ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm5lem GIF version

Theorem isprm5lem 12507
Description: Lemma for isprm5 12508. The interesting direction (showing that one only needs to check prime divisors up to the square root of 𝑃). (Contributed by Jim Kingdon, 20-Oct-2024.)
Hypotheses
Ref Expression
isprm5lem.p (𝜑𝑃 ∈ (ℤ‘2))
isprm5lem.z (𝜑 → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
isprm5lem.x (𝜑𝑋 ∈ (2...(𝑃 − 1)))
Assertion
Ref Expression
isprm5lem (𝜑 → ¬ 𝑋𝑃)
Distinct variable groups:   𝑧,𝑃   𝑧,𝑋
Allowed substitution hint:   𝜑(𝑧)

Proof of Theorem isprm5lem
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isprm5lem.x . . 3 (𝜑𝑋 ∈ (2...(𝑃 − 1)))
2 elfzuz 10150 . . 3 (𝑋 ∈ (2...(𝑃 − 1)) → 𝑋 ∈ (ℤ‘2))
3 exprmfct 12504 . . 3 (𝑋 ∈ (ℤ‘2) → ∃𝑦 ∈ ℙ 𝑦𝑋)
41, 2, 33syl 17 . 2 (𝜑 → ∃𝑦 ∈ ℙ 𝑦𝑋)
5 simpr 110 . . . . 5 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → (𝑦↑2) ≤ 𝑃)
6 oveq1 5958 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧↑2) = (𝑦↑2))
76breq1d 4057 . . . . . . 7 (𝑧 = 𝑦 → ((𝑧↑2) ≤ 𝑃 ↔ (𝑦↑2) ≤ 𝑃))
8 breq1 4050 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧𝑃𝑦𝑃))
98notbid 669 . . . . . . 7 (𝑧 = 𝑦 → (¬ 𝑧𝑃 ↔ ¬ 𝑦𝑃))
107, 9imbi12d 234 . . . . . 6 (𝑧 = 𝑦 → (((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ((𝑦↑2) ≤ 𝑃 → ¬ 𝑦𝑃)))
11 isprm5lem.z . . . . . . 7 (𝜑 → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
1211ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
13 simplrl 535 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → 𝑦 ∈ ℙ)
1410, 12, 13rspcdva 2883 . . . . 5 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ((𝑦↑2) ≤ 𝑃 → ¬ 𝑦𝑃))
155, 14mpd 13 . . . 4 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ¬ 𝑦𝑃)
16 prmz 12477 . . . . . . 7 (𝑦 ∈ ℙ → 𝑦 ∈ ℤ)
1716ad2antrl 490 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → 𝑦 ∈ ℤ)
1817ad2antrr 488 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑦 ∈ ℤ)
19 elfzelz 10154 . . . . . . . 8 (𝑋 ∈ (2...(𝑃 − 1)) → 𝑋 ∈ ℤ)
201, 19syl 14 . . . . . . 7 (𝜑𝑋 ∈ ℤ)
2120ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑋𝑃) → 𝑋 ∈ ℤ)
2221adantlr 477 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑋 ∈ ℤ)
23 isprm5lem.p . . . . . . . 8 (𝜑𝑃 ∈ (ℤ‘2))
24 eluzelz 9664 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℤ)
2523, 24syl 14 . . . . . . 7 (𝜑𝑃 ∈ ℤ)
2625ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑋𝑃) → 𝑃 ∈ ℤ)
2726adantlr 477 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑃 ∈ ℤ)
28 simplrr 536 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑋𝑃) → 𝑦𝑋)
2928adantlr 477 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑦𝑋)
30 simpr 110 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑋𝑃)
3118, 22, 27, 29, 30dvdstrd 12185 . . . 4 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑦𝑃)
3215, 31mtand 667 . . 3 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ¬ 𝑋𝑃)
3317ad2antrr 488 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑦 ∈ ℤ)
3421adantlr 477 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑋 ∈ ℤ)
3525adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → 𝑃 ∈ ℤ)
3635ad2antrr 488 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑃 ∈ ℤ)
3728adantlr 477 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑦𝑋)
38 simpr 110 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑋𝑃)
3933, 34, 36, 37, 38dvdstrd 12185 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑦𝑃)
4017adantr 276 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℤ)
41 prmnn 12476 . . . . . . . . . . . . 13 (𝑦 ∈ ℙ → 𝑦 ∈ ℕ)
4241nnne0d 9088 . . . . . . . . . . . 12 (𝑦 ∈ ℙ → 𝑦 ≠ 0)
4342ad2antrl 490 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → 𝑦 ≠ 0)
4443adantr 276 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ≠ 0)
4525ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℤ)
46 dvdsval2 12145 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ 𝑃 ∈ ℤ) → (𝑦𝑃 ↔ (𝑃 / 𝑦) ∈ ℤ))
4740, 44, 45, 46syl3anc 1250 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦𝑃 ↔ (𝑃 / 𝑦) ∈ ℤ))
4847adantr 276 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → (𝑦𝑃 ↔ (𝑃 / 𝑦) ∈ ℤ))
4939, 48mpbid 147 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → (𝑃 / 𝑦) ∈ ℤ)
5040zred 9502 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℝ)
5150recnd 8108 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℂ)
5251mulid2d 8098 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (1 · 𝑦) = 𝑦)
53 2nn 9205 . . . . . . . . . . . . . . 15 2 ∈ ℕ
54 fzssnn 10197 . . . . . . . . . . . . . . 15 (2 ∈ ℕ → (2...(𝑃 − 1)) ⊆ ℕ)
5553, 54ax-mp 5 . . . . . . . . . . . . . 14 (2...(𝑃 − 1)) ⊆ ℕ
5655, 1sselid 3192 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℕ)
5756ad2antrr 488 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑋 ∈ ℕ)
5857nnred 9056 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑋 ∈ ℝ)
5925zred 9502 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℝ)
6059ad2antrr 488 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℝ)
61 simplrr 536 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦𝑋)
62 dvdsle 12199 . . . . . . . . . . . . 13 ((𝑦 ∈ ℤ ∧ 𝑋 ∈ ℕ) → (𝑦𝑋𝑦𝑋))
6340, 57, 62syl2anc 411 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦𝑋𝑦𝑋))
6461, 63mpd 13 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦𝑋)
65 elfzle2 10157 . . . . . . . . . . . . . 14 (𝑋 ∈ (2...(𝑃 − 1)) → 𝑋 ≤ (𝑃 − 1))
661, 65syl 14 . . . . . . . . . . . . 13 (𝜑𝑋 ≤ (𝑃 − 1))
67 zltlem1 9437 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑋 < 𝑃𝑋 ≤ (𝑃 − 1)))
6820, 25, 67syl2anc 411 . . . . . . . . . . . . 13 (𝜑 → (𝑋 < 𝑃𝑋 ≤ (𝑃 − 1)))
6966, 68mpbird 167 . . . . . . . . . . . 12 (𝜑𝑋 < 𝑃)
7069ad2antrr 488 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑋 < 𝑃)
7150, 58, 60, 64, 70lelttrd 8204 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 < 𝑃)
7252, 71eqbrtrd 4069 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (1 · 𝑦) < 𝑃)
73 1red 8094 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 1 ∈ ℝ)
7441nnrpd 9823 . . . . . . . . . . . 12 (𝑦 ∈ ℙ → 𝑦 ∈ ℝ+)
7574ad2antrl 490 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → 𝑦 ∈ ℝ+)
7675adantr 276 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℝ+)
7773, 60, 76ltmuldivd 9873 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((1 · 𝑦) < 𝑃 ↔ 1 < (𝑃 / 𝑦)))
7872, 77mpbid 147 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 1 < (𝑃 / 𝑦))
7978adantr 276 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 1 < (𝑃 / 𝑦))
80 eluz2b1 9729 . . . . . . 7 ((𝑃 / 𝑦) ∈ (ℤ‘2) ↔ ((𝑃 / 𝑦) ∈ ℤ ∧ 1 < (𝑃 / 𝑦)))
8149, 79, 80sylanbrc 417 . . . . . 6 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → (𝑃 / 𝑦) ∈ (ℤ‘2))
82 exprmfct 12504 . . . . . 6 ((𝑃 / 𝑦) ∈ (ℤ‘2) → ∃𝑤 ∈ ℙ 𝑤 ∥ (𝑃 / 𝑦))
8381, 82syl 14 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → ∃𝑤 ∈ ℙ 𝑤 ∥ (𝑃 / 𝑦))
84 prmz 12477 . . . . . . . 8 (𝑤 ∈ ℙ → 𝑤 ∈ ℤ)
8584ad2antrl 490 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∈ ℤ)
8649adantr 276 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ ℤ)
8745ad2antrr 488 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑃 ∈ ℤ)
88 simprr 531 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∥ (𝑃 / 𝑦))
8939adantr 276 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑦𝑃)
9044ad2antrr 488 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑦 ≠ 0)
91 divconjdvds 12204 . . . . . . . 8 ((𝑦𝑃𝑦 ≠ 0) → (𝑃 / 𝑦) ∥ 𝑃)
9289, 90, 91syl2anc 411 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∥ 𝑃)
9385, 86, 87, 88, 92dvdstrd 12185 . . . . . 6 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤𝑃)
9485zred 9502 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∈ ℝ)
9594resqcld 10851 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) ∈ ℝ)
9660ad2antrr 488 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑃 ∈ ℝ)
9781adantr 276 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ (ℤ‘2))
98 eluz2nn 9694 . . . . . . . . . . . 12 ((𝑃 / 𝑦) ∈ (ℤ‘2) → (𝑃 / 𝑦) ∈ ℕ)
9997, 98syl 14 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ ℕ)
10099nnred 9056 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ ℝ)
101100resqcld 10851 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ((𝑃 / 𝑦)↑2) ∈ ℝ)
102 dvdsle 12199 . . . . . . . . . . . 12 ((𝑤 ∈ ℤ ∧ (𝑃 / 𝑦) ∈ ℕ) → (𝑤 ∥ (𝑃 / 𝑦) → 𝑤 ≤ (𝑃 / 𝑦)))
10385, 99, 102syl2anc 411 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤 ∥ (𝑃 / 𝑦) → 𝑤 ≤ (𝑃 / 𝑦)))
10488, 103mpd 13 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ≤ (𝑃 / 𝑦))
105 prmnn 12476 . . . . . . . . . . . . . 14 (𝑤 ∈ ℙ → 𝑤 ∈ ℕ)
106105nnnn0d 9355 . . . . . . . . . . . . 13 (𝑤 ∈ ℙ → 𝑤 ∈ ℕ0)
107106nn0ge0d 9358 . . . . . . . . . . . 12 (𝑤 ∈ ℙ → 0 ≤ 𝑤)
108107ad2antrl 490 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ≤ 𝑤)
109 0red 8080 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ∈ ℝ)
110 1red 8094 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 1 ∈ ℝ)
111 0le1 8561 . . . . . . . . . . . . 13 0 ≤ 1
112111a1i 9 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ≤ 1)
11399nnge1d 9086 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 1 ≤ (𝑃 / 𝑦))
114109, 110, 100, 112, 113letrd 8203 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ≤ (𝑃 / 𝑦))
11594, 100, 108, 114le2sqd 10857 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤 ≤ (𝑃 / 𝑦) ↔ (𝑤↑2) ≤ ((𝑃 / 𝑦)↑2)))
116104, 115mpbid 147 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) ≤ ((𝑃 / 𝑦)↑2))
11760recnd 8108 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℂ)
11841ad2antrl 490 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → 𝑦 ∈ ℕ)
119118adantr 276 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℕ)
120119nnap0d 9089 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 # 0)
121117, 51, 120sqdivapd 10838 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((𝑃 / 𝑦)↑2) = ((𝑃↑2) / (𝑦↑2)))
122117sqvald 10822 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃↑2) = (𝑃 · 𝑃))
12350resqcld 10851 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦↑2) ∈ ℝ)
124 eluz2nn 9694 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
12523, 124syl 14 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℕ)
126125nnrpd 9823 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℝ+)
127126ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℝ+)
128 simpr 110 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 < (𝑦↑2))
12960, 123, 127, 128ltmul2dd 9882 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃 · 𝑃) < (𝑃 · (𝑦↑2)))
130122, 129eqbrtrd 4069 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃↑2) < (𝑃 · (𝑦↑2)))
13160resqcld 10851 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃↑2) ∈ ℝ)
132119nnsqcld 10846 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦↑2) ∈ ℕ)
133132nnrpd 9823 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦↑2) ∈ ℝ+)
134131, 60, 133ltdivmul2d 9878 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (((𝑃↑2) / (𝑦↑2)) < 𝑃 ↔ (𝑃↑2) < (𝑃 · (𝑦↑2))))
135130, 134mpbird 167 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((𝑃↑2) / (𝑦↑2)) < 𝑃)
136121, 135eqbrtrd 4069 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((𝑃 / 𝑦)↑2) < 𝑃)
137136ad2antrr 488 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ((𝑃 / 𝑦)↑2) < 𝑃)
13895, 101, 96, 116, 137lelttrd 8204 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) < 𝑃)
13995, 96, 138ltled 8198 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) ≤ 𝑃)
140 oveq1 5958 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧↑2) = (𝑤↑2))
141140breq1d 4057 . . . . . . . . 9 (𝑧 = 𝑤 → ((𝑧↑2) ≤ 𝑃 ↔ (𝑤↑2) ≤ 𝑃))
142 breq1 4050 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧𝑃𝑤𝑃))
143142notbid 669 . . . . . . . . 9 (𝑧 = 𝑤 → (¬ 𝑧𝑃 ↔ ¬ 𝑤𝑃))
144141, 143imbi12d 234 . . . . . . . 8 (𝑧 = 𝑤 → (((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ((𝑤↑2) ≤ 𝑃 → ¬ 𝑤𝑃)))
14511ad4antr 494 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
146 simprl 529 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∈ ℙ)
147144, 145, 146rspcdva 2883 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ((𝑤↑2) ≤ 𝑃 → ¬ 𝑤𝑃))
148139, 147mpd 13 . . . . . 6 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ¬ 𝑤𝑃)
14993, 148pm2.21fal 1393 . . . . 5 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ⊥)
15083, 149rexlimddv 2629 . . . 4 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → ⊥)
151150inegd 1392 . . 3 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → ¬ 𝑋𝑃)
152 zsqcl 10762 . . . . 5 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℤ)
15317, 152syl 14 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → (𝑦↑2) ∈ ℤ)
154 zlelttric 9424 . . . 4 (((𝑦↑2) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑦↑2) ≤ 𝑃𝑃 < (𝑦↑2)))
155153, 35, 154syl2anc 411 . . 3 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → ((𝑦↑2) ≤ 𝑃𝑃 < (𝑦↑2)))
15632, 151, 155mpjaodan 800 . 2 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → ¬ 𝑋𝑃)
1574, 156rexlimddv 2629 1 (𝜑 → ¬ 𝑋𝑃)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  wfal 1378  wcel 2177  wne 2377  wral 2485  wrex 2486  wss 3167   class class class wbr 4047  cfv 5276  (class class class)co 5951  cr 7931  0cc0 7932  1c1 7933   · cmul 7937   < clt 8114  cle 8115  cmin 8250   / cdiv 8752  cn 9043  2c2 9094  cz 9379  cuz 9655  +crp 9782  ...cfz 10137  cexp 10690  cdvds 12142  cprime 12473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-1o 6509  df-2o 6510  df-er 6627  df-en 6835  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-fl 10420  df-mod 10475  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-dvds 12143  df-prm 12474
This theorem is referenced by:  isprm5  12508
  Copyright terms: Public domain W3C validator