ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm5lem GIF version

Theorem isprm5lem 12279
Description: Lemma for isprm5 12280. The interesting direction (showing that one only needs to check prime divisors up to the square root of 𝑃). (Contributed by Jim Kingdon, 20-Oct-2024.)
Hypotheses
Ref Expression
isprm5lem.p (𝜑𝑃 ∈ (ℤ‘2))
isprm5lem.z (𝜑 → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
isprm5lem.x (𝜑𝑋 ∈ (2...(𝑃 − 1)))
Assertion
Ref Expression
isprm5lem (𝜑 → ¬ 𝑋𝑃)
Distinct variable groups:   𝑧,𝑃   𝑧,𝑋
Allowed substitution hint:   𝜑(𝑧)

Proof of Theorem isprm5lem
Dummy variables 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isprm5lem.x . . 3 (𝜑𝑋 ∈ (2...(𝑃 − 1)))
2 elfzuz 10087 . . 3 (𝑋 ∈ (2...(𝑃 − 1)) → 𝑋 ∈ (ℤ‘2))
3 exprmfct 12276 . . 3 (𝑋 ∈ (ℤ‘2) → ∃𝑦 ∈ ℙ 𝑦𝑋)
41, 2, 33syl 17 . 2 (𝜑 → ∃𝑦 ∈ ℙ 𝑦𝑋)
5 simpr 110 . . . . 5 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → (𝑦↑2) ≤ 𝑃)
6 oveq1 5925 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧↑2) = (𝑦↑2))
76breq1d 4039 . . . . . . 7 (𝑧 = 𝑦 → ((𝑧↑2) ≤ 𝑃 ↔ (𝑦↑2) ≤ 𝑃))
8 breq1 4032 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧𝑃𝑦𝑃))
98notbid 668 . . . . . . 7 (𝑧 = 𝑦 → (¬ 𝑧𝑃 ↔ ¬ 𝑦𝑃))
107, 9imbi12d 234 . . . . . 6 (𝑧 = 𝑦 → (((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ((𝑦↑2) ≤ 𝑃 → ¬ 𝑦𝑃)))
11 isprm5lem.z . . . . . . 7 (𝜑 → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
1211ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
13 simplrl 535 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → 𝑦 ∈ ℙ)
1410, 12, 13rspcdva 2869 . . . . 5 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ((𝑦↑2) ≤ 𝑃 → ¬ 𝑦𝑃))
155, 14mpd 13 . . . 4 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ¬ 𝑦𝑃)
16 prmz 12249 . . . . . . 7 (𝑦 ∈ ℙ → 𝑦 ∈ ℤ)
1716ad2antrl 490 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → 𝑦 ∈ ℤ)
1817ad2antrr 488 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑦 ∈ ℤ)
19 elfzelz 10091 . . . . . . . 8 (𝑋 ∈ (2...(𝑃 − 1)) → 𝑋 ∈ ℤ)
201, 19syl 14 . . . . . . 7 (𝜑𝑋 ∈ ℤ)
2120ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑋𝑃) → 𝑋 ∈ ℤ)
2221adantlr 477 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑋 ∈ ℤ)
23 isprm5lem.p . . . . . . . 8 (𝜑𝑃 ∈ (ℤ‘2))
24 eluzelz 9601 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℤ)
2523, 24syl 14 . . . . . . 7 (𝜑𝑃 ∈ ℤ)
2625ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑋𝑃) → 𝑃 ∈ ℤ)
2726adantlr 477 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑃 ∈ ℤ)
28 simplrr 536 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑋𝑃) → 𝑦𝑋)
2928adantlr 477 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑦𝑋)
30 simpr 110 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑋𝑃)
3118, 22, 27, 29, 30dvdstrd 11973 . . . 4 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) ∧ 𝑋𝑃) → 𝑦𝑃)
3215, 31mtand 666 . . 3 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ (𝑦↑2) ≤ 𝑃) → ¬ 𝑋𝑃)
3317ad2antrr 488 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑦 ∈ ℤ)
3421adantlr 477 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑋 ∈ ℤ)
3525adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → 𝑃 ∈ ℤ)
3635ad2antrr 488 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑃 ∈ ℤ)
3728adantlr 477 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑦𝑋)
38 simpr 110 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑋𝑃)
3933, 34, 36, 37, 38dvdstrd 11973 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 𝑦𝑃)
4017adantr 276 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℤ)
41 prmnn 12248 . . . . . . . . . . . . 13 (𝑦 ∈ ℙ → 𝑦 ∈ ℕ)
4241nnne0d 9027 . . . . . . . . . . . 12 (𝑦 ∈ ℙ → 𝑦 ≠ 0)
4342ad2antrl 490 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → 𝑦 ≠ 0)
4443adantr 276 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ≠ 0)
4525ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℤ)
46 dvdsval2 11933 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ 𝑃 ∈ ℤ) → (𝑦𝑃 ↔ (𝑃 / 𝑦) ∈ ℤ))
4740, 44, 45, 46syl3anc 1249 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦𝑃 ↔ (𝑃 / 𝑦) ∈ ℤ))
4847adantr 276 . . . . . . . 8 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → (𝑦𝑃 ↔ (𝑃 / 𝑦) ∈ ℤ))
4939, 48mpbid 147 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → (𝑃 / 𝑦) ∈ ℤ)
5040zred 9439 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℝ)
5150recnd 8048 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℂ)
5251mulid2d 8038 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (1 · 𝑦) = 𝑦)
53 2nn 9143 . . . . . . . . . . . . . . 15 2 ∈ ℕ
54 fzssnn 10134 . . . . . . . . . . . . . . 15 (2 ∈ ℕ → (2...(𝑃 − 1)) ⊆ ℕ)
5553, 54ax-mp 5 . . . . . . . . . . . . . 14 (2...(𝑃 − 1)) ⊆ ℕ
5655, 1sselid 3177 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℕ)
5756ad2antrr 488 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑋 ∈ ℕ)
5857nnred 8995 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑋 ∈ ℝ)
5925zred 9439 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℝ)
6059ad2antrr 488 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℝ)
61 simplrr 536 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦𝑋)
62 dvdsle 11986 . . . . . . . . . . . . 13 ((𝑦 ∈ ℤ ∧ 𝑋 ∈ ℕ) → (𝑦𝑋𝑦𝑋))
6340, 57, 62syl2anc 411 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦𝑋𝑦𝑋))
6461, 63mpd 13 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦𝑋)
65 elfzle2 10094 . . . . . . . . . . . . . 14 (𝑋 ∈ (2...(𝑃 − 1)) → 𝑋 ≤ (𝑃 − 1))
661, 65syl 14 . . . . . . . . . . . . 13 (𝜑𝑋 ≤ (𝑃 − 1))
67 zltlem1 9374 . . . . . . . . . . . . . 14 ((𝑋 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑋 < 𝑃𝑋 ≤ (𝑃 − 1)))
6820, 25, 67syl2anc 411 . . . . . . . . . . . . 13 (𝜑 → (𝑋 < 𝑃𝑋 ≤ (𝑃 − 1)))
6966, 68mpbird 167 . . . . . . . . . . . 12 (𝜑𝑋 < 𝑃)
7069ad2antrr 488 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑋 < 𝑃)
7150, 58, 60, 64, 70lelttrd 8144 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 < 𝑃)
7252, 71eqbrtrd 4051 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (1 · 𝑦) < 𝑃)
73 1red 8034 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 1 ∈ ℝ)
7441nnrpd 9760 . . . . . . . . . . . 12 (𝑦 ∈ ℙ → 𝑦 ∈ ℝ+)
7574ad2antrl 490 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → 𝑦 ∈ ℝ+)
7675adantr 276 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℝ+)
7773, 60, 76ltmuldivd 9810 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((1 · 𝑦) < 𝑃 ↔ 1 < (𝑃 / 𝑦)))
7872, 77mpbid 147 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 1 < (𝑃 / 𝑦))
7978adantr 276 . . . . . . 7 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → 1 < (𝑃 / 𝑦))
80 eluz2b1 9666 . . . . . . 7 ((𝑃 / 𝑦) ∈ (ℤ‘2) ↔ ((𝑃 / 𝑦) ∈ ℤ ∧ 1 < (𝑃 / 𝑦)))
8149, 79, 80sylanbrc 417 . . . . . 6 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → (𝑃 / 𝑦) ∈ (ℤ‘2))
82 exprmfct 12276 . . . . . 6 ((𝑃 / 𝑦) ∈ (ℤ‘2) → ∃𝑤 ∈ ℙ 𝑤 ∥ (𝑃 / 𝑦))
8381, 82syl 14 . . . . 5 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → ∃𝑤 ∈ ℙ 𝑤 ∥ (𝑃 / 𝑦))
84 prmz 12249 . . . . . . . 8 (𝑤 ∈ ℙ → 𝑤 ∈ ℤ)
8584ad2antrl 490 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∈ ℤ)
8649adantr 276 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ ℤ)
8745ad2antrr 488 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑃 ∈ ℤ)
88 simprr 531 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∥ (𝑃 / 𝑦))
8939adantr 276 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑦𝑃)
9044ad2antrr 488 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑦 ≠ 0)
91 divconjdvds 11991 . . . . . . . 8 ((𝑦𝑃𝑦 ≠ 0) → (𝑃 / 𝑦) ∥ 𝑃)
9289, 90, 91syl2anc 411 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∥ 𝑃)
9385, 86, 87, 88, 92dvdstrd 11973 . . . . . 6 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤𝑃)
9485zred 9439 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∈ ℝ)
9594resqcld 10770 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) ∈ ℝ)
9660ad2antrr 488 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑃 ∈ ℝ)
9781adantr 276 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ (ℤ‘2))
98 eluz2nn 9631 . . . . . . . . . . . 12 ((𝑃 / 𝑦) ∈ (ℤ‘2) → (𝑃 / 𝑦) ∈ ℕ)
9997, 98syl 14 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ ℕ)
10099nnred 8995 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑃 / 𝑦) ∈ ℝ)
101100resqcld 10770 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ((𝑃 / 𝑦)↑2) ∈ ℝ)
102 dvdsle 11986 . . . . . . . . . . . 12 ((𝑤 ∈ ℤ ∧ (𝑃 / 𝑦) ∈ ℕ) → (𝑤 ∥ (𝑃 / 𝑦) → 𝑤 ≤ (𝑃 / 𝑦)))
10385, 99, 102syl2anc 411 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤 ∥ (𝑃 / 𝑦) → 𝑤 ≤ (𝑃 / 𝑦)))
10488, 103mpd 13 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ≤ (𝑃 / 𝑦))
105 prmnn 12248 . . . . . . . . . . . . . 14 (𝑤 ∈ ℙ → 𝑤 ∈ ℕ)
106105nnnn0d 9293 . . . . . . . . . . . . 13 (𝑤 ∈ ℙ → 𝑤 ∈ ℕ0)
107106nn0ge0d 9296 . . . . . . . . . . . 12 (𝑤 ∈ ℙ → 0 ≤ 𝑤)
108107ad2antrl 490 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ≤ 𝑤)
109 0red 8020 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ∈ ℝ)
110 1red 8034 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 1 ∈ ℝ)
111 0le1 8500 . . . . . . . . . . . . 13 0 ≤ 1
112111a1i 9 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ≤ 1)
11399nnge1d 9025 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 1 ≤ (𝑃 / 𝑦))
114109, 110, 100, 112, 113letrd 8143 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 0 ≤ (𝑃 / 𝑦))
11594, 100, 108, 114le2sqd 10776 . . . . . . . . . 10 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤 ≤ (𝑃 / 𝑦) ↔ (𝑤↑2) ≤ ((𝑃 / 𝑦)↑2)))
116104, 115mpbid 147 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) ≤ ((𝑃 / 𝑦)↑2))
11760recnd 8048 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℂ)
11841ad2antrl 490 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → 𝑦 ∈ ℕ)
119118adantr 276 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 ∈ ℕ)
120119nnap0d 9028 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑦 # 0)
121117, 51, 120sqdivapd 10757 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((𝑃 / 𝑦)↑2) = ((𝑃↑2) / (𝑦↑2)))
122117sqvald 10741 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃↑2) = (𝑃 · 𝑃))
12350resqcld 10770 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦↑2) ∈ ℝ)
124 eluz2nn 9631 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
12523, 124syl 14 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℕ)
126125nnrpd 9760 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℝ+)
127126ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 ∈ ℝ+)
128 simpr 110 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → 𝑃 < (𝑦↑2))
12960, 123, 127, 128ltmul2dd 9819 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃 · 𝑃) < (𝑃 · (𝑦↑2)))
130122, 129eqbrtrd 4051 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃↑2) < (𝑃 · (𝑦↑2)))
13160resqcld 10770 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑃↑2) ∈ ℝ)
132119nnsqcld 10765 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦↑2) ∈ ℕ)
133132nnrpd 9760 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (𝑦↑2) ∈ ℝ+)
134131, 60, 133ltdivmul2d 9815 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → (((𝑃↑2) / (𝑦↑2)) < 𝑃 ↔ (𝑃↑2) < (𝑃 · (𝑦↑2))))
135130, 134mpbird 167 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((𝑃↑2) / (𝑦↑2)) < 𝑃)
136121, 135eqbrtrd 4051 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → ((𝑃 / 𝑦)↑2) < 𝑃)
137136ad2antrr 488 . . . . . . . . 9 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ((𝑃 / 𝑦)↑2) < 𝑃)
13895, 101, 96, 116, 137lelttrd 8144 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) < 𝑃)
13995, 96, 138ltled 8138 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → (𝑤↑2) ≤ 𝑃)
140 oveq1 5925 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧↑2) = (𝑤↑2))
141140breq1d 4039 . . . . . . . . 9 (𝑧 = 𝑤 → ((𝑧↑2) ≤ 𝑃 ↔ (𝑤↑2) ≤ 𝑃))
142 breq1 4032 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧𝑃𝑤𝑃))
143142notbid 668 . . . . . . . . 9 (𝑧 = 𝑤 → (¬ 𝑧𝑃 ↔ ¬ 𝑤𝑃))
144141, 143imbi12d 234 . . . . . . . 8 (𝑧 = 𝑤 → (((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ((𝑤↑2) ≤ 𝑃 → ¬ 𝑤𝑃)))
14511ad4antr 494 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃))
146 simprl 529 . . . . . . . 8 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → 𝑤 ∈ ℙ)
147144, 145, 146rspcdva 2869 . . . . . . 7 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ((𝑤↑2) ≤ 𝑃 → ¬ 𝑤𝑃))
148139, 147mpd 13 . . . . . 6 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ¬ 𝑤𝑃)
14993, 148pm2.21fal 1384 . . . . 5 (((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) ∧ (𝑤 ∈ ℙ ∧ 𝑤 ∥ (𝑃 / 𝑦))) → ⊥)
15083, 149rexlimddv 2616 . . . 4 ((((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) ∧ 𝑋𝑃) → ⊥)
151150inegd 1383 . . 3 (((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) ∧ 𝑃 < (𝑦↑2)) → ¬ 𝑋𝑃)
152 zsqcl 10681 . . . . 5 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℤ)
15317, 152syl 14 . . . 4 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → (𝑦↑2) ∈ ℤ)
154 zlelttric 9362 . . . 4 (((𝑦↑2) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑦↑2) ≤ 𝑃𝑃 < (𝑦↑2)))
155153, 35, 154syl2anc 411 . . 3 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → ((𝑦↑2) ≤ 𝑃𝑃 < (𝑦↑2)))
15632, 151, 155mpjaodan 799 . 2 ((𝜑 ∧ (𝑦 ∈ ℙ ∧ 𝑦𝑋)) → ¬ 𝑋𝑃)
1574, 156rexlimddv 2616 1 (𝜑 → ¬ 𝑋𝑃)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  wfal 1369  wcel 2164  wne 2364  wral 2472  wrex 2473  wss 3153   class class class wbr 4029  cfv 5254  (class class class)co 5918  cr 7871  0cc0 7872  1c1 7873   · cmul 7877   < clt 8054  cle 8055  cmin 8190   / cdiv 8691  cn 8982  2c2 9033  cz 9317  cuz 9592  +crp 9719  ...cfz 10074  cexp 10609  cdvds 11930  cprime 12245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-2o 6470  df-er 6587  df-en 6795  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-prm 12246
This theorem is referenced by:  isprm5  12280
  Copyright terms: Public domain W3C validator