ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemgt0 GIF version

Theorem resqrexlemgt0 10348
Description: Lemma for resqrex 10354. A limit is nonnegative. (Contributed by Jim Kingdon, 7-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemgt0.rr (𝜑𝐿 ∈ ℝ)
resqrexlemgt0.lim (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
Assertion
Ref Expression
resqrexlemgt0 (𝜑 → 0 ≤ 𝐿)
Distinct variable groups:   𝑦,𝐴,𝑧   𝑒,𝐹   𝑒,𝐿,𝑖,𝑗   𝜑,𝑖,𝑗   𝑧,𝑗,𝜑   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑒)   𝐴(𝑒,𝑖,𝑗)   𝐹(𝑦,𝑧,𝑖,𝑗)   𝐿(𝑦,𝑧)

Proof of Theorem resqrexlemgt0
StepHypRef Expression
1 oveq2 5621 . . . . . . . . 9 (𝑒 = -𝐿 → (𝐿 + 𝑒) = (𝐿 + -𝐿))
21breq2d 3832 . . . . . . . 8 (𝑒 = -𝐿 → ((𝐹𝑖) < (𝐿 + 𝑒) ↔ (𝐹𝑖) < (𝐿 + -𝐿)))
3 oveq2 5621 . . . . . . . . 9 (𝑒 = -𝐿 → ((𝐹𝑖) + 𝑒) = ((𝐹𝑖) + -𝐿))
43breq2d 3832 . . . . . . . 8 (𝑒 = -𝐿 → (𝐿 < ((𝐹𝑖) + 𝑒) ↔ 𝐿 < ((𝐹𝑖) + -𝐿)))
52, 4anbi12d 457 . . . . . . 7 (𝑒 = -𝐿 → (((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿))))
65rexralbidv 2400 . . . . . 6 (𝑒 = -𝐿 → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿))))
7 resqrexlemgt0.lim . . . . . . 7 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
87adantr 270 . . . . . 6 ((𝜑𝐿 < 0) → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
9 resqrexlemgt0.rr . . . . . . . . 9 (𝜑𝐿 ∈ ℝ)
109adantr 270 . . . . . . . 8 ((𝜑𝐿 < 0) → 𝐿 ∈ ℝ)
1110renegcld 7802 . . . . . . 7 ((𝜑𝐿 < 0) → -𝐿 ∈ ℝ)
129lt0neg1d 7934 . . . . . . . 8 (𝜑 → (𝐿 < 0 ↔ 0 < -𝐿))
1312biimpa 290 . . . . . . 7 ((𝜑𝐿 < 0) → 0 < -𝐿)
1411, 13elrpd 9103 . . . . . 6 ((𝜑𝐿 < 0) → -𝐿 ∈ ℝ+)
156, 8, 14rspcdva 2720 . . . . 5 ((𝜑𝐿 < 0) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿)))
16 simpl 107 . . . . . . . 8 (((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿)) → (𝐹𝑖) < (𝐿 + -𝐿))
1710recnd 7460 . . . . . . . . . 10 ((𝜑𝐿 < 0) → 𝐿 ∈ ℂ)
1817negidd 7727 . . . . . . . . 9 ((𝜑𝐿 < 0) → (𝐿 + -𝐿) = 0)
1918breq2d 3832 . . . . . . . 8 ((𝜑𝐿 < 0) → ((𝐹𝑖) < (𝐿 + -𝐿) ↔ (𝐹𝑖) < 0))
2016, 19syl5ib 152 . . . . . . 7 ((𝜑𝐿 < 0) → (((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿)) → (𝐹𝑖) < 0))
2120ralimdv 2438 . . . . . 6 ((𝜑𝐿 < 0) → (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿)) → ∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0))
2221reximdv 2470 . . . . 5 ((𝜑𝐿 < 0) → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿)) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0))
2315, 22mpd 13 . . . 4 ((𝜑𝐿 < 0) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0)
24 0red 7433 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → 0 ∈ ℝ)
25 eluznn 9019 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗)) → 𝑖 ∈ ℕ)
26 resqrexlemex.seq . . . . . . . . . . . . . . 15 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
27 resqrexlemex.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
28 resqrexlemex.agt0 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ 𝐴)
2926, 27, 28resqrexlemf 10335 . . . . . . . . . . . . . 14 (𝜑𝐹:ℕ⟶ℝ+)
3029ffvelrnda 5397 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℝ+)
3125, 30sylan2 280 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → (𝐹𝑖) ∈ ℝ+)
3231rpred 9105 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → (𝐹𝑖) ∈ ℝ)
3331rpgt0d 9108 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → 0 < (𝐹𝑖))
3424, 32, 33ltnsymd 7547 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → ¬ (𝐹𝑖) < 0)
3534pm2.21d 582 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → ((𝐹𝑖) < 0 → ⊥))
3635anassrs 392 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑖 ∈ (ℤ𝑗)) → ((𝐹𝑖) < 0 → ⊥))
3736ralimdva 2437 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0 → ∀𝑖 ∈ (ℤ𝑗)⊥))
38 nnz 8702 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
39 uzid 8965 . . . . . . . . . 10 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
40 elex2 2629 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑗) → ∃𝑧 𝑧 ∈ (ℤ𝑗))
41 r19.3rmv 3359 . . . . . . . . . 10 (∃𝑧 𝑧 ∈ (ℤ𝑗) → (⊥ ↔ ∀𝑖 ∈ (ℤ𝑗)⊥))
4239, 40, 413syl 17 . . . . . . . . 9 (𝑗 ∈ ℤ → (⊥ ↔ ∀𝑖 ∈ (ℤ𝑗)⊥))
4338, 42syl 14 . . . . . . . 8 (𝑗 ∈ ℕ → (⊥ ↔ ∀𝑖 ∈ (ℤ𝑗)⊥))
4443adantl 271 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (⊥ ↔ ∀𝑖 ∈ (ℤ𝑗)⊥))
4537, 44sylibrd 167 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0 → ⊥))
4645rexlimdva 2485 . . . . 5 (𝜑 → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0 → ⊥))
4746adantr 270 . . . 4 ((𝜑𝐿 < 0) → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0 → ⊥))
4823, 47mpd 13 . . 3 ((𝜑𝐿 < 0) → ⊥)
4948inegd 1306 . 2 (𝜑 → ¬ 𝐿 < 0)
50 0re 7432 . . 3 0 ∈ ℝ
51 lenlt 7505 . . 3 ((0 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (0 ≤ 𝐿 ↔ ¬ 𝐿 < 0))
5250, 9, 51sylancr 405 . 2 (𝜑 → (0 ≤ 𝐿 ↔ ¬ 𝐿 < 0))
5349, 52mpbird 165 1 (𝜑 → 0 ≤ 𝐿)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103   = wceq 1287  wfal 1292  wex 1424  wcel 1436  wral 2355  wrex 2356  {csn 3431   class class class wbr 3820   × cxp 4409  cfv 4981  (class class class)co 5613  cmpt2 5615  cr 7293  0cc0 7294  1c1 7295   + caddc 7297   < clt 7466  cle 7467  -cneg 7598   / cdiv 8078  cn 8357  2c2 8407  cz 8683  cuz 8951  +crp 9066  seqcseq 9779
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3929  ax-sep 3932  ax-nul 3940  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-iinf 4376  ax-cnex 7380  ax-resscn 7381  ax-1cn 7382  ax-1re 7383  ax-icn 7384  ax-addcl 7385  ax-addrcl 7386  ax-mulcl 7387  ax-mulrcl 7388  ax-addcom 7389  ax-mulcom 7390  ax-addass 7391  ax-mulass 7392  ax-distr 7393  ax-i2m1 7394  ax-0lt1 7395  ax-1rid 7396  ax-0id 7397  ax-rnegex 7398  ax-precex 7399  ax-cnre 7400  ax-pre-ltirr 7401  ax-pre-ltwlin 7402  ax-pre-lttrn 7403  ax-pre-apti 7404  ax-pre-ltadd 7405  ax-pre-mulgt0 7406  ax-pre-mulext 7407
This theorem depends on definitions:  df-bi 115  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-tr 3912  df-id 4094  df-po 4097  df-iso 4098  df-iord 4167  df-on 4169  df-ilim 4170  df-suc 4172  df-iom 4379  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-f1 4986  df-fo 4987  df-f1o 4988  df-fv 4989  df-riota 5569  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-1st 5868  df-2nd 5869  df-recs 6024  df-frec 6110  df-pnf 7468  df-mnf 7469  df-xr 7470  df-ltxr 7471  df-le 7472  df-sub 7599  df-neg 7600  df-reap 7993  df-ap 8000  df-div 8079  df-inn 8358  df-2 8416  df-n0 8607  df-z 8684  df-uz 8952  df-rp 9067  df-iseq 9780
This theorem is referenced by:  resqrexlemglsq  10350  resqrexlemex  10353
  Copyright terms: Public domain W3C validator