ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemdisj GIF version

Theorem caucvgprlemdisj 7506
Description: Lemma for caucvgpr 7514. The putative limit is disjoint. (Contributed by Jim Kingdon, 27-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
Assertion
Ref Expression
caucvgprlemdisj (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑘   𝐹,𝑙,𝑗   𝑢,𝐹,𝑗   𝑛,𝐹   𝑗,𝐿,𝑘   𝜑,𝑗,𝑠,𝑘   𝑠,𝑙   𝑢,𝑠   𝑘,𝑛
Allowed substitution hints:   𝜑(𝑢,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑠,𝑙)   𝐹(𝑠)   𝐿(𝑢,𝑛,𝑠,𝑙)

Proof of Theorem caucvgprlemdisj
StepHypRef Expression
1 oveq1 5789 . . . . . . . . . . . 12 (𝑙 = 𝑠 → (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
21breq1d 3947 . . . . . . . . . . 11 (𝑙 = 𝑠 → ((𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
32rexbidv 2439 . . . . . . . . . 10 (𝑙 = 𝑠 → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
4 caucvgpr.lim . . . . . . . . . . . 12 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
54fveq2i 5432 . . . . . . . . . . 11 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩)
6 nqex 7195 . . . . . . . . . . . . 13 Q ∈ V
76rabex 4080 . . . . . . . . . . . 12 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ∈ V
86rabex 4080 . . . . . . . . . . . 12 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ∈ V
97, 8op1st 6052 . . . . . . . . . . 11 (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}
105, 9eqtri 2161 . . . . . . . . . 10 (1st𝐿) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}
113, 10elrab2 2847 . . . . . . . . 9 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
1211simprbi 273 . . . . . . . 8 (𝑠 ∈ (1st𝐿) → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
13 opeq1 3713 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → ⟨𝑗, 1o⟩ = ⟨𝑘, 1o⟩)
1413eceq1d 6473 . . . . . . . . . . . 12 (𝑗 = 𝑘 → [⟨𝑗, 1o⟩] ~Q = [⟨𝑘, 1o⟩] ~Q )
1514fveq2d 5433 . . . . . . . . . . 11 (𝑗 = 𝑘 → (*Q‘[⟨𝑗, 1o⟩] ~Q ) = (*Q‘[⟨𝑘, 1o⟩] ~Q ))
1615oveq2d 5798 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )))
17 fveq2 5429 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
1816, 17breq12d 3950 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘)))
1918cbvrexv 2658 . . . . . . . 8 (∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑘N (𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘))
2012, 19sylib 121 . . . . . . 7 (𝑠 ∈ (1st𝐿) → ∃𝑘N (𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘))
21 breq2 3941 . . . . . . . . . 10 (𝑢 = 𝑠 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
2221rexbidv 2439 . . . . . . . . 9 (𝑢 = 𝑠 → (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
234fveq2i 5432 . . . . . . . . . 10 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩)
247, 8op2nd 6053 . . . . . . . . . 10 (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
2523, 24eqtri 2161 . . . . . . . . 9 (2nd𝐿) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
2622, 25elrab2 2847 . . . . . . . 8 (𝑠 ∈ (2nd𝐿) ↔ (𝑠Q ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
2726simprbi 273 . . . . . . 7 (𝑠 ∈ (2nd𝐿) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠)
2820, 27anim12i 336 . . . . . 6 ((𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) → (∃𝑘N (𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘) ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
29 reeanv 2603 . . . . . 6 (∃𝑘N𝑗N ((𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘) ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠) ↔ (∃𝑘N (𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘) ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
3028, 29sylibr 133 . . . . 5 ((𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) → ∃𝑘N𝑗N ((𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘) ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
3130adantl 275 . . . 4 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → ∃𝑘N𝑗N ((𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘) ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
32 caucvgpr.f . . . . . . . 8 (𝜑𝐹:NQ)
3332ad2antrr 480 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑘N𝑗N)) → 𝐹:NQ)
34 caucvgpr.cau . . . . . . . 8 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
3534ad2antrr 480 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑘N𝑗N)) → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
36 simprl 521 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑘N𝑗N)) → 𝑘N)
37 simprr 522 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑘N𝑗N)) → 𝑗N)
3811simplbi 272 . . . . . . . . 9 (𝑠 ∈ (1st𝐿) → 𝑠Q)
3938ad2antrl 482 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → 𝑠Q)
4039adantr 274 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑘N𝑗N)) → 𝑠Q)
4133, 35, 36, 37, 40caucvgprlemnkj 7498 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑘N𝑗N)) → ¬ ((𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘) ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
4241pm2.21d 609 . . . . 5 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑘N𝑗N)) → (((𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘) ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠) → ⊥))
4342rexlimdvva 2560 . . . 4 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → (∃𝑘N𝑗N ((𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘) ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠) → ⊥))
4431, 43mpd 13 . . 3 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → ⊥)
4544inegd 1351 . 2 (𝜑 → ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
4645ralrimivw 2509 1 (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1332  wfal 1337  wcel 1481  wral 2417  wrex 2418  {crab 2421  cop 3535   class class class wbr 3937  wf 5127  cfv 5131  (class class class)co 5782  1st c1st 6044  2nd c2nd 6045  1oc1o 6314  [cec 6435  Ncnpi 7104   <N clti 7107   ~Q ceq 7111  Qcnq 7112   +Q cplq 7114  *Qcrq 7116   <Q cltq 7117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185
This theorem is referenced by:  caucvgprlemcl  7508
  Copyright terms: Public domain W3C validator