Step | Hyp | Ref
| Expression |
1 | | isprm5lem.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ (2...(𝑃 − 1))) |
2 | | elfzuz 9964 |
. . 3
⊢ (𝑋 ∈ (2...(𝑃 − 1)) → 𝑋 ∈
(ℤ≥‘2)) |
3 | | exprmfct 12079 |
. . 3
⊢ (𝑋 ∈
(ℤ≥‘2) → ∃𝑦 ∈ ℙ 𝑦 ∥ 𝑋) |
4 | 1, 2, 3 | 3syl 17 |
. 2
⊢ (𝜑 → ∃𝑦 ∈ ℙ 𝑦 ∥ 𝑋) |
5 | | simpr 109 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → (𝑦↑2) ≤ 𝑃) |
6 | | oveq1 5857 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (𝑧↑2) = (𝑦↑2)) |
7 | 6 | breq1d 3997 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → ((𝑧↑2) ≤ 𝑃 ↔ (𝑦↑2) ≤ 𝑃)) |
8 | | breq1 3990 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (𝑧 ∥ 𝑃 ↔ 𝑦 ∥ 𝑃)) |
9 | 8 | notbid 662 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (¬ 𝑧 ∥ 𝑃 ↔ ¬ 𝑦 ∥ 𝑃)) |
10 | 7, 9 | imbi12d 233 |
. . . . . 6
⊢ (𝑧 = 𝑦 → (((𝑧↑2) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃) ↔ ((𝑦↑2) ≤ 𝑃 → ¬ 𝑦 ∥ 𝑃))) |
11 | | isprm5lem.z |
. . . . . . 7
⊢ (𝜑 → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃)) |
12 | 11 | ad2antrr 485 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃)) |
13 | | simplrl 530 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → 𝑦 ∈ ℙ) |
14 | 10, 12, 13 | rspcdva 2839 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ((𝑦↑2) ≤ 𝑃 → ¬ 𝑦 ∥ 𝑃)) |
15 | 5, 14 | mpd 13 |
. . . 4
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ¬ 𝑦 ∥ 𝑃) |
16 | | prmz 12052 |
. . . . . . 7
⊢ (𝑦 ∈ ℙ → 𝑦 ∈
ℤ) |
17 | 16 | ad2antrl 487 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) → 𝑦 ∈ ℤ) |
18 | 17 | ad2antrr 485 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋 ∥ 𝑃) → 𝑦 ∈ ℤ) |
19 | | elfzelz 9968 |
. . . . . . . 8
⊢ (𝑋 ∈ (2...(𝑃 − 1)) → 𝑋 ∈ ℤ) |
20 | 1, 19 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ ℤ) |
21 | 20 | ad2antrr 485 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑋 ∥ 𝑃) → 𝑋 ∈ ℤ) |
22 | 21 | adantlr 474 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋 ∥ 𝑃) → 𝑋 ∈ ℤ) |
23 | | isprm5lem.p |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈
(ℤ≥‘2)) |
24 | | eluzelz 9483 |
. . . . . . . 8
⊢ (𝑃 ∈
(ℤ≥‘2) → 𝑃 ∈ ℤ) |
25 | 23, 24 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ ℤ) |
26 | 25 | ad2antrr 485 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑋 ∥ 𝑃) → 𝑃 ∈ ℤ) |
27 | 26 | adantlr 474 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋 ∥ 𝑃) → 𝑃 ∈ ℤ) |
28 | | simplrr 531 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑋 ∥ 𝑃) → 𝑦 ∥ 𝑋) |
29 | 28 | adantlr 474 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋 ∥ 𝑃) → 𝑦 ∥ 𝑋) |
30 | | simpr 109 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋 ∥ 𝑃) → 𝑋 ∥ 𝑃) |
31 | 18, 22, 27, 29, 30 | dvdstrd 11779 |
. . . 4
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋 ∥ 𝑃) → 𝑦 ∥ 𝑃) |
32 | 15, 31 | mtand 660 |
. . 3
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ¬ 𝑋 ∥ 𝑃) |
33 | 17 | ad2antrr 485 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) → 𝑦 ∈ ℤ) |
34 | 21 | adantlr 474 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) → 𝑋 ∈ ℤ) |
35 | 25 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) → 𝑃 ∈ ℤ) |
36 | 35 | ad2antrr 485 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) → 𝑃 ∈ ℤ) |
37 | 28 | adantlr 474 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) → 𝑦 ∥ 𝑋) |
38 | | simpr 109 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) → 𝑋 ∥ 𝑃) |
39 | 33, 34, 36, 37, 38 | dvdstrd 11779 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) → 𝑦 ∥ 𝑃) |
40 | 17 | adantr 274 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℤ) |
41 | | prmnn 12051 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℙ → 𝑦 ∈
ℕ) |
42 | 41 | nnne0d 8910 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℙ → 𝑦 ≠ 0) |
43 | 42 | ad2antrl 487 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) → 𝑦 ≠ 0) |
44 | 43 | adantr 274 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ≠ 0) |
45 | 25 | ad2antrr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℤ) |
46 | | dvdsval2 11739 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ 𝑃 ∈ ℤ) → (𝑦 ∥ 𝑃 ↔ (𝑃 / 𝑦) ∈ ℤ)) |
47 | 40, 44, 45, 46 | syl3anc 1233 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦 ∥ 𝑃 ↔ (𝑃 / 𝑦) ∈ ℤ)) |
48 | 47 | adantr 274 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) → (𝑦 ∥ 𝑃 ↔ (𝑃 / 𝑦) ∈ ℤ)) |
49 | 39, 48 | mpbid 146 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) → (𝑃 / 𝑦) ∈ ℤ) |
50 | 40 | zred 9321 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℝ) |
51 | 50 | recnd 7935 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℂ) |
52 | 51 | mulid2d 7925 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → (1 · 𝑦) = 𝑦) |
53 | | 2nn 9026 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℕ |
54 | | fzssnn 10011 |
. . . . . . . . . . . . . . 15
⊢ (2 ∈
ℕ → (2...(𝑃
− 1)) ⊆ ℕ) |
55 | 53, 54 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
(2...(𝑃 − 1))
⊆ ℕ |
56 | 55, 1 | sselid 3145 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈ ℕ) |
57 | 56 | ad2antrr 485 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑋 ∈ ℕ) |
58 | 57 | nnred 8878 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑋 ∈ ℝ) |
59 | 25 | zred 9321 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ ℝ) |
60 | 59 | ad2antrr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℝ) |
61 | | simplrr 531 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∥ 𝑋) |
62 | | dvdsle 11791 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℤ ∧ 𝑋 ∈ ℕ) → (𝑦 ∥ 𝑋 → 𝑦 ≤ 𝑋)) |
63 | 40, 57, 62 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦 ∥ 𝑋 → 𝑦 ≤ 𝑋)) |
64 | 61, 63 | mpd 13 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ≤ 𝑋) |
65 | | elfzle2 9971 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ (2...(𝑃 − 1)) → 𝑋 ≤ (𝑃 − 1)) |
66 | 1, 65 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ≤ (𝑃 − 1)) |
67 | | zltlem1 9256 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑋 < 𝑃 ↔ 𝑋 ≤ (𝑃 − 1))) |
68 | 20, 25, 67 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋 < 𝑃 ↔ 𝑋 ≤ (𝑃 − 1))) |
69 | 66, 68 | mpbird 166 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 < 𝑃) |
70 | 69 | ad2antrr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑋 < 𝑃) |
71 | 50, 58, 60, 64, 70 | lelttrd 8031 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 < 𝑃) |
72 | 52, 71 | eqbrtrd 4009 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → (1 · 𝑦) < 𝑃) |
73 | | 1red 7922 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 1 ∈
ℝ) |
74 | 41 | nnrpd 9638 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℙ → 𝑦 ∈
ℝ+) |
75 | 74 | ad2antrl 487 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) → 𝑦 ∈ ℝ+) |
76 | 75 | adantr 274 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℝ+) |
77 | 73, 60, 76 | ltmuldivd 9688 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((1 · 𝑦) < 𝑃 ↔ 1 < (𝑃 / 𝑦))) |
78 | 72, 77 | mpbid 146 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 1 < (𝑃 / 𝑦)) |
79 | 78 | adantr 274 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) → 1 < (𝑃 / 𝑦)) |
80 | | eluz2b1 9547 |
. . . . . . 7
⊢ ((𝑃 / 𝑦) ∈ (ℤ≥‘2)
↔ ((𝑃 / 𝑦) ∈ ℤ ∧ 1 <
(𝑃 / 𝑦))) |
81 | 49, 79, 80 | sylanbrc 415 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) → (𝑃 / 𝑦) ∈
(ℤ≥‘2)) |
82 | | exprmfct 12079 |
. . . . . 6
⊢ ((𝑃 / 𝑦) ∈ (ℤ≥‘2)
→ ∃𝑤 ∈
ℙ 𝑤 ∥ (𝑃 / 𝑦)) |
83 | 81, 82 | syl 14 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) → ∃𝑤 ∈ ℙ 𝑤 ∥ (𝑃 / 𝑦)) |
84 | | prmz 12052 |
. . . . . . . 8
⊢ (𝑤 ∈ ℙ → 𝑤 ∈
ℤ) |
85 | 84 | ad2antrl 487 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∈ ℤ) |
86 | 49 | adantr 274 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ ℤ) |
87 | 45 | ad2antrr 485 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑃 ∈ ℤ) |
88 | | simprr 527 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∥ (𝑃 / 𝑦)) |
89 | 39 | adantr 274 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑦 ∥ 𝑃) |
90 | 44 | ad2antrr 485 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑦 ≠ 0) |
91 | | divconjdvds 11796 |
. . . . . . . 8
⊢ ((𝑦 ∥ 𝑃 ∧ 𝑦 ≠ 0) → (𝑃 / 𝑦) ∥ 𝑃) |
92 | 89, 90, 91 | syl2anc 409 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∥ 𝑃) |
93 | 85, 86, 87, 88, 92 | dvdstrd 11779 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∥ 𝑃) |
94 | 85 | zred 9321 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∈ ℝ) |
95 | 94 | resqcld 10622 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) ∈ ℝ) |
96 | 60 | ad2antrr 485 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑃 ∈ ℝ) |
97 | 81 | adantr 274 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈
(ℤ≥‘2)) |
98 | | eluz2nn 9512 |
. . . . . . . . . . . 12
⊢ ((𝑃 / 𝑦) ∈ (ℤ≥‘2)
→ (𝑃 / 𝑦) ∈
ℕ) |
99 | 97, 98 | syl 14 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ ℕ) |
100 | 99 | nnred 8878 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ ℝ) |
101 | 100 | resqcld 10622 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ((𝑃 / 𝑦)↑2) ∈ ℝ) |
102 | | dvdsle 11791 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ ℤ ∧ (𝑃 / 𝑦) ∈ ℕ) → (𝑤 ∥ (𝑃 / 𝑦) → 𝑤 ≤ (𝑃 / 𝑦))) |
103 | 85, 99, 102 | syl2anc 409 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤 ∥ (𝑃 / 𝑦) → 𝑤 ≤ (𝑃 / 𝑦))) |
104 | 88, 103 | mpd 13 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ≤ (𝑃 / 𝑦)) |
105 | | prmnn 12051 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ ℙ → 𝑤 ∈
ℕ) |
106 | 105 | nnnn0d 9175 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ ℙ → 𝑤 ∈
ℕ0) |
107 | 106 | nn0ge0d 9178 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ ℙ → 0 ≤
𝑤) |
108 | 107 | ad2antrl 487 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ≤ 𝑤) |
109 | | 0red 7908 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ∈ ℝ) |
110 | | 1red 7922 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 1 ∈ ℝ) |
111 | | 0le1 8387 |
. . . . . . . . . . . . 13
⊢ 0 ≤
1 |
112 | 111 | a1i 9 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ≤ 1) |
113 | 99 | nnge1d 8908 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 1 ≤ (𝑃 / 𝑦)) |
114 | 109, 110,
100, 112, 113 | letrd 8030 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ≤ (𝑃 / 𝑦)) |
115 | 94, 100, 108, 114 | le2sqd 10628 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤 ≤ (𝑃 / 𝑦) ↔ (𝑤↑2) ≤ ((𝑃 / 𝑦)↑2))) |
116 | 104, 115 | mpbid 146 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) ≤ ((𝑃 / 𝑦)↑2)) |
117 | 60 | recnd 7935 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℂ) |
118 | 41 | ad2antrl 487 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) → 𝑦 ∈ ℕ) |
119 | 118 | adantr 274 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℕ) |
120 | 119 | nnap0d 8911 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 # 0) |
121 | 117, 51, 120 | sqdivapd 10609 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((𝑃 / 𝑦)↑2) = ((𝑃↑2) / (𝑦↑2))) |
122 | 117 | sqvald 10593 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃↑2) = (𝑃 · 𝑃)) |
123 | 50 | resqcld 10622 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦↑2) ∈ ℝ) |
124 | | eluz2nn 9512 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈
(ℤ≥‘2) → 𝑃 ∈ ℕ) |
125 | 23, 124 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑃 ∈ ℕ) |
126 | 125 | nnrpd 9638 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑃 ∈
ℝ+) |
127 | 126 | ad2antrr 485 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈
ℝ+) |
128 | | simpr 109 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 < (𝑦↑2)) |
129 | 60, 123, 127, 128 | ltmul2dd 9697 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃 · 𝑃) < (𝑃 · (𝑦↑2))) |
130 | 122, 129 | eqbrtrd 4009 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃↑2) < (𝑃 · (𝑦↑2))) |
131 | 60 | resqcld 10622 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃↑2) ∈ ℝ) |
132 | 119 | nnsqcld 10617 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦↑2) ∈ ℕ) |
133 | 132 | nnrpd 9638 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦↑2) ∈
ℝ+) |
134 | 131, 60, 133 | ltdivmul2d 9693 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → (((𝑃↑2) / (𝑦↑2)) < 𝑃 ↔ (𝑃↑2) < (𝑃 · (𝑦↑2)))) |
135 | 130, 134 | mpbird 166 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((𝑃↑2) / (𝑦↑2)) < 𝑃) |
136 | 121, 135 | eqbrtrd 4009 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((𝑃 / 𝑦)↑2) < 𝑃) |
137 | 136 | ad2antrr 485 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ((𝑃 / 𝑦)↑2) < 𝑃) |
138 | 95, 101, 96, 116, 137 | lelttrd 8031 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) < 𝑃) |
139 | 95, 96, 138 | ltled 8025 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) ≤ 𝑃) |
140 | | oveq1 5857 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (𝑧↑2) = (𝑤↑2)) |
141 | 140 | breq1d 3997 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → ((𝑧↑2) ≤ 𝑃 ↔ (𝑤↑2) ≤ 𝑃)) |
142 | | breq1 3990 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝑃 ↔ 𝑤 ∥ 𝑃)) |
143 | 142 | notbid 662 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (¬ 𝑧 ∥ 𝑃 ↔ ¬ 𝑤 ∥ 𝑃)) |
144 | 141, 143 | imbi12d 233 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → (((𝑧↑2) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃) ↔ ((𝑤↑2) ≤ 𝑃 → ¬ 𝑤 ∥ 𝑃))) |
145 | 11 | ad4antr 491 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃)) |
146 | | simprl 526 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∈ ℙ) |
147 | 144, 145,
146 | rspcdva 2839 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ((𝑤↑2) ≤ 𝑃 → ¬ 𝑤 ∥ 𝑃)) |
148 | 139, 147 | mpd 13 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ¬ 𝑤 ∥ 𝑃) |
149 | 93, 148 | pm2.21fal 1368 |
. . . . 5
⊢
(((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ⊥) |
150 | 83, 149 | rexlimddv 2592 |
. . . 4
⊢ ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋 ∥ 𝑃) → ⊥) |
151 | 150 | inegd 1367 |
. . 3
⊢ (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) ∧ 𝑃 < (𝑦↑2)) → ¬ 𝑋 ∥ 𝑃) |
152 | | zsqcl 10533 |
. . . . 5
⊢ (𝑦 ∈ ℤ → (𝑦↑2) ∈
ℤ) |
153 | 17, 152 | syl 14 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) → (𝑦↑2) ∈ ℤ) |
154 | | zlelttric 9244 |
. . . 4
⊢ (((𝑦↑2) ∈ ℤ ∧
𝑃 ∈ ℤ) →
((𝑦↑2) ≤ 𝑃 ∨ 𝑃 < (𝑦↑2))) |
155 | 153, 35, 154 | syl2anc 409 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) → ((𝑦↑2) ≤ 𝑃 ∨ 𝑃 < (𝑦↑2))) |
156 | 32, 151, 155 | mpjaodan 793 |
. 2
⊢ ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦 ∥ 𝑋)) → ¬ 𝑋 ∥ 𝑃) |
157 | 4, 156 | rexlimddv 2592 |
1
⊢ (𝜑 → ¬ 𝑋 ∥ 𝑃) |