Proof of Theorem resqrexlemgt0
| Step | Hyp | Ref
 | Expression | 
| 1 |   | oveq2 5930 | 
. . . . . . . . 9
⊢ (𝑒 = -𝐿 → (𝐿 + 𝑒) = (𝐿 + -𝐿)) | 
| 2 | 1 | breq2d 4045 | 
. . . . . . . 8
⊢ (𝑒 = -𝐿 → ((𝐹‘𝑖) < (𝐿 + 𝑒) ↔ (𝐹‘𝑖) < (𝐿 + -𝐿))) | 
| 3 |   | oveq2 5930 | 
. . . . . . . . 9
⊢ (𝑒 = -𝐿 → ((𝐹‘𝑖) + 𝑒) = ((𝐹‘𝑖) + -𝐿)) | 
| 4 | 3 | breq2d 4045 | 
. . . . . . . 8
⊢ (𝑒 = -𝐿 → (𝐿 < ((𝐹‘𝑖) + 𝑒) ↔ 𝐿 < ((𝐹‘𝑖) + -𝐿))) | 
| 5 | 2, 4 | anbi12d 473 | 
. . . . . . 7
⊢ (𝑒 = -𝐿 → (((𝐹‘𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹‘𝑖) + 𝑒)) ↔ ((𝐹‘𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹‘𝑖) + -𝐿)))) | 
| 6 | 5 | rexralbidv 2523 | 
. . . . . 6
⊢ (𝑒 = -𝐿 → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹‘𝑖) + 𝑒)) ↔ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹‘𝑖) + -𝐿)))) | 
| 7 |   | resqrexlemgt0.lim | 
. . . . . . 7
⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹‘𝑖) + 𝑒))) | 
| 8 | 7 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝐿 < 0) → ∀𝑒 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈
(ℤ≥‘𝑗)((𝐹‘𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹‘𝑖) + 𝑒))) | 
| 9 |   | resqrexlemgt0.rr | 
. . . . . . . . 9
⊢ (𝜑 → 𝐿 ∈ ℝ) | 
| 10 | 9 | adantr 276 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐿 < 0) → 𝐿 ∈ ℝ) | 
| 11 | 10 | renegcld 8406 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝐿 < 0) → -𝐿 ∈ ℝ) | 
| 12 | 9 | lt0neg1d 8542 | 
. . . . . . . 8
⊢ (𝜑 → (𝐿 < 0 ↔ 0 < -𝐿)) | 
| 13 | 12 | biimpa 296 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝐿 < 0) → 0 < -𝐿) | 
| 14 | 11, 13 | elrpd 9768 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝐿 < 0) → -𝐿 ∈
ℝ+) | 
| 15 | 6, 8, 14 | rspcdva 2873 | 
. . . . 5
⊢ ((𝜑 ∧ 𝐿 < 0) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹‘𝑖) + -𝐿))) | 
| 16 |   | simpl 109 | 
. . . . . . . 8
⊢ (((𝐹‘𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹‘𝑖) + -𝐿)) → (𝐹‘𝑖) < (𝐿 + -𝐿)) | 
| 17 | 10 | recnd 8055 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐿 < 0) → 𝐿 ∈ ℂ) | 
| 18 | 17 | negidd 8327 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐿 < 0) → (𝐿 + -𝐿) = 0) | 
| 19 | 18 | breq2d 4045 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐿 < 0) → ((𝐹‘𝑖) < (𝐿 + -𝐿) ↔ (𝐹‘𝑖) < 0)) | 
| 20 | 16, 19 | imbitrid 154 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝐿 < 0) → (((𝐹‘𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹‘𝑖) + -𝐿)) → (𝐹‘𝑖) < 0)) | 
| 21 | 20 | ralimdv 2565 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝐿 < 0) → (∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹‘𝑖) + -𝐿)) → ∀𝑖 ∈ (ℤ≥‘𝑗)(𝐹‘𝑖) < 0)) | 
| 22 | 21 | reximdv 2598 | 
. . . . 5
⊢ ((𝜑 ∧ 𝐿 < 0) → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹‘𝑖) + -𝐿)) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)(𝐹‘𝑖) < 0)) | 
| 23 | 15, 22 | mpd 13 | 
. . . 4
⊢ ((𝜑 ∧ 𝐿 < 0) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)(𝐹‘𝑖) < 0) | 
| 24 |   | 0red 8027 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → 0 ∈
ℝ) | 
| 25 |   | eluznn 9674 | 
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ ℕ ∧ 𝑖 ∈
(ℤ≥‘𝑗)) → 𝑖 ∈ ℕ) | 
| 26 |   | resqrexlemex.seq | 
. . . . . . . . . . . . . . 15
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+
↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) | 
| 27 |   | resqrexlemex.a | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 28 |   | resqrexlemex.agt0 | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 ≤ 𝐴) | 
| 29 | 26, 27, 28 | resqrexlemf 11172 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:ℕ⟶ℝ+) | 
| 30 | 29 | ffvelcdmda 5697 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐹‘𝑖) ∈
ℝ+) | 
| 31 | 25, 30 | sylan2 286 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑖) ∈
ℝ+) | 
| 32 | 31 | rpred 9771 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑖) ∈ ℝ) | 
| 33 | 31 | rpgt0d 9774 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → 0 < (𝐹‘𝑖)) | 
| 34 | 24, 32, 33 | ltnsymd 8146 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → ¬ (𝐹‘𝑖) < 0) | 
| 35 | 34 | pm2.21d 620 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → ((𝐹‘𝑖) < 0 → ⊥)) | 
| 36 | 35 | anassrs 400 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → ((𝐹‘𝑖) < 0 → ⊥)) | 
| 37 | 36 | ralimdva 2564 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (∀𝑖 ∈
(ℤ≥‘𝑗)(𝐹‘𝑖) < 0 → ∀𝑖 ∈ (ℤ≥‘𝑗)⊥)) | 
| 38 |   | nnz 9345 | 
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℤ) | 
| 39 |   | uzid 9615 | 
. . . . . . . . . 10
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
(ℤ≥‘𝑗)) | 
| 40 |   | elex2 2779 | 
. . . . . . . . . 10
⊢ (𝑗 ∈
(ℤ≥‘𝑗) → ∃𝑧 𝑧 ∈ (ℤ≥‘𝑗)) | 
| 41 |   | r19.3rmv 3541 | 
. . . . . . . . . 10
⊢
(∃𝑧 𝑧 ∈
(ℤ≥‘𝑗) → (⊥ ↔ ∀𝑖 ∈
(ℤ≥‘𝑗)⊥)) | 
| 42 | 39, 40, 41 | 3syl 17 | 
. . . . . . . . 9
⊢ (𝑗 ∈ ℤ → (⊥
↔ ∀𝑖 ∈
(ℤ≥‘𝑗)⊥)) | 
| 43 | 38, 42 | syl 14 | 
. . . . . . . 8
⊢ (𝑗 ∈ ℕ → (⊥
↔ ∀𝑖 ∈
(ℤ≥‘𝑗)⊥)) | 
| 44 | 43 | adantl 277 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (⊥ ↔
∀𝑖 ∈
(ℤ≥‘𝑗)⊥)) | 
| 45 | 37, 44 | sylibrd 169 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (∀𝑖 ∈
(ℤ≥‘𝑗)(𝐹‘𝑖) < 0 → ⊥)) | 
| 46 | 45 | rexlimdva 2614 | 
. . . . 5
⊢ (𝜑 → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)(𝐹‘𝑖) < 0 → ⊥)) | 
| 47 | 46 | adantr 276 | 
. . . 4
⊢ ((𝜑 ∧ 𝐿 < 0) → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)(𝐹‘𝑖) < 0 → ⊥)) | 
| 48 | 23, 47 | mpd 13 | 
. . 3
⊢ ((𝜑 ∧ 𝐿 < 0) → ⊥) | 
| 49 | 48 | inegd 1383 | 
. 2
⊢ (𝜑 → ¬ 𝐿 < 0) | 
| 50 |   | 0re 8026 | 
. . 3
⊢ 0 ∈
ℝ | 
| 51 |   | lenlt 8102 | 
. . 3
⊢ ((0
∈ ℝ ∧ 𝐿
∈ ℝ) → (0 ≤ 𝐿 ↔ ¬ 𝐿 < 0)) | 
| 52 | 50, 9, 51 | sylancr 414 | 
. 2
⊢ (𝜑 → (0 ≤ 𝐿 ↔ ¬ 𝐿 < 0)) | 
| 53 | 49, 52 | mpbird 167 | 
1
⊢ (𝜑 → 0 ≤ 𝐿) |