ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm5lem GIF version

Theorem isprm5lem 12282
Description: Lemma for isprm5 12283. The interesting direction (showing that one only needs to check prime divisors up to the square root of 𝑃). (Contributed by Jim Kingdon, 20-Oct-2024.)
Hypotheses
Ref Expression
isprm5lem.p (𝜑𝑃 ∈ (ℤ‘2))
isprm5lem.z (𝜑 → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
isprm5lem.x (𝜑𝑋 ∈ (2...(𝑃 − 1)))
Assertion
Ref Expression
isprm5lem (𝜑 → ¬ 𝑋𝑃)
Distinct variable groups:   𝑧,𝑃   𝑧,𝑋
Allowed substitution hint:   𝜑(𝑧)

Proof of Theorem isprm5lem
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isprm5lem.x . . 3 (𝜑𝑋 ∈ (2...(𝑃 − 1)))
2 elfzuz 10090 . . 3 (𝑋 ∈ (2...(𝑃 − 1)) → 𝑋 ∈ (ℤ‘2))
3 exprmfct 12279 . . 3 (𝑋 ∈ (ℤ‘2) → ∃𝑦 ∈ ℙ 𝑦𝑋)
41, 2, 33syl 17 . 2 (𝜑 → ∃𝑦 ∈ ℙ 𝑦𝑋)
5 simpr 110 . . . . 5 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → (𝑦↑2) ≤ 𝑃)
6 oveq1 5926 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧↑2) = (𝑦↑2))
76breq1d 4040 . . . . . . 7 (𝑧 = 𝑦 → ((𝑧↑2) ≤ 𝑃 ↔ (𝑦↑2) ≤ 𝑃))
8 breq1 4033 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧𝑃𝑦𝑃))
98notbid 668 . . . . . . 7 (𝑧 = 𝑦 → (¬ 𝑧𝑃 ↔ ¬ 𝑦𝑃))
107, 9imbi12d 234 . . . . . 6 (𝑧 = 𝑦 → (((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ((𝑦↑2) ≤ 𝑃 → ¬ 𝑦𝑃)))
11 isprm5lem.z . . . . . . 7 (𝜑 → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
1211ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
13 simplrl 535 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → 𝑦 ∈ ℙ)
1410, 12, 13rspcdva 2870 . . . . 5 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ((𝑦↑2) ≤ 𝑃 → ¬ 𝑦𝑃))
155, 14mpd 13 . . . 4 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ¬ 𝑦𝑃)
16 prmz 12252 . . . . . . 7 (𝑦 ∈ ℙ → 𝑦 ∈ ℤ)
1716ad2antrl 490 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → 𝑦 ∈ ℤ)
1817ad2antrr 488 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑦 ∈ ℤ)
19 elfzelz 10094 . . . . . . . 8 (𝑋 ∈ (2...(𝑃 − 1)) → 𝑋 ∈ ℤ)
201, 19syl 14 . . . . . . 7 (𝜑𝑋 ∈ ℤ)
2120ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑋𝑃) → 𝑋 ∈ ℤ)
2221adantlr 477 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑋 ∈ ℤ)
23 isprm5lem.p . . . . . . . 8 (𝜑𝑃 ∈ (ℤ‘2))
24 eluzelz 9604 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℤ)
2523, 24syl 14 . . . . . . 7 (𝜑𝑃 ∈ ℤ)
2625ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑋𝑃) → 𝑃 ∈ ℤ)
2726adantlr 477 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑃 ∈ ℤ)
28 simplrr 536 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑋𝑃) → 𝑦𝑋)
2928adantlr 477 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑦𝑋)
30 simpr 110 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑋𝑃)
3118, 22, 27, 29, 30dvdstrd 11976 . . . 4 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑦𝑃)
3215, 31mtand 666 . . 3 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ¬ 𝑋𝑃)
3317ad2antrr 488 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑦 ∈ ℤ)
3421adantlr 477 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑋 ∈ ℤ)
3525adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → 𝑃 ∈ ℤ)
3635ad2antrr 488 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑃 ∈ ℤ)
3728adantlr 477 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑦𝑋)
38 simpr 110 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑋𝑃)
3933, 34, 36, 37, 38dvdstrd 11976 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑦𝑃)
4017adantr 276 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℤ)
41 prmnn 12251 . . . . . . . . . . . . 13 (𝑦 ∈ ℙ → 𝑦 ∈ ℕ)
4241nnne0d 9029 . . . . . . . . . . . 12 (𝑦 ∈ ℙ → 𝑦 ≠ 0)
4342ad2antrl 490 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → 𝑦 ≠ 0)
4443adantr 276 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ≠ 0)
4525ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℤ)
46 dvdsval2 11936 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ 𝑃 ∈ ℤ) → (𝑦𝑃 ↔ (𝑃 / 𝑦) ∈ ℤ))
4740, 44, 45, 46syl3anc 1249 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦𝑃 ↔ (𝑃 / 𝑦) ∈ ℤ))
4847adantr 276 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → (𝑦𝑃 ↔ (𝑃 / 𝑦) ∈ ℤ))
4939, 48mpbid 147 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → (𝑃 / 𝑦) ∈ ℤ)
5040zred 9442 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℝ)
5150recnd 8050 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℂ)
5251mulid2d 8040 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (1 · 𝑦) = 𝑦)
53 2nn 9146 . . . . . . . . . . . . . . 15 2 ∈ ℕ
54 fzssnn 10137 . . . . . . . . . . . . . . 15 (2 ∈ ℕ → (2...(𝑃 − 1)) ⊆ ℕ)
5553, 54ax-mp 5 . . . . . . . . . . . . . 14 (2...(𝑃 − 1)) ⊆ ℕ
5655, 1sselid 3178 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℕ)
5756ad2antrr 488 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑋 ∈ ℕ)
5857nnred 8997 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑋 ∈ ℝ)
5925zred 9442 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℝ)
6059ad2antrr 488 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℝ)
61 simplrr 536 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦𝑋)
62 dvdsle 11989 . . . . . . . . . . . . 13 ((𝑦 ∈ ℤ ∧ 𝑋 ∈ ℕ) → (𝑦𝑋𝑦𝑋))
6340, 57, 62syl2anc 411 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦𝑋𝑦𝑋))
6461, 63mpd 13 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦𝑋)
65 elfzle2 10097 . . . . . . . . . . . . . 14 (𝑋 ∈ (2...(𝑃 − 1)) → 𝑋 ≤ (𝑃 − 1))
661, 65syl 14 . . . . . . . . . . . . 13 (𝜑𝑋 ≤ (𝑃 − 1))
67 zltlem1 9377 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑋 < 𝑃𝑋 ≤ (𝑃 − 1)))
6820, 25, 67syl2anc 411 . . . . . . . . . . . . 13 (𝜑 → (𝑋 < 𝑃𝑋 ≤ (𝑃 − 1)))
6966, 68mpbird 167 . . . . . . . . . . . 12 (𝜑𝑋 < 𝑃)
7069ad2antrr 488 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑋 < 𝑃)
7150, 58, 60, 64, 70lelttrd 8146 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 < 𝑃)
7252, 71eqbrtrd 4052 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (1 · 𝑦) < 𝑃)
73 1red 8036 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 1 ∈ ℝ)
7441nnrpd 9763 . . . . . . . . . . . 12 (𝑦 ∈ ℙ → 𝑦 ∈ ℝ+)
7574ad2antrl 490 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → 𝑦 ∈ ℝ+)
7675adantr 276 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℝ+)
7773, 60, 76ltmuldivd 9813 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((1 · 𝑦) < 𝑃 ↔ 1 < (𝑃 / 𝑦)))
7872, 77mpbid 147 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 1 < (𝑃 / 𝑦))
7978adantr 276 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 1 < (𝑃 / 𝑦))
80 eluz2b1 9669 . . . . . . 7 ((𝑃 / 𝑦) ∈ (ℤ‘2) ↔ ((𝑃 / 𝑦) ∈ ℤ ∧ 1 < (𝑃 / 𝑦)))
8149, 79, 80sylanbrc 417 . . . . . 6 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → (𝑃 / 𝑦) ∈ (ℤ‘2))
82 exprmfct 12279 . . . . . 6 ((𝑃 / 𝑦) ∈ (ℤ‘2) → ∃𝑤 ∈ ℙ 𝑤 ∥ (𝑃 / 𝑦))
8381, 82syl 14 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → ∃𝑤 ∈ ℙ 𝑤 ∥ (𝑃 / 𝑦))
84 prmz 12252 . . . . . . . 8 (𝑤 ∈ ℙ → 𝑤 ∈ ℤ)
8584ad2antrl 490 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∈ ℤ)
8649adantr 276 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ ℤ)
8745ad2antrr 488 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑃 ∈ ℤ)
88 simprr 531 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∥ (𝑃 / 𝑦))
8939adantr 276 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑦𝑃)
9044ad2antrr 488 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑦 ≠ 0)
91 divconjdvds 11994 . . . . . . . 8 ((𝑦𝑃𝑦 ≠ 0) → (𝑃 / 𝑦) ∥ 𝑃)
9289, 90, 91syl2anc 411 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∥ 𝑃)
9385, 86, 87, 88, 92dvdstrd 11976 . . . . . 6 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤𝑃)
9485zred 9442 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∈ ℝ)
9594resqcld 10773 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) ∈ ℝ)
9660ad2antrr 488 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑃 ∈ ℝ)
9781adantr 276 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ (ℤ‘2))
98 eluz2nn 9634 . . . . . . . . . . . 12 ((𝑃 / 𝑦) ∈ (ℤ‘2) → (𝑃 / 𝑦) ∈ ℕ)
9997, 98syl 14 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ ℕ)
10099nnred 8997 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ ℝ)
101100resqcld 10773 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ((𝑃 / 𝑦)↑2) ∈ ℝ)
102 dvdsle 11989 . . . . . . . . . . . 12 ((𝑤 ∈ ℤ ∧ (𝑃 / 𝑦) ∈ ℕ) → (𝑤 ∥ (𝑃 / 𝑦) → 𝑤 ≤ (𝑃 / 𝑦)))
10385, 99, 102syl2anc 411 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤 ∥ (𝑃 / 𝑦) → 𝑤 ≤ (𝑃 / 𝑦)))
10488, 103mpd 13 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ≤ (𝑃 / 𝑦))
105 prmnn 12251 . . . . . . . . . . . . . 14 (𝑤 ∈ ℙ → 𝑤 ∈ ℕ)
106105nnnn0d 9296 . . . . . . . . . . . . 13 (𝑤 ∈ ℙ → 𝑤 ∈ ℕ0)
107106nn0ge0d 9299 . . . . . . . . . . . 12 (𝑤 ∈ ℙ → 0 ≤ 𝑤)
108107ad2antrl 490 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ≤ 𝑤)
109 0red 8022 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ∈ ℝ)
110 1red 8036 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 1 ∈ ℝ)
111 0le1 8502 . . . . . . . . . . . . 13 0 ≤ 1
112111a1i 9 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ≤ 1)
11399nnge1d 9027 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 1 ≤ (𝑃 / 𝑦))
114109, 110, 100, 112, 113letrd 8145 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ≤ (𝑃 / 𝑦))
11594, 100, 108, 114le2sqd 10779 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤 ≤ (𝑃 / 𝑦) ↔ (𝑤↑2) ≤ ((𝑃 / 𝑦)↑2)))
116104, 115mpbid 147 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) ≤ ((𝑃 / 𝑦)↑2))
11760recnd 8050 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℂ)
11841ad2antrl 490 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → 𝑦 ∈ ℕ)
119118adantr 276 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℕ)
120119nnap0d 9030 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 # 0)
121117, 51, 120sqdivapd 10760 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((𝑃 / 𝑦)↑2) = ((𝑃↑2) / (𝑦↑2)))
122117sqvald 10744 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃↑2) = (𝑃 · 𝑃))
12350resqcld 10773 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦↑2) ∈ ℝ)
124 eluz2nn 9634 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
12523, 124syl 14 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℕ)
126125nnrpd 9763 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℝ+)
127126ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℝ+)
128 simpr 110 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 < (𝑦↑2))
12960, 123, 127, 128ltmul2dd 9822 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃 · 𝑃) < (𝑃 · (𝑦↑2)))
130122, 129eqbrtrd 4052 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃↑2) < (𝑃 · (𝑦↑2)))
13160resqcld 10773 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃↑2) ∈ ℝ)
132119nnsqcld 10768 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦↑2) ∈ ℕ)
133132nnrpd 9763 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦↑2) ∈ ℝ+)
134131, 60, 133ltdivmul2d 9818 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (((𝑃↑2) / (𝑦↑2)) < 𝑃 ↔ (𝑃↑2) < (𝑃 · (𝑦↑2))))
135130, 134mpbird 167 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((𝑃↑2) / (𝑦↑2)) < 𝑃)
136121, 135eqbrtrd 4052 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((𝑃 / 𝑦)↑2) < 𝑃)
137136ad2antrr 488 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ((𝑃 / 𝑦)↑2) < 𝑃)
13895, 101, 96, 116, 137lelttrd 8146 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) < 𝑃)
13995, 96, 138ltled 8140 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) ≤ 𝑃)
140 oveq1 5926 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧↑2) = (𝑤↑2))
141140breq1d 4040 . . . . . . . . 9 (𝑧 = 𝑤 → ((𝑧↑2) ≤ 𝑃 ↔ (𝑤↑2) ≤ 𝑃))
142 breq1 4033 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧𝑃𝑤𝑃))
143142notbid 668 . . . . . . . . 9 (𝑧 = 𝑤 → (¬ 𝑧𝑃 ↔ ¬ 𝑤𝑃))
144141, 143imbi12d 234 . . . . . . . 8 (𝑧 = 𝑤 → (((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ((𝑤↑2) ≤ 𝑃 → ¬ 𝑤𝑃)))
14511ad4antr 494 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
146 simprl 529 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∈ ℙ)
147144, 145, 146rspcdva 2870 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ((𝑤↑2) ≤ 𝑃 → ¬ 𝑤𝑃))
148139, 147mpd 13 . . . . . 6 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ¬ 𝑤𝑃)
14993, 148pm2.21fal 1384 . . . . 5 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ⊥)
15083, 149rexlimddv 2616 . . . 4 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → ⊥)
151150inegd 1383 . . 3 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → ¬ 𝑋𝑃)
152 zsqcl 10684 . . . . 5 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℤ)
15317, 152syl 14 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → (𝑦↑2) ∈ ℤ)
154 zlelttric 9365 . . . 4 (((𝑦↑2) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑦↑2) ≤ 𝑃𝑃 < (𝑦↑2)))
155153, 35, 154syl2anc 411 . . 3 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → ((𝑦↑2) ≤ 𝑃𝑃 < (𝑦↑2)))
15632, 151, 155mpjaodan 799 . 2 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → ¬ 𝑋𝑃)
1574, 156rexlimddv 2616 1 (𝜑 → ¬ 𝑋𝑃)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  wfal 1369  wcel 2164  wne 2364  wral 2472  wrex 2473  wss 3154   class class class wbr 4030  cfv 5255  (class class class)co 5919  cr 7873  0cc0 7874  1c1 7875   · cmul 7879   < clt 8056  cle 8057  cmin 8192   / cdiv 8693  cn 8984  2c2 9035  cz 9320  cuz 9595  +crp 9722  ...cfz 10077  cexp 10612  cdvds 11933  cprime 12248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-1o 6471  df-2o 6472  df-er 6589  df-en 6797  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-dvds 11934  df-prm 12249
This theorem is referenced by:  isprm5  12283
  Copyright terms: Public domain W3C validator