Step | Hyp | Ref
| Expression |
1 | | caucvgprpr.lim |
. . . . . . . . 9
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 |
2 | 1 | caucvgprprlemell 7640 |
. . . . . . . 8
⊢ (𝑠 ∈ (1st
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑎 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑎))) |
3 | 2 | simprbi 273 |
. . . . . . 7
⊢ (𝑠 ∈ (1st
‘𝐿) →
∃𝑎 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑎)) |
4 | 1 | caucvgprprlemelu 7641 |
. . . . . . . 8
⊢ (𝑠 ∈ (2nd
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑏 ∈
N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉)) |
5 | 4 | simprbi 273 |
. . . . . . 7
⊢ (𝑠 ∈ (2nd
‘𝐿) →
∃𝑏 ∈
N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉) |
6 | 3, 5 | anim12i 336 |
. . . . . 6
⊢ ((𝑠 ∈ (1st
‘𝐿) ∧ 𝑠 ∈ (2nd
‘𝐿)) →
(∃𝑎 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑎) ∧ ∃𝑏 ∈ N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉)) |
7 | | reeanv 2639 |
. . . . . 6
⊢
(∃𝑎 ∈
N ∃𝑏
∈ N (〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑎) ∧ ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉) ↔ (∃𝑎 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑎) ∧ ∃𝑏 ∈ N ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉)) |
8 | 6, 7 | sylibr 133 |
. . . . 5
⊢ ((𝑠 ∈ (1st
‘𝐿) ∧ 𝑠 ∈ (2nd
‘𝐿)) →
∃𝑎 ∈
N ∃𝑏
∈ N (〈{𝑝 ∣ 𝑝 <Q (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑎) ∧ ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉)) |
9 | 8 | adantl 275 |
. . . 4
⊢ ((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) → ∃𝑎 ∈ N
∃𝑏 ∈
N (〈{𝑝
∣ 𝑝
<Q (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑎) ∧ ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉)) |
10 | | caucvgprpr.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:N⟶P) |
11 | 10 | ad2antrr 485 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) ∧ (𝑎 ∈ N ∧ 𝑏 ∈ N)) →
𝐹:N⟶P) |
12 | | caucvgprpr.cau |
. . . . . . . 8
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉)))) |
13 | 12 | ad2antrr 485 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) ∧ (𝑎 ∈ N ∧ 𝑏 ∈ N)) →
∀𝑛 ∈
N ∀𝑘
∈ N (𝑛
<N 𝑘 → ((𝐹‘𝑛)<P ((𝐹‘𝑘) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉) ∧ (𝐹‘𝑘)<P ((𝐹‘𝑛) +P 〈{𝑙 ∣ 𝑙 <Q
(*Q‘[〈𝑛, 1o〉]
~Q )}, {𝑢 ∣
(*Q‘[〈𝑛, 1o〉]
~Q ) <Q 𝑢}〉)))) |
14 | | simprl 526 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) ∧ (𝑎 ∈ N ∧ 𝑏 ∈ N)) →
𝑎 ∈
N) |
15 | | simprr 527 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) ∧ (𝑎 ∈ N ∧ 𝑏 ∈ N)) →
𝑏 ∈
N) |
16 | 1 | caucvgprprlemell 7640 |
. . . . . . . . . 10
⊢ (𝑠 ∈ (1st
‘𝐿) ↔ (𝑠 ∈ Q ∧
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟))) |
17 | 16 | simplbi 272 |
. . . . . . . . 9
⊢ (𝑠 ∈ (1st
‘𝐿) → 𝑠 ∈
Q) |
18 | 17 | ad2antrl 487 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) → 𝑠 ∈ Q) |
19 | 18 | adantr 274 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) ∧ (𝑎 ∈ N ∧ 𝑏 ∈ N)) →
𝑠 ∈
Q) |
20 | 11, 13, 14, 15, 19 | caucvgprprlemnkj 7647 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) ∧ (𝑎 ∈ N ∧ 𝑏 ∈ N)) →
¬ (〈{𝑝 ∣
𝑝
<Q (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑎) ∧ ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉)) |
21 | 20 | pm2.21d 614 |
. . . . 5
⊢ (((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) ∧ (𝑎 ∈ N ∧ 𝑏 ∈ N)) →
((〈{𝑝 ∣ 𝑝 <Q
(𝑠
+Q (*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑎) ∧ ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉) →
⊥)) |
22 | 21 | rexlimdvva 2595 |
. . . 4
⊢ ((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) → (∃𝑎 ∈ N
∃𝑏 ∈
N (〈{𝑝
∣ 𝑝
<Q (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑠 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑎) ∧ ((𝐹‘𝑏) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑏, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑏, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑠}, {𝑞 ∣ 𝑠 <Q 𝑞}〉) →
⊥)) |
23 | 9, 22 | mpd 13 |
. . 3
⊢ ((𝜑 ∧ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) →
⊥) |
24 | 23 | inegd 1367 |
. 2
⊢ (𝜑 → ¬ (𝑠 ∈ (1st ‘𝐿) ∧ 𝑠 ∈ (2nd ‘𝐿))) |
25 | 24 | ralrimivw 2544 |
1
⊢ (𝜑 → ∀𝑠 ∈ Q ¬ (𝑠 ∈ (1st
‘𝐿) ∧ 𝑠 ∈ (2nd
‘𝐿))) |