ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemdisj GIF version

Theorem caucvgprprlemdisj 7522
Description: Lemma for caucvgprpr 7532. The putative limit is disjoint. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f (𝜑𝐹:NP)
caucvgprpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
caucvgprpr.bnd (𝜑 → ∀𝑚N 𝐴<P (𝐹𝑚))
caucvgprpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemdisj (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝑘,𝐹,𝑛,𝑙   𝐹,𝑟,𝑙   𝑢,𝐹,𝑟   𝑘,𝐿   𝑘,𝑝,𝑟,𝑠   𝜑,𝑟,𝑠   𝑘,𝑞,𝑟,𝑠   𝑝,𝑙,𝑠,𝑞   𝑢,𝑝,𝑠,𝑞   𝑢,𝑛   𝑛,𝑙,𝑘   𝑢,𝑘
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑠,𝑞,𝑝)   𝐿(𝑢,𝑚,𝑛,𝑠,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem caucvgprprlemdisj
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.lim . . . . . . . . 9 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
21caucvgprprlemell 7505 . . . . . . . 8 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑎N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎)))
32simprbi 273 . . . . . . 7 (𝑠 ∈ (1st𝐿) → ∃𝑎N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎))
41caucvgprprlemelu 7506 . . . . . . . 8 (𝑠 ∈ (2nd𝐿) ↔ (𝑠Q ∧ ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩))
54simprbi 273 . . . . . . 7 (𝑠 ∈ (2nd𝐿) → ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩)
63, 5anim12i 336 . . . . . 6 ((𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) → (∃𝑎N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎) ∧ ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩))
7 reeanv 2600 . . . . . 6 (∃𝑎N𝑏N (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩) ↔ (∃𝑎N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎) ∧ ∃𝑏N ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩))
86, 7sylibr 133 . . . . 5 ((𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)) → ∃𝑎N𝑏N (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩))
98adantl 275 . . . 4 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → ∃𝑎N𝑏N (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩))
10 caucvgprpr.f . . . . . . . 8 (𝜑𝐹:NP)
1110ad2antrr 479 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑎N𝑏N)) → 𝐹:NP)
12 caucvgprpr.cau . . . . . . . 8 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
1312ad2antrr 479 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑎N𝑏N)) → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛)<P ((𝐹𝑘) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩) ∧ (𝐹𝑘)<P ((𝐹𝑛) +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩))))
14 simprl 520 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑎N𝑏N)) → 𝑎N)
15 simprr 521 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑎N𝑏N)) → 𝑏N)
161caucvgprprlemell 7505 . . . . . . . . . 10 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
1716simplbi 272 . . . . . . . . 9 (𝑠 ∈ (1st𝐿) → 𝑠Q)
1817ad2antrl 481 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → 𝑠Q)
1918adantr 274 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑎N𝑏N)) → 𝑠Q)
2011, 13, 14, 15, 19caucvgprprlemnkj 7512 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑎N𝑏N)) → ¬ (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩))
2120pm2.21d 608 . . . . 5 (((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) ∧ (𝑎N𝑏N)) → ((⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩) → ⊥))
2221rexlimdvva 2557 . . . 4 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → (∃𝑎N𝑏N (⟨{𝑝𝑝 <Q (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑠 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎) ∧ ((𝐹𝑏) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑏, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑏, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑠}, {𝑞𝑠 <Q 𝑞}⟩) → ⊥))
239, 22mpd 13 . . 3 ((𝜑 ∧ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿))) → ⊥)
2423inegd 1350 . 2 (𝜑 → ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
2524ralrimivw 2506 1 (𝜑 → ∀𝑠Q ¬ (𝑠 ∈ (1st𝐿) ∧ 𝑠 ∈ (2nd𝐿)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1331  wfal 1336  wcel 1480  {cab 2125  wral 2416  wrex 2417  {crab 2420  cop 3530   class class class wbr 3929  wf 5119  cfv 5123  (class class class)co 5774  1st c1st 6036  2nd c2nd 6037  1oc1o 6306  [cec 6427  Ncnpi 7092   <N clti 7095   ~Q ceq 7099  Qcnq 7100   +Q cplq 7102  *Qcrq 7104   <Q cltq 7105  Pcnp 7111   +P cpp 7113  <P cltp 7115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7124  df-pli 7125  df-mi 7126  df-lti 7127  df-plpq 7164  df-mpq 7165  df-enq 7167  df-nqqs 7168  df-plqqs 7169  df-mqqs 7170  df-1nqqs 7171  df-rq 7172  df-ltnqqs 7173  df-enq0 7244  df-nq0 7245  df-0nq0 7246  df-plq0 7247  df-mq0 7248  df-inp 7286  df-iplp 7288  df-iltp 7290
This theorem is referenced by:  caucvgprprlemcl  7524
  Copyright terms: Public domain W3C validator