ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemgt0 GIF version

Theorem resqrexlemgt0 10279
Description: Lemma for resqrex 10285. A limit is nonnegative. (Contributed by Jim Kingdon, 7-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemgt0.rr (𝜑𝐿 ∈ ℝ)
resqrexlemgt0.lim (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
Assertion
Ref Expression
resqrexlemgt0 (𝜑 → 0 ≤ 𝐿)
Distinct variable groups:   𝑦,𝐴,𝑧   𝑒,𝐹   𝑒,𝐿,𝑖,𝑗   𝜑,𝑖,𝑗   𝑧,𝑗,𝜑   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑒)   𝐴(𝑒,𝑖,𝑗)   𝐹(𝑦,𝑧,𝑖,𝑗)   𝐿(𝑦,𝑧)

Proof of Theorem resqrexlemgt0
StepHypRef Expression
1 oveq2 5598 . . . . . . . . 9 (𝑒 = -𝐿 → (𝐿 + 𝑒) = (𝐿 + -𝐿))
21breq2d 3823 . . . . . . . 8 (𝑒 = -𝐿 → ((𝐹𝑖) < (𝐿 + 𝑒) ↔ (𝐹𝑖) < (𝐿 + -𝐿)))
3 oveq2 5598 . . . . . . . . 9 (𝑒 = -𝐿 → ((𝐹𝑖) + 𝑒) = ((𝐹𝑖) + -𝐿))
43breq2d 3823 . . . . . . . 8 (𝑒 = -𝐿 → (𝐿 < ((𝐹𝑖) + 𝑒) ↔ 𝐿 < ((𝐹𝑖) + -𝐿)))
52, 4anbi12d 457 . . . . . . 7 (𝑒 = -𝐿 → (((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿))))
65rexralbidv 2398 . . . . . 6 (𝑒 = -𝐿 → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿))))
7 resqrexlemgt0.lim . . . . . . 7 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
87adantr 270 . . . . . 6 ((𝜑𝐿 < 0) → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
9 resqrexlemgt0.rr . . . . . . . . 9 (𝜑𝐿 ∈ ℝ)
109adantr 270 . . . . . . . 8 ((𝜑𝐿 < 0) → 𝐿 ∈ ℝ)
1110renegcld 7760 . . . . . . 7 ((𝜑𝐿 < 0) → -𝐿 ∈ ℝ)
129lt0neg1d 7892 . . . . . . . 8 (𝜑 → (𝐿 < 0 ↔ 0 < -𝐿))
1312biimpa 290 . . . . . . 7 ((𝜑𝐿 < 0) → 0 < -𝐿)
1411, 13elrpd 9065 . . . . . 6 ((𝜑𝐿 < 0) → -𝐿 ∈ ℝ+)
156, 8, 14rspcdva 2717 . . . . 5 ((𝜑𝐿 < 0) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿)))
16 simpl 107 . . . . . . . 8 (((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿)) → (𝐹𝑖) < (𝐿 + -𝐿))
1710recnd 7418 . . . . . . . . . 10 ((𝜑𝐿 < 0) → 𝐿 ∈ ℂ)
1817negidd 7685 . . . . . . . . 9 ((𝜑𝐿 < 0) → (𝐿 + -𝐿) = 0)
1918breq2d 3823 . . . . . . . 8 ((𝜑𝐿 < 0) → ((𝐹𝑖) < (𝐿 + -𝐿) ↔ (𝐹𝑖) < 0))
2016, 19syl5ib 152 . . . . . . 7 ((𝜑𝐿 < 0) → (((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿)) → (𝐹𝑖) < 0))
2120ralimdv 2436 . . . . . 6 ((𝜑𝐿 < 0) → (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿)) → ∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0))
2221reximdv 2468 . . . . 5 ((𝜑𝐿 < 0) → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + -𝐿) ∧ 𝐿 < ((𝐹𝑖) + -𝐿)) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0))
2315, 22mpd 13 . . . 4 ((𝜑𝐿 < 0) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0)
24 0red 7391 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → 0 ∈ ℝ)
25 eluznn 8981 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗)) → 𝑖 ∈ ℕ)
26 resqrexlemex.seq . . . . . . . . . . . . . . 15 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
27 resqrexlemex.a . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
28 resqrexlemex.agt0 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ 𝐴)
2926, 27, 28resqrexlemf 10266 . . . . . . . . . . . . . 14 (𝜑𝐹:ℕ⟶ℝ+)
3029ffvelrnda 5378 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℝ+)
3125, 30sylan2 280 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → (𝐹𝑖) ∈ ℝ+)
3231rpred 9067 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → (𝐹𝑖) ∈ ℝ)
3331rpgt0d 9070 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → 0 < (𝐹𝑖))
3424, 32, 33ltnsymd 7505 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → ¬ (𝐹𝑖) < 0)
3534pm2.21d 582 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑗))) → ((𝐹𝑖) < 0 → ⊥))
3635anassrs 392 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑖 ∈ (ℤ𝑗)) → ((𝐹𝑖) < 0 → ⊥))
3736ralimdva 2435 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0 → ∀𝑖 ∈ (ℤ𝑗)⊥))
38 nnz 8664 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
39 uzid 8927 . . . . . . . . . 10 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
40 elex2 2626 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑗) → ∃𝑧 𝑧 ∈ (ℤ𝑗))
41 r19.3rmv 3353 . . . . . . . . . 10 (∃𝑧 𝑧 ∈ (ℤ𝑗) → (⊥ ↔ ∀𝑖 ∈ (ℤ𝑗)⊥))
4239, 40, 413syl 17 . . . . . . . . 9 (𝑗 ∈ ℤ → (⊥ ↔ ∀𝑖 ∈ (ℤ𝑗)⊥))
4338, 42syl 14 . . . . . . . 8 (𝑗 ∈ ℕ → (⊥ ↔ ∀𝑖 ∈ (ℤ𝑗)⊥))
4443adantl 271 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (⊥ ↔ ∀𝑖 ∈ (ℤ𝑗)⊥))
4537, 44sylibrd 167 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0 → ⊥))
4645rexlimdva 2483 . . . . 5 (𝜑 → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0 → ⊥))
4746adantr 270 . . . 4 ((𝜑𝐿 < 0) → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)(𝐹𝑖) < 0 → ⊥))
4823, 47mpd 13 . . 3 ((𝜑𝐿 < 0) → ⊥)
4948inegd 1304 . 2 (𝜑 → ¬ 𝐿 < 0)
50 0re 7390 . . 3 0 ∈ ℝ
51 lenlt 7463 . . 3 ((0 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (0 ≤ 𝐿 ↔ ¬ 𝐿 < 0))
5250, 9, 51sylancr 405 . 2 (𝜑 → (0 ≤ 𝐿 ↔ ¬ 𝐿 < 0))
5349, 52mpbird 165 1 (𝜑 → 0 ≤ 𝐿)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103   = wceq 1285  wfal 1290  wex 1422  wcel 1434  wral 2353  wrex 2354  {csn 3422   class class class wbr 3811   × cxp 4398  cfv 4968  (class class class)co 5590  cmpt2 5592  cr 7251  0cc0 7252  1c1 7253   + caddc 7255   < clt 7424  cle 7425  -cneg 7556   / cdiv 8036  cn 8315  2c2 8365  cz 8645  cuz 8913  +crp 9028  seqcseq 9739
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-iinf 4365  ax-cnex 7338  ax-resscn 7339  ax-1cn 7340  ax-1re 7341  ax-icn 7342  ax-addcl 7343  ax-addrcl 7344  ax-mulcl 7345  ax-mulrcl 7346  ax-addcom 7347  ax-mulcom 7348  ax-addass 7349  ax-mulass 7350  ax-distr 7351  ax-i2m1 7352  ax-0lt1 7353  ax-1rid 7354  ax-0id 7355  ax-rnegex 7356  ax-precex 7357  ax-cnre 7358  ax-pre-ltirr 7359  ax-pre-ltwlin 7360  ax-pre-lttrn 7361  ax-pre-apti 7362  ax-pre-ltadd 7363  ax-pre-mulgt0 7364  ax-pre-mulext 7365
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4083  df-po 4086  df-iso 4087  df-iord 4156  df-on 4158  df-ilim 4159  df-suc 4161  df-iom 4368  df-xp 4406  df-rel 4407  df-cnv 4408  df-co 4409  df-dm 4410  df-rn 4411  df-res 4412  df-ima 4413  df-iota 4933  df-fun 4970  df-fn 4971  df-f 4972  df-f1 4973  df-fo 4974  df-f1o 4975  df-fv 4976  df-riota 5546  df-ov 5593  df-oprab 5594  df-mpt2 5595  df-1st 5845  df-2nd 5846  df-recs 6001  df-frec 6087  df-pnf 7426  df-mnf 7427  df-xr 7428  df-ltxr 7429  df-le 7430  df-sub 7557  df-neg 7558  df-reap 7951  df-ap 7958  df-div 8037  df-inn 8316  df-2 8374  df-n0 8565  df-z 8646  df-uz 8914  df-rp 9029  df-iseq 9740
This theorem is referenced by:  resqrexlemglsq  10281  resqrexlemex  10284
  Copyright terms: Public domain W3C validator