Proof of Theorem caucvgprlemdisj
| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 5929 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑠 → (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) |
| 2 | 1 | breq1d 4043 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝑠 → ((𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
| 3 | 2 | rexbidv 2498 |
. . . . . . . . . 10
⊢ (𝑙 = 𝑠 → (∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ ∃𝑗 ∈ N (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
| 4 | | caucvgpr.lim |
. . . . . . . . . . . 12
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 |
| 5 | 4 | fveq2i 5561 |
. . . . . . . . . . 11
⊢
(1st ‘𝐿) = (1st ‘〈{𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) |
| 6 | | nqex 7430 |
. . . . . . . . . . . . 13
⊢
Q ∈ V |
| 7 | 6 | rabex 4177 |
. . . . . . . . . . . 12
⊢ {𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} ∈ V |
| 8 | 6 | rabex 4177 |
. . . . . . . . . . . 12
⊢ {𝑢 ∈ Q ∣
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} ∈ V |
| 9 | 7, 8 | op1st 6204 |
. . . . . . . . . . 11
⊢
(1st ‘〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) = {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} |
| 10 | 5, 9 | eqtri 2217 |
. . . . . . . . . 10
⊢
(1st ‘𝐿) = {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)} |
| 11 | 3, 10 | elrab2 2923 |
. . . . . . . . 9
⊢ (𝑠 ∈ (1st
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑗 ∈
N (𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗))) |
| 12 | 11 | simprbi 275 |
. . . . . . . 8
⊢ (𝑠 ∈ (1st
‘𝐿) →
∃𝑗 ∈
N (𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)) |
| 13 | | opeq1 3808 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑘 → 〈𝑗, 1o〉 = 〈𝑘,
1o〉) |
| 14 | 13 | eceq1d 6628 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → [〈𝑗, 1o〉]
~Q = [〈𝑘, 1o〉]
~Q ) |
| 15 | 14 | fveq2d 5562 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑘 →
(*Q‘[〈𝑗, 1o〉]
~Q ) = (*Q‘[〈𝑘, 1o〉]
~Q )) |
| 16 | 15 | oveq2d 5938 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = (𝑠 +Q
(*Q‘[〈𝑘, 1o〉]
~Q ))) |
| 17 | | fveq2 5558 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (𝐹‘𝑗) = (𝐹‘𝑘)) |
| 18 | 16, 17 | breq12d 4046 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → ((𝑠 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ (𝑠 +Q
(*Q‘[〈𝑘, 1o〉]
~Q )) <Q (𝐹‘𝑘))) |
| 19 | 18 | cbvrexv 2730 |
. . . . . . . 8
⊢
(∃𝑗 ∈
N (𝑠
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗) ↔ ∃𝑘 ∈ N (𝑠 +Q
(*Q‘[〈𝑘, 1o〉]
~Q )) <Q (𝐹‘𝑘)) |
| 20 | 12, 19 | sylib 122 |
. . . . . . 7
⊢ (𝑠 ∈ (1st
‘𝐿) →
∃𝑘 ∈
N (𝑠
+Q (*Q‘[〈𝑘, 1o〉]
~Q )) <Q (𝐹‘𝑘)) |
| 21 | | breq2 4037 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑠 → (((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) |
| 22 | 21 | rexbidv 2498 |
. . . . . . . . 9
⊢ (𝑢 = 𝑠 → (∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢 ↔ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) |
| 23 | 4 | fveq2i 5561 |
. . . . . . . . . 10
⊢
(2nd ‘𝐿) = (2nd ‘〈{𝑙 ∈ Q ∣
∃𝑗 ∈
N (𝑙
+Q (*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) |
| 24 | 7, 8 | op2nd 6205 |
. . . . . . . . . 10
⊢
(2nd ‘〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉) = {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} |
| 25 | 23, 24 | eqtri 2217 |
. . . . . . . . 9
⊢
(2nd ‘𝐿) = {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢} |
| 26 | 22, 25 | elrab2 2923 |
. . . . . . . 8
⊢ (𝑠 ∈ (2nd
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) |
| 27 | 26 | simprbi 275 |
. . . . . . 7
⊢ (𝑠 ∈ (2nd
‘𝐿) →
∃𝑗 ∈
N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠) |
| 28 | 20, 27 | anim12i 338 |
. . . . . 6
⊢ ((𝑠 ∈ (1st
‘𝐿) ∧ 𝑠 ∈ (2nd
‘𝐿)) →
(∃𝑘 ∈
N (𝑠
+Q (*Q‘[〈𝑘, 1o〉]
~Q )) <Q (𝐹‘𝑘) ∧ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) |
| 29 | | reeanv 2667 |
. . . . . 6
⊢
(∃𝑘 ∈
N ∃𝑗
∈ N ((𝑠
+Q (*Q‘[〈𝑘, 1o〉]
~Q )) <Q (𝐹‘𝑘) ∧ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠) ↔ (∃𝑘 ∈ N (𝑠 +Q
(*Q‘[〈𝑘, 1o〉]
~Q )) <Q (𝐹‘𝑘) ∧ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) |
| 30 | 28, 29 | sylibr 134 |
. . . . 5
⊢ ((𝑠 ∈ (1st
‘𝐿) ∧ 𝑠 ∈ (2nd
‘𝐿)) →
∃𝑘 ∈
N ∃𝑗
∈ N ((𝑠
+Q (*Q‘[〈𝑘, 1o〉]
~Q )) <Q (𝐹‘𝑘) ∧ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) |
| 31 | 30 | adantl 277 |
. . . 4
⊢ ((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) → ∃𝑘 ∈ N
∃𝑗 ∈
N ((𝑠
+Q (*Q‘[〈𝑘, 1o〉]
~Q )) <Q (𝐹‘𝑘) ∧ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) |
| 32 | | caucvgpr.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:N⟶Q) |
| 33 | 32 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) ∧ (𝑘 ∈ N ∧ 𝑗 ∈ N)) →
𝐹:N⟶Q) |
| 34 | | caucvgpr.cau |
. . . . . . . 8
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q ))))) |
| 35 | 34 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) ∧ (𝑘 ∈ N ∧ 𝑗 ∈ N)) →
∀𝑛 ∈
N ∀𝑘
∈ N (𝑛
<N 𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q ))))) |
| 36 | | simprl 529 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) ∧ (𝑘 ∈ N ∧ 𝑗 ∈ N)) →
𝑘 ∈
N) |
| 37 | | simprr 531 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) ∧ (𝑘 ∈ N ∧ 𝑗 ∈ N)) →
𝑗 ∈
N) |
| 38 | 11 | simplbi 274 |
. . . . . . . . 9
⊢ (𝑠 ∈ (1st
‘𝐿) → 𝑠 ∈
Q) |
| 39 | 38 | ad2antrl 490 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) → 𝑠 ∈ Q) |
| 40 | 39 | adantr 276 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) ∧ (𝑘 ∈ N ∧ 𝑗 ∈ N)) →
𝑠 ∈
Q) |
| 41 | 33, 35, 36, 37, 40 | caucvgprlemnkj 7733 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) ∧ (𝑘 ∈ N ∧ 𝑗 ∈ N)) →
¬ ((𝑠
+Q (*Q‘[〈𝑘, 1o〉]
~Q )) <Q (𝐹‘𝑘) ∧ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠)) |
| 42 | 41 | pm2.21d 620 |
. . . . 5
⊢ (((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) ∧ (𝑘 ∈ N ∧ 𝑗 ∈ N)) →
(((𝑠
+Q (*Q‘[〈𝑘, 1o〉]
~Q )) <Q (𝐹‘𝑘) ∧ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠) →
⊥)) |
| 43 | 42 | rexlimdvva 2622 |
. . . 4
⊢ ((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) → (∃𝑘 ∈ N
∃𝑗 ∈
N ((𝑠
+Q (*Q‘[〈𝑘, 1o〉]
~Q )) <Q (𝐹‘𝑘) ∧ ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑠) →
⊥)) |
| 44 | 31, 43 | mpd 13 |
. . 3
⊢ ((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) →
⊥) |
| 45 | 44 | inegd 1383 |
. 2
⊢ (𝜑 → ¬ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) |
| 46 | 45 | ralrimivw 2571 |
1
⊢ (𝜑 → ∀𝑠 ∈ Q ¬ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑠 ∈ (2nd
‘𝐿))) |