ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm5lem GIF version

Theorem isprm5lem 12671
Description: Lemma for isprm5 12672. The interesting direction (showing that one only needs to check prime divisors up to the square root of 𝑃). (Contributed by Jim Kingdon, 20-Oct-2024.)
Hypotheses
Ref Expression
isprm5lem.p (𝜑𝑃 ∈ (ℤ‘2))
isprm5lem.z (𝜑 → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
isprm5lem.x (𝜑𝑋 ∈ (2...(𝑃 − 1)))
Assertion
Ref Expression
isprm5lem (𝜑 → ¬ 𝑋𝑃)
Distinct variable groups:   𝑧,𝑃   𝑧,𝑋
Allowed substitution hint:   𝜑(𝑧)

Proof of Theorem isprm5lem
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isprm5lem.x . . 3 (𝜑𝑋 ∈ (2...(𝑃 − 1)))
2 elfzuz 10225 . . 3 (𝑋 ∈ (2...(𝑃 − 1)) → 𝑋 ∈ (ℤ‘2))
3 exprmfct 12668 . . 3 (𝑋 ∈ (ℤ‘2) → ∃𝑦 ∈ ℙ 𝑦𝑋)
41, 2, 33syl 17 . 2 (𝜑 → ∃𝑦 ∈ ℙ 𝑦𝑋)
5 simpr 110 . . . . 5 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → (𝑦↑2) ≤ 𝑃)
6 oveq1 6014 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧↑2) = (𝑦↑2))
76breq1d 4093 . . . . . . 7 (𝑧 = 𝑦 → ((𝑧↑2) ≤ 𝑃 ↔ (𝑦↑2) ≤ 𝑃))
8 breq1 4086 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧𝑃𝑦𝑃))
98notbid 671 . . . . . . 7 (𝑧 = 𝑦 → (¬ 𝑧𝑃 ↔ ¬ 𝑦𝑃))
107, 9imbi12d 234 . . . . . 6 (𝑧 = 𝑦 → (((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ((𝑦↑2) ≤ 𝑃 → ¬ 𝑦𝑃)))
11 isprm5lem.z . . . . . . 7 (𝜑 → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
1211ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
13 simplrl 535 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → 𝑦 ∈ ℙ)
1410, 12, 13rspcdva 2912 . . . . 5 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ((𝑦↑2) ≤ 𝑃 → ¬ 𝑦𝑃))
155, 14mpd 13 . . . 4 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ¬ 𝑦𝑃)
16 prmz 12641 . . . . . . 7 (𝑦 ∈ ℙ → 𝑦 ∈ ℤ)
1716ad2antrl 490 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → 𝑦 ∈ ℤ)
1817ad2antrr 488 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑦 ∈ ℤ)
19 elfzelz 10229 . . . . . . . 8 (𝑋 ∈ (2...(𝑃 − 1)) → 𝑋 ∈ ℤ)
201, 19syl 14 . . . . . . 7 (𝜑𝑋 ∈ ℤ)
2120ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑋𝑃) → 𝑋 ∈ ℤ)
2221adantlr 477 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑋 ∈ ℤ)
23 isprm5lem.p . . . . . . . 8 (𝜑𝑃 ∈ (ℤ‘2))
24 eluzelz 9739 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℤ)
2523, 24syl 14 . . . . . . 7 (𝜑𝑃 ∈ ℤ)
2625ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑋𝑃) → 𝑃 ∈ ℤ)
2726adantlr 477 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑃 ∈ ℤ)
28 simplrr 536 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑋𝑃) → 𝑦𝑋)
2928adantlr 477 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑦𝑋)
30 simpr 110 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑋𝑃)
3118, 22, 27, 29, 30dvdstrd 12349 . . . 4 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑦𝑃)
3215, 31mtand 669 . . 3 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ¬ 𝑋𝑃)
3317ad2antrr 488 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑦 ∈ ℤ)
3421adantlr 477 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑋 ∈ ℤ)
3525adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → 𝑃 ∈ ℤ)
3635ad2antrr 488 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑃 ∈ ℤ)
3728adantlr 477 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑦𝑋)
38 simpr 110 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑋𝑃)
3933, 34, 36, 37, 38dvdstrd 12349 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑦𝑃)
4017adantr 276 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℤ)
41 prmnn 12640 . . . . . . . . . . . . 13 (𝑦 ∈ ℙ → 𝑦 ∈ ℕ)
4241nnne0d 9163 . . . . . . . . . . . 12 (𝑦 ∈ ℙ → 𝑦 ≠ 0)
4342ad2antrl 490 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → 𝑦 ≠ 0)
4443adantr 276 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ≠ 0)
4525ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℤ)
46 dvdsval2 12309 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ 𝑃 ∈ ℤ) → (𝑦𝑃 ↔ (𝑃 / 𝑦) ∈ ℤ))
4740, 44, 45, 46syl3anc 1271 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦𝑃 ↔ (𝑃 / 𝑦) ∈ ℤ))
4847adantr 276 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → (𝑦𝑃 ↔ (𝑃 / 𝑦) ∈ ℤ))
4939, 48mpbid 147 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → (𝑃 / 𝑦) ∈ ℤ)
5040zred 9577 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℝ)
5150recnd 8183 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℂ)
5251mulid2d 8173 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (1 · 𝑦) = 𝑦)
53 2nn 9280 . . . . . . . . . . . . . . 15 2 ∈ ℕ
54 fzssnn 10272 . . . . . . . . . . . . . . 15 (2 ∈ ℕ → (2...(𝑃 − 1)) ⊆ ℕ)
5553, 54ax-mp 5 . . . . . . . . . . . . . 14 (2...(𝑃 − 1)) ⊆ ℕ
5655, 1sselid 3222 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℕ)
5756ad2antrr 488 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑋 ∈ ℕ)
5857nnred 9131 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑋 ∈ ℝ)
5925zred 9577 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℝ)
6059ad2antrr 488 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℝ)
61 simplrr 536 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦𝑋)
62 dvdsle 12363 . . . . . . . . . . . . 13 ((𝑦 ∈ ℤ ∧ 𝑋 ∈ ℕ) → (𝑦𝑋𝑦𝑋))
6340, 57, 62syl2anc 411 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦𝑋𝑦𝑋))
6461, 63mpd 13 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦𝑋)
65 elfzle2 10232 . . . . . . . . . . . . . 14 (𝑋 ∈ (2...(𝑃 − 1)) → 𝑋 ≤ (𝑃 − 1))
661, 65syl 14 . . . . . . . . . . . . 13 (𝜑𝑋 ≤ (𝑃 − 1))
67 zltlem1 9512 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑋 < 𝑃𝑋 ≤ (𝑃 − 1)))
6820, 25, 67syl2anc 411 . . . . . . . . . . . . 13 (𝜑 → (𝑋 < 𝑃𝑋 ≤ (𝑃 − 1)))
6966, 68mpbird 167 . . . . . . . . . . . 12 (𝜑𝑋 < 𝑃)
7069ad2antrr 488 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑋 < 𝑃)
7150, 58, 60, 64, 70lelttrd 8279 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 < 𝑃)
7252, 71eqbrtrd 4105 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (1 · 𝑦) < 𝑃)
73 1red 8169 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 1 ∈ ℝ)
7441nnrpd 9898 . . . . . . . . . . . 12 (𝑦 ∈ ℙ → 𝑦 ∈ ℝ+)
7574ad2antrl 490 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → 𝑦 ∈ ℝ+)
7675adantr 276 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℝ+)
7773, 60, 76ltmuldivd 9948 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((1 · 𝑦) < 𝑃 ↔ 1 < (𝑃 / 𝑦)))
7872, 77mpbid 147 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 1 < (𝑃 / 𝑦))
7978adantr 276 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 1 < (𝑃 / 𝑦))
80 eluz2b1 9804 . . . . . . 7 ((𝑃 / 𝑦) ∈ (ℤ‘2) ↔ ((𝑃 / 𝑦) ∈ ℤ ∧ 1 < (𝑃 / 𝑦)))
8149, 79, 80sylanbrc 417 . . . . . 6 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → (𝑃 / 𝑦) ∈ (ℤ‘2))
82 exprmfct 12668 . . . . . 6 ((𝑃 / 𝑦) ∈ (ℤ‘2) → ∃𝑤 ∈ ℙ 𝑤 ∥ (𝑃 / 𝑦))
8381, 82syl 14 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → ∃𝑤 ∈ ℙ 𝑤 ∥ (𝑃 / 𝑦))
84 prmz 12641 . . . . . . . 8 (𝑤 ∈ ℙ → 𝑤 ∈ ℤ)
8584ad2antrl 490 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∈ ℤ)
8649adantr 276 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ ℤ)
8745ad2antrr 488 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑃 ∈ ℤ)
88 simprr 531 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∥ (𝑃 / 𝑦))
8939adantr 276 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑦𝑃)
9044ad2antrr 488 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑦 ≠ 0)
91 divconjdvds 12368 . . . . . . . 8 ((𝑦𝑃𝑦 ≠ 0) → (𝑃 / 𝑦) ∥ 𝑃)
9289, 90, 91syl2anc 411 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∥ 𝑃)
9385, 86, 87, 88, 92dvdstrd 12349 . . . . . 6 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤𝑃)
9485zred 9577 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∈ ℝ)
9594resqcld 10929 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) ∈ ℝ)
9660ad2antrr 488 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑃 ∈ ℝ)
9781adantr 276 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ (ℤ‘2))
98 eluz2nn 9769 . . . . . . . . . . . 12 ((𝑃 / 𝑦) ∈ (ℤ‘2) → (𝑃 / 𝑦) ∈ ℕ)
9997, 98syl 14 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ ℕ)
10099nnred 9131 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ ℝ)
101100resqcld 10929 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ((𝑃 / 𝑦)↑2) ∈ ℝ)
102 dvdsle 12363 . . . . . . . . . . . 12 ((𝑤 ∈ ℤ ∧ (𝑃 / 𝑦) ∈ ℕ) → (𝑤 ∥ (𝑃 / 𝑦) → 𝑤 ≤ (𝑃 / 𝑦)))
10385, 99, 102syl2anc 411 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤 ∥ (𝑃 / 𝑦) → 𝑤 ≤ (𝑃 / 𝑦)))
10488, 103mpd 13 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ≤ (𝑃 / 𝑦))
105 prmnn 12640 . . . . . . . . . . . . . 14 (𝑤 ∈ ℙ → 𝑤 ∈ ℕ)
106105nnnn0d 9430 . . . . . . . . . . . . 13 (𝑤 ∈ ℙ → 𝑤 ∈ ℕ0)
107106nn0ge0d 9433 . . . . . . . . . . . 12 (𝑤 ∈ ℙ → 0 ≤ 𝑤)
108107ad2antrl 490 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ≤ 𝑤)
109 0red 8155 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ∈ ℝ)
110 1red 8169 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 1 ∈ ℝ)
111 0le1 8636 . . . . . . . . . . . . 13 0 ≤ 1
112111a1i 9 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ≤ 1)
11399nnge1d 9161 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 1 ≤ (𝑃 / 𝑦))
114109, 110, 100, 112, 113letrd 8278 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ≤ (𝑃 / 𝑦))
11594, 100, 108, 114le2sqd 10935 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤 ≤ (𝑃 / 𝑦) ↔ (𝑤↑2) ≤ ((𝑃 / 𝑦)↑2)))
116104, 115mpbid 147 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) ≤ ((𝑃 / 𝑦)↑2))
11760recnd 8183 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℂ)
11841ad2antrl 490 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → 𝑦 ∈ ℕ)
119118adantr 276 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℕ)
120119nnap0d 9164 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 # 0)
121117, 51, 120sqdivapd 10916 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((𝑃 / 𝑦)↑2) = ((𝑃↑2) / (𝑦↑2)))
122117sqvald 10900 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃↑2) = (𝑃 · 𝑃))
12350resqcld 10929 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦↑2) ∈ ℝ)
124 eluz2nn 9769 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
12523, 124syl 14 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℕ)
126125nnrpd 9898 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℝ+)
127126ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℝ+)
128 simpr 110 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 < (𝑦↑2))
12960, 123, 127, 128ltmul2dd 9957 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃 · 𝑃) < (𝑃 · (𝑦↑2)))
130122, 129eqbrtrd 4105 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃↑2) < (𝑃 · (𝑦↑2)))
13160resqcld 10929 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃↑2) ∈ ℝ)
132119nnsqcld 10924 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦↑2) ∈ ℕ)
133132nnrpd 9898 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦↑2) ∈ ℝ+)
134131, 60, 133ltdivmul2d 9953 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (((𝑃↑2) / (𝑦↑2)) < 𝑃 ↔ (𝑃↑2) < (𝑃 · (𝑦↑2))))
135130, 134mpbird 167 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((𝑃↑2) / (𝑦↑2)) < 𝑃)
136121, 135eqbrtrd 4105 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((𝑃 / 𝑦)↑2) < 𝑃)
137136ad2antrr 488 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ((𝑃 / 𝑦)↑2) < 𝑃)
13895, 101, 96, 116, 137lelttrd 8279 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) < 𝑃)
13995, 96, 138ltled 8273 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) ≤ 𝑃)
140 oveq1 6014 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧↑2) = (𝑤↑2))
141140breq1d 4093 . . . . . . . . 9 (𝑧 = 𝑤 → ((𝑧↑2) ≤ 𝑃 ↔ (𝑤↑2) ≤ 𝑃))
142 breq1 4086 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧𝑃𝑤𝑃))
143142notbid 671 . . . . . . . . 9 (𝑧 = 𝑤 → (¬ 𝑧𝑃 ↔ ¬ 𝑤𝑃))
144141, 143imbi12d 234 . . . . . . . 8 (𝑧 = 𝑤 → (((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ((𝑤↑2) ≤ 𝑃 → ¬ 𝑤𝑃)))
14511ad4antr 494 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
146 simprl 529 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∈ ℙ)
147144, 145, 146rspcdva 2912 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ((𝑤↑2) ≤ 𝑃 → ¬ 𝑤𝑃))
148139, 147mpd 13 . . . . . 6 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ¬ 𝑤𝑃)
14993, 148pm2.21fal 1415 . . . . 5 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ⊥)
15083, 149rexlimddv 2653 . . . 4 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → ⊥)
151150inegd 1414 . . 3 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → ¬ 𝑋𝑃)
152 zsqcl 10840 . . . . 5 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℤ)
15317, 152syl 14 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → (𝑦↑2) ∈ ℤ)
154 zlelttric 9499 . . . 4 (((𝑦↑2) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑦↑2) ≤ 𝑃𝑃 < (𝑦↑2)))
155153, 35, 154syl2anc 411 . . 3 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → ((𝑦↑2) ≤ 𝑃𝑃 < (𝑦↑2)))
15632, 151, 155mpjaodan 803 . 2 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → ¬ 𝑋𝑃)
1574, 156rexlimddv 2653 1 (𝜑 → ¬ 𝑋𝑃)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  wfal 1400  wcel 2200  wne 2400  wral 2508  wrex 2509  wss 3197   class class class wbr 4083  cfv 5318  (class class class)co 6007  cr 8006  0cc0 8007  1c1 8008   · cmul 8012   < clt 8189  cle 8190  cmin 8325   / cdiv 8827  cn 9118  2c2 9169  cz 9454  cuz 9730  +crp 9857  ...cfz 10212  cexp 10768  cdvds 12306  cprime 12637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-1o 6568  df-2o 6569  df-er 6688  df-en 6896  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-dvds 12307  df-prm 12638
This theorem is referenced by:  isprm5  12672
  Copyright terms: Public domain W3C validator