝑗 ∈
N ((𝑠
+Q (*Q‘[〈𝑘, 1o〉]
~Q )) <Q (𝐹‘𝑘) ∧ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) | 
| 32 |   | caucvgpr.f | 
. . . . . . . 8
⊢ (𝜑 → 𝐹:N⟶Q) | 
| 33 | 32 | ad2antrr 488 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) ∧ (𝑘 ∈ N ∧ 𝑗 ∈ N)) →
𝐹:N⟶Q) | 
| 34 |   | caucvgpr.cau | 
. . . . . . . 8
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q ))))) | 
| 35 | 34 | ad2antrr 488 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) ∧ (𝑘 ∈ N ∧ 𝑗 ∈ N)) →
∀𝑛 ∈
N ∀𝑘
∈ N (𝑛
<N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q ))))) | 
| 36 |   | simprl 529 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) ∧ (𝑘 ∈ N ∧ 𝑗 ∈ N)) →
𝑘 ∈
N) | 
| 37 |   | simprr 531 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) ∧ (𝑘 ∈ N ∧ 𝑗 ∈ N)) →
𝑗 ∈
N) | 
| 38 | 11 | simplbi 274 | 
. . . . . . . . 9
⊢ (𝑠 ∈ (1st
‘𝐿) → 𝑠 ∈
Q) | 
| 39 | 38 | ad2antrl 490 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) → 𝑠 ∈ Q) | 
| 40 | 39 | adantr 276 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) ∧ (𝑘 ∈ N ∧ 𝑗 ∈ N)) →
𝑠 ∈
Q) | 
| 41 | 33, 35, 36, 37, 40 | caucvgprlemnkj 7733 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) ∧ (𝑘 ∈ N ∧ 𝑗 ∈ N)) →
¬ ((𝑠
+Q (*Q‘[〈𝑘, 1o〉]
~Q )) <Q (𝐹‘𝑘) ∧ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) | 
| 42 | 41 | pm2.21d 620 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) ∧ (𝑘 ∈ N ∧ 𝑗 ∈ N)) →
(((𝑠
+Q (*Q‘[〈𝑘, 1o〉]
~Q )) <Q (𝐹‘𝑘) ∧ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠) →
⊥)) | 
| 43 | 42 | rexlimdvva 2622 | 
. . . 4
⊢ ((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) → (∃𝑘 ∈ N
∃𝑗 ∈
N ((𝑠
+Q (*Q‘[〈𝑘, 1o〉]
~Q )) <Q (𝐹‘𝑘) ∧ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠) →
⊥)) | 
| 44 | 31, 43 | mpd 13 | 
. . 3
⊢ ((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) →
⊥) | 
| 45 | 44 | inegd 1383 | 
. 2
⊢ (𝜑 → ¬ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) | 
| 46 | 45 | ralrimivw 2571 | 
1
⊢ (𝜑 → ∀𝑠 ∈ Q ¬ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑠 ∈ (2nd
‘𝐿))) |