ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemgt0 GIF version

Theorem resqrexlemgt0 11185
Description: Lemma for resqrex 11191. A limit is nonnegative. (Contributed by Jim Kingdon, 7-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemgt0.rr (𝜑𝐿 ∈ ℝ)
resqrexlemgt0.lim (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
Assertion
Ref Expression
resqrexlemgt0 (𝜑 → 0 ≤ 𝐿)
Distinct variable groups:   𝑦,𝐴,𝑧   𝑒,𝐹   𝑒,𝐿,𝑖,𝑗   𝜑,𝑖,𝑗   𝑧,𝑗,𝜑   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑒)   𝐴(𝑒,𝑖,𝑗)   𝐹(𝑦,𝑧,𝑖,𝑗)   𝐿(𝑦,𝑧)

Proof of Theorem resqrexlemgt0
StepHypRef Expression
1 oveq2 5930 . . . . . . . . 9 (𝑒 = -𝐿 → (𝐿 + 𝑒) = (𝐿 + -𝐿))
21breq2d 4045 . . . . . . . 8 (𝑒 = -𝐿 → ((𝐹𝑖) < (𝐿 + 𝑒) ↔ (𝐹𝑖) < (𝐿 + -𝐿)))
3 oveq2 5930 . . . . . . . . 9 (𝑒 = -𝐿 → ((𝐹𝑖) + 𝑒) = ((𝐹𝑖) + -𝐿))
43breq2d 4045 . . . . . . . 8 (𝑒 = -𝐿 → (𝐿 < ((𝐹𝑖) + 𝑒) ↔ 𝐿 < ((𝐹𝑖) + -𝐿)))
52, 4anbi12d 473 . . . . . . 7 (𝑒 = -𝐿 → (((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿))))
65rexralbidv 2523 . . . . . 6 (𝑒 = -𝐿 → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿))))
7 resqrexlemgt0.lim . . . . . . 7 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
87adantr 276 . . . . . 6 ((𝜑𝐿 < 0) → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
9 resqrexlemgt0.rr . . . . . . . . 9 (𝜑𝐿 ∈ ℝ)
109adantr 276 . . . . . . . 8 ((𝜑𝐿 < 0) → 𝐿 ∈ ℝ)
1110renegcld 8406 . . . . . . 7 ((𝜑𝐿 < 0) → -𝐿 ∈ ℝ)
129lt0neg1d 8542 . . . . . . . 8 (𝜑 → (𝐿 < 0 ↔ 0 < -𝐿))
1312biimpa 296 . . . . . . 7 ((𝜑𝐿 < 0) → 0 < -𝐿)
1411, 13elrpd 9768 . . . . . 6 ((𝜑𝐿 < 0) → -𝐿 ∈ ℝ+)
156, 8, 14rspcdva 2873 . . . . 5 ((𝜑𝐿 < 0) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿)))
16 simpl 109 . . . . . . . 8 (((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿)) → (𝐹𝑖) < (𝐿 + -𝐿))
1710recnd 8055 . . . . . . . . . 10 ((𝜑𝐿 < 0) → 𝐿 ∈ ℂ)
1817negidd 8327 . . . . . . . . 9 ((𝜑𝐿 < 0) → (𝐿 + -𝐿) = 0)
1918breq2d 4045 . . . . . . . 8 ((𝜑𝐿 < 0) → ((𝐹𝑖) < (𝐿 + -𝐿) ↔ (𝐹𝑖) < 0))
2016, 19imbitrid 154 . . . . . . 7 ((𝜑𝐿 < 0) → (((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿)) → (𝐹𝑖) < 0))
2120ralimdv 2565 . . . . . 6 ((𝜑𝐿 < 0) → (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿)) → ∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0))
2221reximdv 2598 . . . . 5 ((𝜑𝐿 < 0) → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿)) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0))
2315, 22mpd 13 . . . 4 ((𝜑𝐿 < 0) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0)
24 0red 8027 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → 0 ∈ ℝ)
25 eluznn 9674 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗)) → 𝑖 ∈ ℕ)
26 resqrexlemex.seq . . . . . . . . . . . . . . 15 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
27 resqrexlemex.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
28 resqrexlemex.agt0 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ 𝐴)
2926, 27, 28resqrexlemf 11172 . . . . . . . . . . . . . 14 (𝜑𝐹:ℕ⟶ℝ+)
3029ffvelcdmda 5697 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℝ+)
3125, 30sylan2 286 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → (𝐹𝑖) ∈ ℝ+)
3231rpred 9771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → (𝐹𝑖) ∈ ℝ)
3331rpgt0d 9774 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → 0 < (𝐹𝑖))
3424, 32, 33ltnsymd 8146 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → ¬ (𝐹𝑖) < 0)
3534pm2.21d 620 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → ((𝐹𝑖) < 0 → ⊥))
3635anassrs 400 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑖 ∈ (ℤ𝑗)) → ((𝐹𝑖) < 0 → ⊥))
3736ralimdva 2564 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0 → ∀𝑖 ∈ (ℤ𝑗)⊥))
38 nnz 9345 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
39 uzid 9615 . . . . . . . . . 10 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
40 elex2 2779 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑗) → ∃𝑧 𝑧 ∈ (ℤ𝑗))
41 r19.3rmv 3541 . . . . . . . . . 10 (∃𝑧 𝑧 ∈ (ℤ𝑗) → (⊥ ↔ ∀𝑖 ∈ (ℤ𝑗)⊥))
4239, 40, 413syl 17 . . . . . . . . 9 (𝑗 ∈ ℤ → (⊥ ↔ ∀𝑖 ∈ (ℤ𝑗)⊥))
4338, 42syl 14 . . . . . . . 8 (𝑗 ∈ ℕ → (⊥ ↔ ∀𝑖 ∈ (ℤ𝑗)⊥))
4443adantl 277 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (⊥ ↔ ∀𝑖 ∈ (ℤ𝑗)⊥))
4537, 44sylibrd 169 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0 → ⊥))
4645rexlimdva 2614 . . . . 5 (𝜑 → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0 → ⊥))
4746adantr 276 . . . 4 ((𝜑𝐿 < 0) → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0 → ⊥))
4823, 47mpd 13 . . 3 ((𝜑𝐿 < 0) → ⊥)
4948inegd 1383 . 2 (𝜑 → ¬ 𝐿 < 0)
50 0re 8026 . . 3 0 ∈ ℝ
51 lenlt 8102 . . 3 ((0 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (0 ≤ 𝐿 ↔ ¬ 𝐿 < 0))
5250, 9, 51sylancr 414 . 2 (𝜑 → (0 ≤ 𝐿 ↔ ¬ 𝐿 < 0))
5349, 52mpbird 167 1 (𝜑 → 0 ≤ 𝐿)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wfal 1369  wex 1506  wcel 2167  wral 2475  wrex 2476  {csn 3622   class class class wbr 4033   × cxp 4661  cfv 5258  (class class class)co 5922  cmpo 5924  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   < clt 8061  cle 8062  -cneg 8198   / cdiv 8699  cn 8990  2c2 9041  cz 9326  cuz 9601  +crp 9728  seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-seqfrec 10540
This theorem is referenced by:  resqrexlemglsq  11187  resqrexlemex  11190
  Copyright terms: Public domain W3C validator