ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm5lem GIF version

Theorem isprm5lem 12095
Description: Lemma for isprm5 12096. The interesting direction (showing that one only needs to check prime divisors up to the square root of 𝑃). (Contributed by Jim Kingdon, 20-Oct-2024.)
Hypotheses
Ref Expression
isprm5lem.p (𝜑𝑃 ∈ (ℤ‘2))
isprm5lem.z (𝜑 → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
isprm5lem.x (𝜑𝑋 ∈ (2...(𝑃 − 1)))
Assertion
Ref Expression
isprm5lem (𝜑 → ¬ 𝑋𝑃)
Distinct variable groups:   𝑧,𝑃   𝑧,𝑋
Allowed substitution hint:   𝜑(𝑧)

Proof of Theorem isprm5lem
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isprm5lem.x . . 3 (𝜑𝑋 ∈ (2...(𝑃 − 1)))
2 elfzuz 9977 . . 3 (𝑋 ∈ (2...(𝑃 − 1)) → 𝑋 ∈ (ℤ‘2))
3 exprmfct 12092 . . 3 (𝑋 ∈ (ℤ‘2) → ∃𝑦 ∈ ℙ 𝑦𝑋)
41, 2, 33syl 17 . 2 (𝜑 → ∃𝑦 ∈ ℙ 𝑦𝑋)
5 simpr 109 . . . . 5 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → (𝑦↑2) ≤ 𝑃)
6 oveq1 5860 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧↑2) = (𝑦↑2))
76breq1d 3999 . . . . . . 7 (𝑧 = 𝑦 → ((𝑧↑2) ≤ 𝑃 ↔ (𝑦↑2) ≤ 𝑃))
8 breq1 3992 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧𝑃𝑦𝑃))
98notbid 662 . . . . . . 7 (𝑧 = 𝑦 → (¬ 𝑧𝑃 ↔ ¬ 𝑦𝑃))
107, 9imbi12d 233 . . . . . 6 (𝑧 = 𝑦 → (((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ((𝑦↑2) ≤ 𝑃 → ¬ 𝑦𝑃)))
11 isprm5lem.z . . . . . . 7 (𝜑 → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
1211ad2antrr 485 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
13 simplrl 530 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → 𝑦 ∈ ℙ)
1410, 12, 13rspcdva 2839 . . . . 5 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ((𝑦↑2) ≤ 𝑃 → ¬ 𝑦𝑃))
155, 14mpd 13 . . . 4 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ¬ 𝑦𝑃)
16 prmz 12065 . . . . . . 7 (𝑦 ∈ ℙ → 𝑦 ∈ ℤ)
1716ad2antrl 487 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → 𝑦 ∈ ℤ)
1817ad2antrr 485 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑦 ∈ ℤ)
19 elfzelz 9981 . . . . . . . 8 (𝑋 ∈ (2...(𝑃 − 1)) → 𝑋 ∈ ℤ)
201, 19syl 14 . . . . . . 7 (𝜑𝑋 ∈ ℤ)
2120ad2antrr 485 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑋𝑃) → 𝑋 ∈ ℤ)
2221adantlr 474 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑋 ∈ ℤ)
23 isprm5lem.p . . . . . . . 8 (𝜑𝑃 ∈ (ℤ‘2))
24 eluzelz 9496 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℤ)
2523, 24syl 14 . . . . . . 7 (𝜑𝑃 ∈ ℤ)
2625ad2antrr 485 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑋𝑃) → 𝑃 ∈ ℤ)
2726adantlr 474 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑃 ∈ ℤ)
28 simplrr 531 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑋𝑃) → 𝑦𝑋)
2928adantlr 474 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑦𝑋)
30 simpr 109 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑋𝑃)
3118, 22, 27, 29, 30dvdstrd 11792 . . . 4 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑦𝑃)
3215, 31mtand 660 . . 3 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ¬ 𝑋𝑃)
3317ad2antrr 485 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑦 ∈ ℤ)
3421adantlr 474 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑋 ∈ ℤ)
3525adantr 274 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → 𝑃 ∈ ℤ)
3635ad2antrr 485 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑃 ∈ ℤ)
3728adantlr 474 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑦𝑋)
38 simpr 109 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑋𝑃)
3933, 34, 36, 37, 38dvdstrd 11792 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑦𝑃)
4017adantr 274 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℤ)
41 prmnn 12064 . . . . . . . . . . . . 13 (𝑦 ∈ ℙ → 𝑦 ∈ ℕ)
4241nnne0d 8923 . . . . . . . . . . . 12 (𝑦 ∈ ℙ → 𝑦 ≠ 0)
4342ad2antrl 487 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → 𝑦 ≠ 0)
4443adantr 274 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ≠ 0)
4525ad2antrr 485 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℤ)
46 dvdsval2 11752 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ 𝑃 ∈ ℤ) → (𝑦𝑃 ↔ (𝑃 / 𝑦) ∈ ℤ))
4740, 44, 45, 46syl3anc 1233 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦𝑃 ↔ (𝑃 / 𝑦) ∈ ℤ))
4847adantr 274 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → (𝑦𝑃 ↔ (𝑃 / 𝑦) ∈ ℤ))
4939, 48mpbid 146 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → (𝑃 / 𝑦) ∈ ℤ)
5040zred 9334 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℝ)
5150recnd 7948 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℂ)
5251mulid2d 7938 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (1 · 𝑦) = 𝑦)
53 2nn 9039 . . . . . . . . . . . . . . 15 2 ∈ ℕ
54 fzssnn 10024 . . . . . . . . . . . . . . 15 (2 ∈ ℕ → (2...(𝑃 − 1)) ⊆ ℕ)
5553, 54ax-mp 5 . . . . . . . . . . . . . 14 (2...(𝑃 − 1)) ⊆ ℕ
5655, 1sselid 3145 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℕ)
5756ad2antrr 485 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑋 ∈ ℕ)
5857nnred 8891 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑋 ∈ ℝ)
5925zred 9334 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℝ)
6059ad2antrr 485 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℝ)
61 simplrr 531 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦𝑋)
62 dvdsle 11804 . . . . . . . . . . . . 13 ((𝑦 ∈ ℤ ∧ 𝑋 ∈ ℕ) → (𝑦𝑋𝑦𝑋))
6340, 57, 62syl2anc 409 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦𝑋𝑦𝑋))
6461, 63mpd 13 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦𝑋)
65 elfzle2 9984 . . . . . . . . . . . . . 14 (𝑋 ∈ (2...(𝑃 − 1)) → 𝑋 ≤ (𝑃 − 1))
661, 65syl 14 . . . . . . . . . . . . 13 (𝜑𝑋 ≤ (𝑃 − 1))
67 zltlem1 9269 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑋 < 𝑃𝑋 ≤ (𝑃 − 1)))
6820, 25, 67syl2anc 409 . . . . . . . . . . . . 13 (𝜑 → (𝑋 < 𝑃𝑋 ≤ (𝑃 − 1)))
6966, 68mpbird 166 . . . . . . . . . . . 12 (𝜑𝑋 < 𝑃)
7069ad2antrr 485 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑋 < 𝑃)
7150, 58, 60, 64, 70lelttrd 8044 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 < 𝑃)
7252, 71eqbrtrd 4011 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (1 · 𝑦) < 𝑃)
73 1red 7935 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 1 ∈ ℝ)
7441nnrpd 9651 . . . . . . . . . . . 12 (𝑦 ∈ ℙ → 𝑦 ∈ ℝ+)
7574ad2antrl 487 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → 𝑦 ∈ ℝ+)
7675adantr 274 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℝ+)
7773, 60, 76ltmuldivd 9701 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((1 · 𝑦) < 𝑃 ↔ 1 < (𝑃 / 𝑦)))
7872, 77mpbid 146 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 1 < (𝑃 / 𝑦))
7978adantr 274 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 1 < (𝑃 / 𝑦))
80 eluz2b1 9560 . . . . . . 7 ((𝑃 / 𝑦) ∈ (ℤ‘2) ↔ ((𝑃 / 𝑦) ∈ ℤ ∧ 1 < (𝑃 / 𝑦)))
8149, 79, 80sylanbrc 415 . . . . . 6 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → (𝑃 / 𝑦) ∈ (ℤ‘2))
82 exprmfct 12092 . . . . . 6 ((𝑃 / 𝑦) ∈ (ℤ‘2) → ∃𝑤 ∈ ℙ 𝑤 ∥ (𝑃 / 𝑦))
8381, 82syl 14 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → ∃𝑤 ∈ ℙ 𝑤 ∥ (𝑃 / 𝑦))
84 prmz 12065 . . . . . . . 8 (𝑤 ∈ ℙ → 𝑤 ∈ ℤ)
8584ad2antrl 487 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∈ ℤ)
8649adantr 274 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ ℤ)
8745ad2antrr 485 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑃 ∈ ℤ)
88 simprr 527 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∥ (𝑃 / 𝑦))
8939adantr 274 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑦𝑃)
9044ad2antrr 485 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑦 ≠ 0)
91 divconjdvds 11809 . . . . . . . 8 ((𝑦𝑃𝑦 ≠ 0) → (𝑃 / 𝑦) ∥ 𝑃)
9289, 90, 91syl2anc 409 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∥ 𝑃)
9385, 86, 87, 88, 92dvdstrd 11792 . . . . . 6 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤𝑃)
9485zred 9334 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∈ ℝ)
9594resqcld 10635 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) ∈ ℝ)
9660ad2antrr 485 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑃 ∈ ℝ)
9781adantr 274 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ (ℤ‘2))
98 eluz2nn 9525 . . . . . . . . . . . 12 ((𝑃 / 𝑦) ∈ (ℤ‘2) → (𝑃 / 𝑦) ∈ ℕ)
9997, 98syl 14 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ ℕ)
10099nnred 8891 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ ℝ)
101100resqcld 10635 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ((𝑃 / 𝑦)↑2) ∈ ℝ)
102 dvdsle 11804 . . . . . . . . . . . 12 ((𝑤 ∈ ℤ ∧ (𝑃 / 𝑦) ∈ ℕ) → (𝑤 ∥ (𝑃 / 𝑦) → 𝑤 ≤ (𝑃 / 𝑦)))
10385, 99, 102syl2anc 409 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤 ∥ (𝑃 / 𝑦) → 𝑤 ≤ (𝑃 / 𝑦)))
10488, 103mpd 13 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ≤ (𝑃 / 𝑦))
105 prmnn 12064 . . . . . . . . . . . . . 14 (𝑤 ∈ ℙ → 𝑤 ∈ ℕ)
106105nnnn0d 9188 . . . . . . . . . . . . 13 (𝑤 ∈ ℙ → 𝑤 ∈ ℕ0)
107106nn0ge0d 9191 . . . . . . . . . . . 12 (𝑤 ∈ ℙ → 0 ≤ 𝑤)
108107ad2antrl 487 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ≤ 𝑤)
109 0red 7921 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ∈ ℝ)
110 1red 7935 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 1 ∈ ℝ)
111 0le1 8400 . . . . . . . . . . . . 13 0 ≤ 1
112111a1i 9 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ≤ 1)
11399nnge1d 8921 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 1 ≤ (𝑃 / 𝑦))
114109, 110, 100, 112, 113letrd 8043 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ≤ (𝑃 / 𝑦))
11594, 100, 108, 114le2sqd 10641 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤 ≤ (𝑃 / 𝑦) ↔ (𝑤↑2) ≤ ((𝑃 / 𝑦)↑2)))
116104, 115mpbid 146 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) ≤ ((𝑃 / 𝑦)↑2))
11760recnd 7948 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℂ)
11841ad2antrl 487 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → 𝑦 ∈ ℕ)
119118adantr 274 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℕ)
120119nnap0d 8924 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 # 0)
121117, 51, 120sqdivapd 10622 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((𝑃 / 𝑦)↑2) = ((𝑃↑2) / (𝑦↑2)))
122117sqvald 10606 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃↑2) = (𝑃 · 𝑃))
12350resqcld 10635 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦↑2) ∈ ℝ)
124 eluz2nn 9525 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
12523, 124syl 14 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℕ)
126125nnrpd 9651 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℝ+)
127126ad2antrr 485 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℝ+)
128 simpr 109 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 < (𝑦↑2))
12960, 123, 127, 128ltmul2dd 9710 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃 · 𝑃) < (𝑃 · (𝑦↑2)))
130122, 129eqbrtrd 4011 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃↑2) < (𝑃 · (𝑦↑2)))
13160resqcld 10635 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃↑2) ∈ ℝ)
132119nnsqcld 10630 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦↑2) ∈ ℕ)
133132nnrpd 9651 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦↑2) ∈ ℝ+)
134131, 60, 133ltdivmul2d 9706 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (((𝑃↑2) / (𝑦↑2)) < 𝑃 ↔ (𝑃↑2) < (𝑃 · (𝑦↑2))))
135130, 134mpbird 166 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((𝑃↑2) / (𝑦↑2)) < 𝑃)
136121, 135eqbrtrd 4011 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((𝑃 / 𝑦)↑2) < 𝑃)
137136ad2antrr 485 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ((𝑃 / 𝑦)↑2) < 𝑃)
13895, 101, 96, 116, 137lelttrd 8044 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) < 𝑃)
13995, 96, 138ltled 8038 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) ≤ 𝑃)
140 oveq1 5860 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧↑2) = (𝑤↑2))
141140breq1d 3999 . . . . . . . . 9 (𝑧 = 𝑤 → ((𝑧↑2) ≤ 𝑃 ↔ (𝑤↑2) ≤ 𝑃))
142 breq1 3992 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧𝑃𝑤𝑃))
143142notbid 662 . . . . . . . . 9 (𝑧 = 𝑤 → (¬ 𝑧𝑃 ↔ ¬ 𝑤𝑃))
144141, 143imbi12d 233 . . . . . . . 8 (𝑧 = 𝑤 → (((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ((𝑤↑2) ≤ 𝑃 → ¬ 𝑤𝑃)))
14511ad4antr 491 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
146 simprl 526 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∈ ℙ)
147144, 145, 146rspcdva 2839 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ((𝑤↑2) ≤ 𝑃 → ¬ 𝑤𝑃))
148139, 147mpd 13 . . . . . 6 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ¬ 𝑤𝑃)
14993, 148pm2.21fal 1368 . . . . 5 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ⊥)
15083, 149rexlimddv 2592 . . . 4 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → ⊥)
151150inegd 1367 . . 3 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → ¬ 𝑋𝑃)
152 zsqcl 10546 . . . . 5 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℤ)
15317, 152syl 14 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → (𝑦↑2) ∈ ℤ)
154 zlelttric 9257 . . . 4 (((𝑦↑2) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑦↑2) ≤ 𝑃𝑃 < (𝑦↑2)))
155153, 35, 154syl2anc 409 . . 3 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → ((𝑦↑2) ≤ 𝑃𝑃 < (𝑦↑2)))
15632, 151, 155mpjaodan 793 . 2 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → ¬ 𝑋𝑃)
1574, 156rexlimddv 2592 1 (𝜑 → ¬ 𝑋𝑃)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  wfal 1353  wcel 2141  wne 2340  wral 2448  wrex 2449  wss 3121   class class class wbr 3989  cfv 5198  (class class class)co 5853  cr 7773  0cc0 7774  1c1 7775   · cmul 7779   < clt 7954  cle 7955  cmin 8090   / cdiv 8589  cn 8878  2c2 8929  cz 9212  cuz 9487  +crp 9610  ...cfz 9965  cexp 10475  cdvds 11749  cprime 12061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-prm 12062
This theorem is referenced by:  isprm5  12096
  Copyright terms: Public domain W3C validator