ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemdisj GIF version

Theorem caucvgprlemdisj 7615
Description: Lemma for caucvgpr 7623. The putative limit is disjoint. (Contributed by Jim Kingdon, 27-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
Assertion
Ref Expression
caucvgprlemdisj (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑘   𝐹,𝑙,𝑗   𝑢,𝐹,𝑗   𝑛,𝐹   𝑗,𝐿,𝑘   𝜑,𝑗,𝑠,𝑘   𝑠,𝑙   𝑢,𝑠   𝑘,𝑛
Allowed substitution hints:   𝜑(𝑢,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑠,𝑙)   𝐹(𝑠)   𝐿(𝑢,𝑛,𝑠,𝑙)

Proof of Theorem caucvgprlemdisj
StepHypRef Expression
1 oveq1 5849 . . . . . . . . . . . 12 (𝑙 = 𝑠 → (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
21breq1d 3992 . . . . . . . . . . 11 (𝑙 = 𝑠 → ((𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
32rexbidv 2467 . . . . . . . . . 10 (𝑙 = 𝑠 → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
4 caucvgpr.lim . . . . . . . . . . . 12 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
54fveq2i 5489 . . . . . . . . . . 11 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩)
6 nqex 7304 . . . . . . . . . . . . 13 Q ∈ V
76rabex 4126 . . . . . . . . . . . 12 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)} ∈ V
86rabex 4126 . . . . . . . . . . . 12 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢} ∈ V
97, 8op1st 6114 . . . . . . . . . . 11 (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}
105, 9eqtri 2186 . . . . . . . . . 10 (1st𝐿) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}
113, 10elrab2 2885 . . . . . . . . 9 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)))
1211simprbi 273 . . . . . . . 8 (𝑠 ∈ (1st𝐿) → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗))
13 opeq1 3758 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → ⟨𝑗, 1o⟩ = ⟨𝑘, 1o⟩)
1413eceq1d 6537 . . . . . . . . . . . 12 (𝑗 = 𝑘 → [⟨𝑗, 1o⟩] ~Q = [⟨𝑘, 1o⟩] ~Q )
1514fveq2d 5490 . . . . . . . . . . 11 (𝑗 = 𝑘 → (*Q‘[⟨𝑗, 1o⟩] ~Q ) = (*Q‘[⟨𝑘, 1o⟩] ~Q ))
1615oveq2d 5858 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )))
17 fveq2 5486 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
1816, 17breq12d 3995 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘)))
1918cbvrexv 2693 . . . . . . . 8 (∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑘N (𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘))
2012, 19sylib 121 . . . . . . 7 (𝑠 ∈ (1st𝐿) → ∃𝑘N (𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘))
21 breq2 3986 . . . . . . . . . 10 (𝑢 = 𝑠 → (((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
2221rexbidv 2467 . . . . . . . . 9 (𝑢 = 𝑠 → (∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢 ↔ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
234fveq2i 5489 . . . . . . . . . 10 (2nd𝐿) = (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩)
247, 8op2nd 6115 . . . . . . . . . 10 (2nd ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
2523, 24eqtri 2186 . . . . . . . . 9 (2nd𝐿) = {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}
2622, 25elrab2 2885 . . . . . . . 8 (𝑠 ∈ (2nd𝐿) ↔ (𝑠Q ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
2726simprbi 273 . . . . . . 7 (𝑠 ∈ (2nd𝐿) → ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠)
2820, 27anim12i 336 . . . . . 6 ((𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) → (∃𝑘N (𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘) ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
29 reeanv 2635 . . . . . 6 (∃𝑘N𝑗N ((𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘) ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠) ↔ (∃𝑘N (𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘) ∧ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
3028, 29sylibr 133 . . . . 5 ((𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) → ∃𝑘N𝑗N ((𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘) ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
3130adantl 275 . . . 4 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → ∃𝑘N𝑗N ((𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘) ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
32 caucvgpr.f . . . . . . . 8 (𝜑𝐹:NQ)
3332ad2antrr 480 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑘N𝑗N)) → 𝐹:NQ)
34 caucvgpr.cau . . . . . . . 8 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
3534ad2antrr 480 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑘N𝑗N)) → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
36 simprl 521 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑘N𝑗N)) → 𝑘N)
37 simprr 522 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑘N𝑗N)) → 𝑗N)
3811simplbi 272 . . . . . . . . 9 (𝑠 ∈ (1st𝐿) → 𝑠Q)
3938ad2antrl 482 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → 𝑠Q)
4039adantr 274 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑘N𝑗N)) → 𝑠Q)
4133, 35, 36, 37, 40caucvgprlemnkj 7607 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑘N𝑗N)) → ¬ ((𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘) ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠))
4241pm2.21d 609 . . . . 5 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑘N𝑗N)) → (((𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘) ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠) → ⊥))
4342rexlimdvva 2591 . . . 4 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → (∃𝑘N𝑗N ((𝑠 +Q (*Q‘[⟨𝑘, 1o⟩] ~Q )) <Q (𝐹𝑘) ∧ ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑠) → ⊥))
4431, 43mpd 13 . . 3 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → ⊥)
4544inegd 1362 . 2 (𝜑 → ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
4645ralrimivw 2540 1 (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1343  wfal 1348  wcel 2136  wral 2444  wrex 2445  {crab 2448  cop 3579   class class class wbr 3982  wf 5184  cfv 5188  (class class class)co 5842  1st c1st 6106  2nd c2nd 6107  1oc1o 6377  [cec 6499  Ncnpi 7213   <N clti 7216   ~Q ceq 7220  Qcnq 7221   +Q cplq 7223  *Qcrq 7225   <Q cltq 7226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294
This theorem is referenced by:  caucvgprlemcl  7617
  Copyright terms: Public domain W3C validator