ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemgt0 GIF version

Theorem resqrexlemgt0 11406
Description: Lemma for resqrex 11412. A limit is nonnegative. (Contributed by Jim Kingdon, 7-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemgt0.rr (𝜑𝐿 ∈ ℝ)
resqrexlemgt0.lim (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
Assertion
Ref Expression
resqrexlemgt0 (𝜑 → 0 ≤ 𝐿)
Distinct variable groups:   𝑦,𝐴,𝑧   𝑒,𝐹   𝑒,𝐿,𝑖,𝑗   𝜑,𝑖,𝑗   𝑧,𝑗,𝜑   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑒)   𝐴(𝑒,𝑖,𝑗)   𝐹(𝑦,𝑧,𝑖,𝑗)   𝐿(𝑦,𝑧)

Proof of Theorem resqrexlemgt0
StepHypRef Expression
1 oveq2 5965 . . . . . . . . 9 (𝑒 = -𝐿 → (𝐿 + 𝑒) = (𝐿 + -𝐿))
21breq2d 4063 . . . . . . . 8 (𝑒 = -𝐿 → ((𝐹𝑖) < (𝐿 + 𝑒) ↔ (𝐹𝑖) < (𝐿 + -𝐿)))
3 oveq2 5965 . . . . . . . . 9 (𝑒 = -𝐿 → ((𝐹𝑖) + 𝑒) = ((𝐹𝑖) + -𝐿))
43breq2d 4063 . . . . . . . 8 (𝑒 = -𝐿 → (𝐿 < ((𝐹𝑖) + 𝑒) ↔ 𝐿 < ((𝐹𝑖) + -𝐿)))
52, 4anbi12d 473 . . . . . . 7 (𝑒 = -𝐿 → (((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿))))
65rexralbidv 2533 . . . . . 6 (𝑒 = -𝐿 → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿))))
7 resqrexlemgt0.lim . . . . . . 7 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
87adantr 276 . . . . . 6 ((𝜑𝐿 < 0) → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
9 resqrexlemgt0.rr . . . . . . . . 9 (𝜑𝐿 ∈ ℝ)
109adantr 276 . . . . . . . 8 ((𝜑𝐿 < 0) → 𝐿 ∈ ℝ)
1110renegcld 8472 . . . . . . 7 ((𝜑𝐿 < 0) → -𝐿 ∈ ℝ)
129lt0neg1d 8608 . . . . . . . 8 (𝜑 → (𝐿 < 0 ↔ 0 < -𝐿))
1312biimpa 296 . . . . . . 7 ((𝜑𝐿 < 0) → 0 < -𝐿)
1411, 13elrpd 9835 . . . . . 6 ((𝜑𝐿 < 0) → -𝐿 ∈ ℝ+)
156, 8, 14rspcdva 2886 . . . . 5 ((𝜑𝐿 < 0) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿)))
16 simpl 109 . . . . . . . 8 (((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿)) → (𝐹𝑖) < (𝐿 + -𝐿))
1710recnd 8121 . . . . . . . . . 10 ((𝜑𝐿 < 0) → 𝐿 ∈ ℂ)
1817negidd 8393 . . . . . . . . 9 ((𝜑𝐿 < 0) → (𝐿 + -𝐿) = 0)
1918breq2d 4063 . . . . . . . 8 ((𝜑𝐿 < 0) → ((𝐹𝑖) < (𝐿 + -𝐿) ↔ (𝐹𝑖) < 0))
2016, 19imbitrid 154 . . . . . . 7 ((𝜑𝐿 < 0) → (((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿)) → (𝐹𝑖) < 0))
2120ralimdv 2575 . . . . . 6 ((𝜑𝐿 < 0) → (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿)) → ∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0))
2221reximdv 2608 . . . . 5 ((𝜑𝐿 < 0) → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿)) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0))
2315, 22mpd 13 . . . 4 ((𝜑𝐿 < 0) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0)
24 0red 8093 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → 0 ∈ ℝ)
25 eluznn 9741 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗)) → 𝑖 ∈ ℕ)
26 resqrexlemex.seq . . . . . . . . . . . . . . 15 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
27 resqrexlemex.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
28 resqrexlemex.agt0 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ 𝐴)
2926, 27, 28resqrexlemf 11393 . . . . . . . . . . . . . 14 (𝜑𝐹:ℕ⟶ℝ+)
3029ffvelcdmda 5728 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℝ+)
3125, 30sylan2 286 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → (𝐹𝑖) ∈ ℝ+)
3231rpred 9838 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → (𝐹𝑖) ∈ ℝ)
3331rpgt0d 9841 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → 0 < (𝐹𝑖))
3424, 32, 33ltnsymd 8212 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → ¬ (𝐹𝑖) < 0)
3534pm2.21d 620 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → ((𝐹𝑖) < 0 → ⊥))
3635anassrs 400 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑖 ∈ (ℤ𝑗)) → ((𝐹𝑖) < 0 → ⊥))
3736ralimdva 2574 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0 → ∀𝑖 ∈ (ℤ𝑗)⊥))
38 nnz 9411 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
39 uzid 9682 . . . . . . . . . 10 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
40 elex2 2790 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑗) → ∃𝑧 𝑧 ∈ (ℤ𝑗))
41 r19.3rmv 3555 . . . . . . . . . 10 (∃𝑧 𝑧 ∈ (ℤ𝑗) → (⊥ ↔ ∀𝑖 ∈ (ℤ𝑗)⊥))
4239, 40, 413syl 17 . . . . . . . . 9 (𝑗 ∈ ℤ → (⊥ ↔ ∀𝑖 ∈ (ℤ𝑗)⊥))
4338, 42syl 14 . . . . . . . 8 (𝑗 ∈ ℕ → (⊥ ↔ ∀𝑖 ∈ (ℤ𝑗)⊥))
4443adantl 277 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (⊥ ↔ ∀𝑖 ∈ (ℤ𝑗)⊥))
4537, 44sylibrd 169 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0 → ⊥))
4645rexlimdva 2624 . . . . 5 (𝜑 → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0 → ⊥))
4746adantr 276 . . . 4 ((𝜑𝐿 < 0) → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0 → ⊥))
4823, 47mpd 13 . . 3 ((𝜑𝐿 < 0) → ⊥)
4948inegd 1392 . 2 (𝜑 → ¬ 𝐿 < 0)
50 0re 8092 . . 3 0 ∈ ℝ
51 lenlt 8168 . . 3 ((0 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (0 ≤ 𝐿 ↔ ¬ 𝐿 < 0))
5250, 9, 51sylancr 414 . 2 (𝜑 → (0 ≤ 𝐿 ↔ ¬ 𝐿 < 0))
5349, 52mpbird 167 1 (𝜑 → 0 ≤ 𝐿)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1373  wfal 1378  wex 1516  wcel 2177  wral 2485  wrex 2486  {csn 3638   class class class wbr 4051   × cxp 4681  cfv 5280  (class class class)co 5957  cmpo 5959  cr 7944  0cc0 7945  1c1 7946   + caddc 7948   < clt 8127  cle 8128  -cneg 8264   / cdiv 8765  cn 9056  2c2 9107  cz 9392  cuz 9668  +crp 9795  seqcseq 10614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-n0 9316  df-z 9393  df-uz 9669  df-rp 9796  df-seqfrec 10615
This theorem is referenced by:  resqrexlemglsq  11408  resqrexlemex  11411
  Copyright terms: Public domain W3C validator