| Step | Hyp | Ref
| Expression |
| 1 | | isprm5lem.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ (2...(𝑃 − 1))) |
| 2 | | elfzuz 10096 |
. . 3
⊢ (𝑋 ∈ (2...(𝑃 − 1)) → 𝑋 ∈
(ℤ≥‘2)) |
| 3 | | exprmfct 12306 |
. . 3
⊢ (𝑋 ∈
(ℤ≥‘2) → ∃𝑦 ∈ ℙ 𝑦 ∥ 𝑋) |
| 4 | 1, 2, 3 | 3syl 17 |
. 2
⊢ (𝜑 → ∃𝑦 ∈ ℙ 𝑦 ∥ 𝑋) |
| 5 | | simpr 110 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → (𝑦↑2) ≤ 𝑃) |
| 6 | | oveq1 5929 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (𝑧↑2) = (𝑦↑2)) |
| 7 | 6 | breq1d 4043 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → ((𝑧↑2) ≤ 𝑃 ↔ (𝑦↑2) ≤ 𝑃)) |
| 8 | | breq1 4036 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (𝑧 ∥ 𝑃 ↔ 𝑦 ∥ 𝑃)) |
| 9 | 8 | notbid 668 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (¬ 𝑧 ∥ 𝑃 ↔ ¬ 𝑦 ∥ 𝑃)) |
| 10 | 7, 9 | imbi12d 234 |
. . . . . 6
⊢ (𝑧 = 𝑦 → (((𝑧↑2) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃) ↔ ((𝑦↑2) ≤ 𝑃 → ¬ 𝑦 ∥ 𝑃))) |
| 11 | | isprm5lem.z |
. . . . . . 7
⊢ (𝜑 → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃)) |
| 12 | 11 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃)) |
| 13 | | simplrl 535 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → 𝑦 ∈ ℙ) |
| 14 | 10, 12, 13 | rspcdva 2873 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ((𝑦↑2) ≤ 𝑃 → ¬ 𝑦 ∥ 𝑃)) |
| 15 | 5, 14 | mpd 13 |
. . . 4
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ¬ 𝑦 ∥ 𝑃) |
| 16 | | prmz 12279 |
. . . . . . 7
⊢ (𝑦 ∈ ℙ → 𝑦 ∈
ℤ) |
| 17 | 16 | ad2antrl 490 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) → 𝑦 ∈ ℤ) |
| 18 | 17 | ad2antrr 488 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋 ∥ 𝑃) → 𝑦 ∈ ℤ) |
| 19 | | elfzelz 10100 |
. . . . . . . 8
⊢ (𝑋 ∈ (2...(𝑃 − 1)) → 𝑋 ∈ ℤ) |
| 20 | 1, 19 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ ℤ) |
| 21 | 20 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑋 ∥ 𝑃) → 𝑋 ∈ ℤ) |
| 22 | 21 | adantlr 477 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋 ∥ 𝑃) → 𝑋 ∈ ℤ) |
| 23 | | isprm5lem.p |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈
(ℤ≥‘2)) |
| 24 | | eluzelz 9610 |
. . . . . . . 8
⊢ (𝑃 ∈
(ℤ≥‘2) → 𝑃 ∈ ℤ) |
| 25 | 23, 24 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 26 | 25 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑋 ∥ 𝑃) → 𝑃 ∈ ℤ) |
| 27 | 26 | adantlr 477 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋 ∥ 𝑃) → 𝑃 ∈ ℤ) |
| 28 | | simplrr 536 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑋 ∥ 𝑃) → 𝑦 ∥ 𝑋) |
| 29 | 28 | adantlr 477 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋 ∥ 𝑃) → 𝑦 ∥ 𝑋) |
| 30 | | simpr 110 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋 ∥ 𝑃) → 𝑋 ∥ 𝑃) |
| 31 | 18, 22, 27, 29, 30 | dvdstrd 11995 |
. . . 4
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋 ∥ 𝑃) → 𝑦 ∥ 𝑃) |
| 32 | 15, 31 | mtand 666 |
. . 3
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ¬ 𝑋 ∥ 𝑃) |
| 33 | 17 | ad2antrr 488 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) → 𝑦 ∈ ℤ) |
| 34 | 21 | adantlr 477 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) → 𝑋 ∈ ℤ) |
| 35 | 25 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) → 𝑃 ∈ ℤ) |
| 36 | 35 | ad2antrr 488 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) → 𝑃 ∈ ℤ) |
| 37 | 28 | adantlr 477 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) → 𝑦 ∥ 𝑋) |
| 38 | | simpr 110 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) → 𝑋 ∥ 𝑃) |
| 39 | 33, 34, 36, 37, 38 | dvdstrd 11995 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) → 𝑦 ∥ 𝑃) |
| 40 | 17 | adantr 276 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℤ) |
| 41 | | prmnn 12278 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℙ → 𝑦 ∈
ℕ) |
| 42 | 41 | nnne0d 9035 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℙ → 𝑦 ≠ 0) |
| 43 | 42 | ad2antrl 490 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) → 𝑦 ≠ 0) |
| 44 | 43 | adantr 276 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ≠ 0) |
| 45 | 25 | ad2antrr 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℤ) |
| 46 | | dvdsval2 11955 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ 𝑃 ∈ ℤ) → (𝑦 ∥ 𝑃 ↔ (𝑃 / 𝑦) ∈ ℤ)) |
| 47 | 40, 44, 45, 46 | syl3anc 1249 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦 ∥ 𝑃 ↔ (𝑃 / 𝑦) ∈ ℤ)) |
| 48 | 47 | adantr 276 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) → (𝑦 ∥ 𝑃 ↔ (𝑃 / 𝑦) ∈ ℤ)) |
| 49 | 39, 48 | mpbid 147 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) → (𝑃 / 𝑦) ∈ ℤ) |
| 50 | 40 | zred 9448 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℝ) |
| 51 | 50 | recnd 8055 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℂ) |
| 52 | 51 | mulid2d 8045 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → (1 · 𝑦) = 𝑦) |
| 53 | | 2nn 9152 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℕ |
| 54 | | fzssnn 10143 |
. . . . . . . . . . . . . . 15
⊢ (2 ∈
ℕ → (2...(𝑃
− 1)) ⊆ ℕ) |
| 55 | 53, 54 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
(2...(𝑃 − 1))
⊆ ℕ |
| 56 | 55, 1 | sselid 3181 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈ ℕ) |
| 57 | 56 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑋 ∈ ℕ) |
| 58 | 57 | nnred 9003 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑋 ∈ ℝ) |
| 59 | 25 | zred 9448 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ ℝ) |
| 60 | 59 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℝ) |
| 61 | | simplrr 536 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∥ 𝑋) |
| 62 | | dvdsle 12009 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℤ ∧ 𝑋 ∈ ℕ) → (𝑦 ∥ 𝑋 → 𝑦 ≤ 𝑋)) |
| 63 | 40, 57, 62 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦 ∥ 𝑋 → 𝑦 ≤ 𝑋)) |
| 64 | 61, 63 | mpd 13 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ≤ 𝑋) |
| 65 | | elfzle2 10103 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ (2...(𝑃 − 1)) → 𝑋 ≤ (𝑃 − 1)) |
| 66 | 1, 65 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ≤ (𝑃 − 1)) |
| 67 | | zltlem1 9383 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑋 < 𝑃 ↔ 𝑋 ≤ (𝑃 − 1))) |
| 68 | 20, 25, 67 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋 < 𝑃 ↔ 𝑋 ≤ (𝑃 − 1))) |
| 69 | 66, 68 | mpbird 167 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 < 𝑃) |
| 70 | 69 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑋 < 𝑃) |
| 71 | 50, 58, 60, 64, 70 | lelttrd 8151 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 < 𝑃) |
| 72 | 52, 71 | eqbrtrd 4055 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → (1 · 𝑦) < 𝑃) |
| 73 | | 1red 8041 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 1 ∈
ℝ) |
| 74 | 41 | nnrpd 9769 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℙ → 𝑦 ∈
ℝ+) |
| 75 | 74 | ad2antrl 490 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) → 𝑦 ∈ ℝ+) |
| 76 | 75 | adantr 276 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℝ+) |
| 77 | 73, 60, 76 | ltmuldivd 9819 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((1 · 𝑦) < 𝑃 ↔ 1 < (𝑃 / 𝑦))) |
| 78 | 72, 77 | mpbid 147 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 1 < (𝑃 / 𝑦)) |
| 79 | 78 | adantr 276 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) → 1 < (𝑃 / 𝑦)) |
| 80 | | eluz2b1 9675 |
. . . . . . 7
⊢ ((𝑃 / 𝑦) ∈ (ℤ≥‘2)
↔ ((𝑃 / 𝑦) ∈ ℤ ∧ 1 <
(𝑃 / 𝑦))) |
| 81 | 49, 79, 80 | sylanbrc 417 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) → (𝑃 / 𝑦) ∈
(ℤ≥‘2)) |
| 82 | | exprmfct 12306 |
. . . . . 6
⊢ ((𝑃 / 𝑦) ∈ (ℤ≥‘2)
→ ∃𝑤 ∈
ℙ 𝑤 ∥ (𝑃 / 𝑦)) |
| 83 | 81, 82 | syl 14 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) → ∃𝑤 ∈ ℙ 𝑤 ∥ (𝑃 / 𝑦)) |
| 84 | | prmz 12279 |
. . . . . . . 8
⊢ (𝑤 ∈ ℙ → 𝑤 ∈
ℤ) |
| 85 | 84 | ad2antrl 490 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∈ ℤ) |
| 86 | 49 | adantr 276 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ ℤ) |
| 87 | 45 | ad2antrr 488 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑃 ∈ ℤ) |
| 88 | | simprr 531 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∥ (𝑃 / 𝑦)) |
| 89 | 39 | adantr 276 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑦 ∥ 𝑃) |
| 90 | 44 | ad2antrr 488 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑦 ≠ 0) |
| 91 | | divconjdvds 12014 |
. . . . . . . 8
⊢ ((𝑦 ∥ 𝑃 ∧ 𝑦 ≠ 0) → (𝑃 / 𝑦) ∥ 𝑃) |
| 92 | 89, 90, 91 | syl2anc 411 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∥ 𝑃) |
| 93 | 85, 86, 87, 88, 92 | dvdstrd 11995 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∥ 𝑃) |
| 94 | 85 | zred 9448 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∈ ℝ) |
| 95 | 94 | resqcld 10791 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) ∈ ℝ) |
| 96 | 60 | ad2antrr 488 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑃 ∈ ℝ) |
| 97 | 81 | adantr 276 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈
(ℤ≥‘2)) |
| 98 | | eluz2nn 9640 |
. . . . . . . . . . . 12
⊢ ((𝑃 / 𝑦) ∈ (ℤ≥‘2)
→ (𝑃 / 𝑦) ∈
ℕ) |
| 99 | 97, 98 | syl 14 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ ℕ) |
| 100 | 99 | nnred 9003 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ ℝ) |
| 101 | 100 | resqcld 10791 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ((𝑃 / 𝑦)↑2) ∈ ℝ) |
| 102 | | dvdsle 12009 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ ℤ ∧ (𝑃 / 𝑦) ∈ ℕ) → (𝑤 ∥ (𝑃 / 𝑦) → 𝑤 ≤ (𝑃 / 𝑦))) |
| 103 | 85, 99, 102 | syl2anc 411 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤 ∥ (𝑃 / 𝑦) → 𝑤 ≤ (𝑃 / 𝑦))) |
| 104 | 88, 103 | mpd 13 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ≤ (𝑃 / 𝑦)) |
| 105 | | prmnn 12278 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ ℙ → 𝑤 ∈
ℕ) |
| 106 | 105 | nnnn0d 9302 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ ℙ → 𝑤 ∈
ℕ0) |
| 107 | 106 | nn0ge0d 9305 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ ℙ → 0 ≤
𝑤) |
| 108 | 107 | ad2antrl 490 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ≤ 𝑤) |
| 109 | | 0red 8027 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ∈ ℝ) |
| 110 | | 1red 8041 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 1 ∈ ℝ) |
| 111 | | 0le1 8508 |
. . . . . . . . . . . . 13
⊢ 0 ≤
1 |
| 112 | 111 | a1i 9 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ≤ 1) |
| 113 | 99 | nnge1d 9033 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 1 ≤ (𝑃 / 𝑦)) |
| 114 | 109, 110,
100, 112, 113 | letrd 8150 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ≤ (𝑃 / 𝑦)) |
| 115 | 94, 100, 108, 114 | le2sqd 10797 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤 ≤ (𝑃 / 𝑦) ↔ (𝑤↑2) ≤ ((𝑃 / 𝑦)↑2))) |
| 116 | 104, 115 | mpbid 147 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) ≤ ((𝑃 / 𝑦)↑2)) |
| 117 | 60 | recnd 8055 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℂ) |
| 118 | 41 | ad2antrl 490 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) → 𝑦 ∈ ℕ) |
| 119 | 118 | adantr 276 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℕ) |
| 120 | 119 | nnap0d 9036 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 # 0) |
| 121 | 117, 51, 120 | sqdivapd 10778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((𝑃 / 𝑦)↑2) = ((𝑃↑2) / (𝑦↑2))) |
| 122 | 117 | sqvald 10762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃↑2) = (𝑃 · 𝑃)) |
| 123 | 50 | resqcld 10791 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦↑2) ∈ ℝ) |
| 124 | | eluz2nn 9640 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈
(ℤ≥‘2) → 𝑃 ∈ ℕ) |
| 125 | 23, 124 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 126 | 125 | nnrpd 9769 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑃 ∈
ℝ+) |
| 127 | 126 | ad2antrr 488 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈
ℝ+) |
| 128 | | simpr 110 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 < (𝑦↑2)) |
| 129 | 60, 123, 127, 128 | ltmul2dd 9828 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃 · 𝑃) < (𝑃 · (𝑦↑2))) |
| 130 | 122, 129 | eqbrtrd 4055 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃↑2) < (𝑃 · (𝑦↑2))) |
| 131 | 60 | resqcld 10791 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃↑2) ∈ ℝ) |
| 132 | 119 | nnsqcld 10786 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦↑2) ∈ ℕ) |
| 133 | 132 | nnrpd 9769 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦↑2) ∈
ℝ+) |
| 134 | 131, 60, 133 | ltdivmul2d 9824 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → (((𝑃↑2) / (𝑦↑2)) < 𝑃 ↔ (𝑃↑2) < (𝑃 · (𝑦↑2)))) |
| 135 | 130, 134 | mpbird 167 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((𝑃↑2) / (𝑦↑2)) < 𝑃) |
| 136 | 121, 135 | eqbrtrd 4055 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((𝑃 / 𝑦)↑2) < 𝑃) |
| 137 | 136 | ad2antrr 488 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ((𝑃 / 𝑦)↑2) < 𝑃) |
| 138 | 95, 101, 96, 116, 137 | lelttrd 8151 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) < 𝑃) |
| 139 | 95, 96, 138 | ltled 8145 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) ≤ 𝑃) |
| 140 | | oveq1 5929 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (𝑧↑2) = (𝑤↑2)) |
| 141 | 140 | breq1d 4043 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → ((𝑧↑2) ≤ 𝑃 ↔ (𝑤↑2) ≤ 𝑃)) |
| 142 | | breq1 4036 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝑃 ↔ 𝑤 ∥ 𝑃)) |
| 143 | 142 | notbid 668 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (¬ 𝑧 ∥ 𝑃 ↔ ¬ 𝑤 ∥ 𝑃)) |
| 144 | 141, 143 | imbi12d 234 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → (((𝑧↑2) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃) ↔ ((𝑤↑2) ≤ 𝑃 → ¬ 𝑤 ∥ 𝑃))) |
| 145 | 11 | ad4antr 494 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃)) |
| 146 | | simprl 529 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∈ ℙ) |
| 147 | 144, 145,
146 | rspcdva 2873 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ((𝑤↑2) ≤ 𝑃 → ¬ 𝑤 ∥ 𝑃)) |
| 148 | 139, 147 | mpd 13 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ¬ 𝑤 ∥ 𝑃) |
| 149 | 93, 148 | pm2.21fal 1384 |
. . . . 5
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ⊥) |
| 150 | 83, 149 | rexlimddv 2619 |
. . . 4
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) → ⊥) |
| 151 | 150 | inegd 1383 |
. . 3
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → ¬ 𝑋 ∥ 𝑃) |
| 152 | | zsqcl 10702 |
. . . . 5
⊢ (𝑦 ∈ ℤ → (𝑦↑2) ∈
ℤ) |
| 153 | 17, 152 | syl 14 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) → (𝑦↑2) ∈ ℤ) |
| 154 | | zlelttric 9371 |
. . . 4
⊢ (((𝑦↑2) ∈ ℤ ∧
𝑃 ∈ ℤ) →
((𝑦↑2) ≤ 𝑃 ∨ 𝑃 < (𝑦↑2))) |
| 155 | 153, 35, 154 | syl2anc 411 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) → ((𝑦↑2) ≤ 𝑃 ∨ 𝑃 < (𝑦↑2))) |
| 156 | 32, 151, 155 | mpjaodan 799 |
. 2
⊢ ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) → ¬ 𝑋 ∥ 𝑃) |
| 157 | 4, 156 | rexlimddv 2619 |
1
⊢ (𝜑 → ¬ 𝑋 ∥ 𝑃) |