ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemoverl GIF version

Theorem resqrexlemoverl 10281
Description: Lemma for resqrex 10286. Every term in the sequence is an overestimate compared with the limit 𝐿. Although this theorem is stated in terms of a particular sequence the proof could be adapted for any decreasing convergent sequence. (Contributed by Jim Kingdon, 9-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemgt0.rr (𝜑𝐿 ∈ ℝ)
resqrexlemgt0.lim (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
resqrexlemoverl.k (𝜑𝐾 ∈ ℕ)
Assertion
Ref Expression
resqrexlemoverl (𝜑𝐿 ≤ (𝐹𝐾))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑒,𝐹,𝑖,𝑗   𝑦,𝐹,𝑧,𝑖,𝑗   𝑒,𝐾,𝑖,𝑗   𝑦,𝐾,𝑧   𝑒,𝐿,𝑖,𝑗   𝑦,𝐿,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑒,𝑖,𝑗)   𝐴(𝑒,𝑖,𝑗)

Proof of Theorem resqrexlemoverl
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 oveq2 5599 . . . . . . . . 9 (𝑒 = (𝐿 − (𝐹𝐾)) → (𝐿 + 𝑒) = (𝐿 + (𝐿 − (𝐹𝐾))))
21breq2d 3823 . . . . . . . 8 (𝑒 = (𝐿 − (𝐹𝐾)) → ((𝐹𝑖) < (𝐿 + 𝑒) ↔ (𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾)))))
3 oveq2 5599 . . . . . . . . 9 (𝑒 = (𝐿 − (𝐹𝐾)) → ((𝐹𝑖) + 𝑒) = ((𝐹𝑖) + (𝐿 − (𝐹𝐾))))
43breq2d 3823 . . . . . . . 8 (𝑒 = (𝐿 − (𝐹𝐾)) → (𝐿 < ((𝐹𝑖) + 𝑒) ↔ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
52, 4anbi12d 457 . . . . . . 7 (𝑒 = (𝐿 − (𝐹𝐾)) → (((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾))))))
65rexralbidv 2398 . . . . . 6 (𝑒 = (𝐿 − (𝐹𝐾)) → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾))))))
7 resqrexlemgt0.lim . . . . . . 7 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
87adantr 270 . . . . . 6 ((𝜑 ∧ (𝐹𝐾) < 𝐿) → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
9 resqrexlemex.seq . . . . . . . . . . 11 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
10 resqrexlemex.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
11 resqrexlemex.agt0 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
129, 10, 11resqrexlemf 10267 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶ℝ+)
13 resqrexlemoverl.k . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ)
1412, 13ffvelrnd 5380 . . . . . . . . 9 (𝜑 → (𝐹𝐾) ∈ ℝ+)
1514rpred 9068 . . . . . . . 8 (𝜑 → (𝐹𝐾) ∈ ℝ)
16 resqrexlemgt0.rr . . . . . . . 8 (𝜑𝐿 ∈ ℝ)
17 difrp 9065 . . . . . . . 8 (((𝐹𝐾) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝐹𝐾) < 𝐿 ↔ (𝐿 − (𝐹𝐾)) ∈ ℝ+))
1815, 16, 17syl2anc 403 . . . . . . 7 (𝜑 → ((𝐹𝐾) < 𝐿 ↔ (𝐿 − (𝐹𝐾)) ∈ ℝ+))
1918biimpa 290 . . . . . 6 ((𝜑 ∧ (𝐹𝐾) < 𝐿) → (𝐿 − (𝐹𝐾)) ∈ ℝ+)
206, 8, 19rspcdva 2717 . . . . 5 ((𝜑 ∧ (𝐹𝐾) < 𝐿) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
21 fveq2 5253 . . . . . . 7 (𝑗 = 𝑏 → (ℤ𝑗) = (ℤ𝑏))
2221raleqdv 2561 . . . . . 6 (𝑗 = 𝑏 → (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))) ↔ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾))))))
2322cbvrexv 2584 . . . . 5 (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))) ↔ ∃𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
2420, 23sylib 120 . . . 4 ((𝜑 ∧ (𝐹𝐾) < 𝐿) → ∃𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
25 fveq2 5253 . . . . . . . . . . 11 (𝑖 = 𝐾 → (𝐹𝑖) = (𝐹𝐾))
2625breq1d 3821 . . . . . . . . . 10 (𝑖 = 𝐾 → ((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ↔ (𝐹𝐾) < (𝐿 + (𝐿 − (𝐹𝐾)))))
2725oveq1d 5606 . . . . . . . . . . 11 (𝑖 = 𝐾 → ((𝐹𝑖) + (𝐿 − (𝐹𝐾))) = ((𝐹𝐾) + (𝐿 − (𝐹𝐾))))
2827breq2d 3823 . . . . . . . . . 10 (𝑖 = 𝐾 → (𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾))) ↔ 𝐿 < ((𝐹𝐾) + (𝐿 − (𝐹𝐾)))))
2926, 28anbi12d 457 . . . . . . . . 9 (𝑖 = 𝐾 → (((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))) ↔ ((𝐹𝐾) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝐾) + (𝐿 − (𝐹𝐾))))))
30 simprr 499 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
3130adantr 270 . . . . . . . . 9 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
32 simprl 498 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝑏 ∈ ℕ)
3332nnzd 8763 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝑏 ∈ ℤ)
3433adantr 270 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝑏 ∈ ℤ)
3513ad2antrr 472 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐾 ∈ ℕ)
3635nnzd 8763 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐾 ∈ ℤ)
3736adantr 270 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐾 ∈ ℤ)
38 simpr 108 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝑏𝐾)
39 eluz2 8920 . . . . . . . . . 10 (𝐾 ∈ (ℤ𝑏) ↔ (𝑏 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑏𝐾))
4034, 37, 38, 39syl3anbrc 1123 . . . . . . . . 9 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐾 ∈ (ℤ𝑏))
4129, 31, 40rspcdva 2717 . . . . . . . 8 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → ((𝐹𝐾) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝐾) + (𝐿 − (𝐹𝐾)))))
4241simprd 112 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐿 < ((𝐹𝐾) + (𝐿 − (𝐹𝐾))))
4314ad2antrr 472 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝐾) ∈ ℝ+)
4443rpcnd 9070 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝐾) ∈ ℂ)
4544adantr 270 . . . . . . . 8 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → (𝐹𝐾) ∈ ℂ)
4616ad2antrr 472 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐿 ∈ ℝ)
4746recnd 7419 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐿 ∈ ℂ)
4847adantr 270 . . . . . . . 8 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐿 ∈ ℂ)
4945, 48pncan3d 7699 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → ((𝐹𝐾) + (𝐿 − (𝐹𝐾))) = 𝐿)
5042, 49breqtrd 3835 . . . . . 6 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐿 < 𝐿)
5116ad3antrrr 476 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐿 ∈ ℝ)
5251ltnrd 7499 . . . . . 6 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → ¬ 𝐿 < 𝐿)
5350, 52pm2.21fal 1305 . . . . 5 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → ⊥)
5410ad3antrrr 476 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → 𝐴 ∈ ℝ)
5511ad3antrrr 476 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → 0 ≤ 𝐴)
5613ad3antrrr 476 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → 𝐾 ∈ ℕ)
5732adantr 270 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → 𝑏 ∈ ℕ)
58 simpr 108 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → 𝐾 < 𝑏)
599, 54, 55, 56, 57, 58resqrexlemdecn 10272 . . . . . 6 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → (𝐹𝑏) < (𝐹𝐾))
6015ad3antrrr 476 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → (𝐹𝐾) ∈ ℝ)
6112ad2antrr 472 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐹:ℕ⟶ℝ+)
6261, 32ffvelrnd 5380 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝑏) ∈ ℝ+)
6362rpred 9068 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝑏) ∈ ℝ)
6463adantr 270 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → (𝐹𝑏) ∈ ℝ)
65 fveq2 5253 . . . . . . . . . . . . . . 15 (𝑖 = 𝑏 → (𝐹𝑖) = (𝐹𝑏))
6665breq1d 3821 . . . . . . . . . . . . . 14 (𝑖 = 𝑏 → ((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ↔ (𝐹𝑏) < (𝐿 + (𝐿 − (𝐹𝐾)))))
6765oveq1d 5606 . . . . . . . . . . . . . . 15 (𝑖 = 𝑏 → ((𝐹𝑖) + (𝐿 − (𝐹𝐾))) = ((𝐹𝑏) + (𝐿 − (𝐹𝐾))))
6867breq2d 3823 . . . . . . . . . . . . . 14 (𝑖 = 𝑏 → (𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾))) ↔ 𝐿 < ((𝐹𝑏) + (𝐿 − (𝐹𝐾)))))
6966, 68anbi12d 457 . . . . . . . . . . . . 13 (𝑖 = 𝑏 → (((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))) ↔ ((𝐹𝑏) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑏) + (𝐿 − (𝐹𝐾))))))
70 uzid 8928 . . . . . . . . . . . . . 14 (𝑏 ∈ ℤ → 𝑏 ∈ (ℤ𝑏))
7133, 70syl 14 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝑏 ∈ (ℤ𝑏))
7269, 30, 71rspcdva 2717 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ((𝐹𝑏) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑏) + (𝐿 − (𝐹𝐾)))))
7372simprd 112 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐿 < ((𝐹𝑏) + (𝐿 − (𝐹𝐾))))
7462rpcnd 9070 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝑏) ∈ ℂ)
7574, 47, 44addsubassd 7716 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (((𝐹𝑏) + 𝐿) − (𝐹𝐾)) = ((𝐹𝑏) + (𝐿 − (𝐹𝐾))))
7673, 75breqtrrd 3837 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐿 < (((𝐹𝑏) + 𝐿) − (𝐹𝐾)))
7715ad2antrr 472 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝐾) ∈ ℝ)
7863, 46readdcld 7420 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ((𝐹𝑏) + 𝐿) ∈ ℝ)
7977, 46, 78ltaddsub2d 7923 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (((𝐹𝐾) + 𝐿) < ((𝐹𝑏) + 𝐿) ↔ 𝐿 < (((𝐹𝑏) + 𝐿) − (𝐹𝐾))))
8076, 79mpbird 165 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ((𝐹𝐾) + 𝐿) < ((𝐹𝑏) + 𝐿))
8177, 63, 46ltadd1d 7915 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ((𝐹𝐾) < (𝐹𝑏) ↔ ((𝐹𝐾) + 𝐿) < ((𝐹𝑏) + 𝐿)))
8280, 81mpbird 165 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝐾) < (𝐹𝑏))
8382adantr 270 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → (𝐹𝐾) < (𝐹𝑏))
8460, 64, 83ltnsymd 7506 . . . . . 6 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → ¬ (𝐹𝑏) < (𝐹𝐾))
8559, 84pm2.21fal 1305 . . . . 5 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → ⊥)
86 zlelttric 8691 . . . . . 6 ((𝑏 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑏𝐾𝐾 < 𝑏))
8733, 36, 86syl2anc 403 . . . . 5 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝑏𝐾𝐾 < 𝑏))
8853, 85, 87mpjaodan 745 . . . 4 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ⊥)
8924, 88rexlimddv 2487 . . 3 ((𝜑 ∧ (𝐹𝐾) < 𝐿) → ⊥)
9089inegd 1304 . 2 (𝜑 → ¬ (𝐹𝐾) < 𝐿)
9116, 15lenltd 7504 . 2 (𝜑 → (𝐿 ≤ (𝐹𝐾) ↔ ¬ (𝐹𝐾) < 𝐿))
9290, 91mpbird 165 1 (𝜑𝐿 ≤ (𝐹𝐾))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 662   = wceq 1285  wfal 1290  wcel 1434  wral 2353  wrex 2354  {csn 3422   class class class wbr 3811   × cxp 4399  wf 4965  cfv 4969  (class class class)co 5591  cmpt2 5593  cc 7251  cr 7252  0cc0 7253  1c1 7254   + caddc 7256   < clt 7425  cle 7426  cmin 7556   / cdiv 8037  cn 8316  2c2 8366  cz 8646  cuz 8914  +crp 9029  seqcseq 9740
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-mulrcl 7347  ax-addcom 7348  ax-mulcom 7349  ax-addass 7350  ax-mulass 7351  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-1rid 7355  ax-0id 7356  ax-rnegex 7357  ax-precex 7358  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-apti 7363  ax-pre-ltadd 7364  ax-pre-mulgt0 7365  ax-pre-mulext 7366
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-if 3374  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4084  df-po 4087  df-iso 4088  df-iord 4157  df-on 4159  df-ilim 4160  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-frec 6088  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-sub 7558  df-neg 7559  df-reap 7952  df-ap 7959  df-div 8038  df-inn 8317  df-2 8375  df-3 8376  df-4 8377  df-n0 8566  df-z 8647  df-uz 8915  df-rp 9030  df-iseq 9741  df-iexp 9792
This theorem is referenced by:  resqrexlemglsq  10282
  Copyright terms: Public domain W3C validator