Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemoverl GIF version

Theorem resqrexlemoverl 10733
 Description: Lemma for resqrex 10738. Every term in the sequence is an overestimate compared with the limit 𝐿. Although this theorem is stated in terms of a particular sequence the proof could be adapted for any decreasing convergent sequence. (Contributed by Jim Kingdon, 9-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemgt0.rr (𝜑𝐿 ∈ ℝ)
resqrexlemgt0.lim (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
resqrexlemoverl.k (𝜑𝐾 ∈ ℕ)
Assertion
Ref Expression
resqrexlemoverl (𝜑𝐿 ≤ (𝐹𝐾))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑒,𝐹,𝑖,𝑗   𝑦,𝐹,𝑧,𝑖,𝑗   𝑒,𝐾,𝑖,𝑗   𝑦,𝐾,𝑧   𝑒,𝐿,𝑖,𝑗   𝑦,𝐿,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑒,𝑖,𝑗)   𝐴(𝑒,𝑖,𝑗)

Proof of Theorem resqrexlemoverl
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 oveq2 5748 . . . . . . . . 9 (𝑒 = (𝐿 − (𝐹𝐾)) → (𝐿 + 𝑒) = (𝐿 + (𝐿 − (𝐹𝐾))))
21breq2d 3909 . . . . . . . 8 (𝑒 = (𝐿 − (𝐹𝐾)) → ((𝐹𝑖) < (𝐿 + 𝑒) ↔ (𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾)))))
3 oveq2 5748 . . . . . . . . 9 (𝑒 = (𝐿 − (𝐹𝐾)) → ((𝐹𝑖) + 𝑒) = ((𝐹𝑖) + (𝐿 − (𝐹𝐾))))
43breq2d 3909 . . . . . . . 8 (𝑒 = (𝐿 − (𝐹𝐾)) → (𝐿 < ((𝐹𝑖) + 𝑒) ↔ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
52, 4anbi12d 462 . . . . . . 7 (𝑒 = (𝐿 − (𝐹𝐾)) → (((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾))))))
65rexralbidv 2436 . . . . . 6 (𝑒 = (𝐿 − (𝐹𝐾)) → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾))))))
7 resqrexlemgt0.lim . . . . . . 7 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
87adantr 272 . . . . . 6 ((𝜑 ∧ (𝐹𝐾) < 𝐿) → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
9 resqrexlemex.seq . . . . . . . . . . 11 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
10 resqrexlemex.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
11 resqrexlemex.agt0 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
129, 10, 11resqrexlemf 10719 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶ℝ+)
13 resqrexlemoverl.k . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ)
1412, 13ffvelrnd 5522 . . . . . . . . 9 (𝜑 → (𝐹𝐾) ∈ ℝ+)
1514rpred 9429 . . . . . . . 8 (𝜑 → (𝐹𝐾) ∈ ℝ)
16 resqrexlemgt0.rr . . . . . . . 8 (𝜑𝐿 ∈ ℝ)
17 difrp 9426 . . . . . . . 8 (((𝐹𝐾) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝐹𝐾) < 𝐿 ↔ (𝐿 − (𝐹𝐾)) ∈ ℝ+))
1815, 16, 17syl2anc 406 . . . . . . 7 (𝜑 → ((𝐹𝐾) < 𝐿 ↔ (𝐿 − (𝐹𝐾)) ∈ ℝ+))
1918biimpa 292 . . . . . 6 ((𝜑 ∧ (𝐹𝐾) < 𝐿) → (𝐿 − (𝐹𝐾)) ∈ ℝ+)
206, 8, 19rspcdva 2766 . . . . 5 ((𝜑 ∧ (𝐹𝐾) < 𝐿) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
21 fveq2 5387 . . . . . . 7 (𝑗 = 𝑏 → (ℤ𝑗) = (ℤ𝑏))
2221raleqdv 2607 . . . . . 6 (𝑗 = 𝑏 → (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))) ↔ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾))))))
2322cbvrexv 2630 . . . . 5 (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))) ↔ ∃𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
2420, 23sylib 121 . . . 4 ((𝜑 ∧ (𝐹𝐾) < 𝐿) → ∃𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
25 fveq2 5387 . . . . . . . . . . 11 (𝑖 = 𝐾 → (𝐹𝑖) = (𝐹𝐾))
2625breq1d 3907 . . . . . . . . . 10 (𝑖 = 𝐾 → ((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ↔ (𝐹𝐾) < (𝐿 + (𝐿 − (𝐹𝐾)))))
2725oveq1d 5755 . . . . . . . . . . 11 (𝑖 = 𝐾 → ((𝐹𝑖) + (𝐿 − (𝐹𝐾))) = ((𝐹𝐾) + (𝐿 − (𝐹𝐾))))
2827breq2d 3909 . . . . . . . . . 10 (𝑖 = 𝐾 → (𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾))) ↔ 𝐿 < ((𝐹𝐾) + (𝐿 − (𝐹𝐾)))))
2926, 28anbi12d 462 . . . . . . . . 9 (𝑖 = 𝐾 → (((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))) ↔ ((𝐹𝐾) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝐾) + (𝐿 − (𝐹𝐾))))))
30 simprr 504 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
3130adantr 272 . . . . . . . . 9 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
32 simprl 503 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝑏 ∈ ℕ)
3332nnzd 9123 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝑏 ∈ ℤ)
3433adantr 272 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝑏 ∈ ℤ)
3513ad2antrr 477 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐾 ∈ ℕ)
3635nnzd 9123 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐾 ∈ ℤ)
3736adantr 272 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐾 ∈ ℤ)
38 simpr 109 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝑏𝐾)
39 eluz2 9281 . . . . . . . . . 10 (𝐾 ∈ (ℤ𝑏) ↔ (𝑏 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑏𝐾))
4034, 37, 38, 39syl3anbrc 1148 . . . . . . . . 9 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐾 ∈ (ℤ𝑏))
4129, 31, 40rspcdva 2766 . . . . . . . 8 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → ((𝐹𝐾) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝐾) + (𝐿 − (𝐹𝐾)))))
4241simprd 113 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐿 < ((𝐹𝐾) + (𝐿 − (𝐹𝐾))))
4314ad2antrr 477 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝐾) ∈ ℝ+)
4443rpcnd 9431 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝐾) ∈ ℂ)
4544adantr 272 . . . . . . . 8 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → (𝐹𝐾) ∈ ℂ)
4616ad2antrr 477 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐿 ∈ ℝ)
4746recnd 7758 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐿 ∈ ℂ)
4847adantr 272 . . . . . . . 8 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐿 ∈ ℂ)
4945, 48pncan3d 8040 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → ((𝐹𝐾) + (𝐿 − (𝐹𝐾))) = 𝐿)
5042, 49breqtrd 3922 . . . . . 6 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐿 < 𝐿)
5116ad3antrrr 481 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐿 ∈ ℝ)
5251ltnrd 7839 . . . . . 6 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → ¬ 𝐿 < 𝐿)
5350, 52pm2.21fal 1334 . . . . 5 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → ⊥)
5410ad3antrrr 481 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → 𝐴 ∈ ℝ)
5511ad3antrrr 481 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → 0 ≤ 𝐴)
5613ad3antrrr 481 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → 𝐾 ∈ ℕ)
5732adantr 272 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → 𝑏 ∈ ℕ)
58 simpr 109 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → 𝐾 < 𝑏)
599, 54, 55, 56, 57, 58resqrexlemdecn 10724 . . . . . 6 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → (𝐹𝑏) < (𝐹𝐾))
6015ad3antrrr 481 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → (𝐹𝐾) ∈ ℝ)
6112ad2antrr 477 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐹:ℕ⟶ℝ+)
6261, 32ffvelrnd 5522 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝑏) ∈ ℝ+)
6362rpred 9429 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝑏) ∈ ℝ)
6463adantr 272 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → (𝐹𝑏) ∈ ℝ)
65 fveq2 5387 . . . . . . . . . . . . . . 15 (𝑖 = 𝑏 → (𝐹𝑖) = (𝐹𝑏))
6665breq1d 3907 . . . . . . . . . . . . . 14 (𝑖 = 𝑏 → ((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ↔ (𝐹𝑏) < (𝐿 + (𝐿 − (𝐹𝐾)))))
6765oveq1d 5755 . . . . . . . . . . . . . . 15 (𝑖 = 𝑏 → ((𝐹𝑖) + (𝐿 − (𝐹𝐾))) = ((𝐹𝑏) + (𝐿 − (𝐹𝐾))))
6867breq2d 3909 . . . . . . . . . . . . . 14 (𝑖 = 𝑏 → (𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾))) ↔ 𝐿 < ((𝐹𝑏) + (𝐿 − (𝐹𝐾)))))
6966, 68anbi12d 462 . . . . . . . . . . . . 13 (𝑖 = 𝑏 → (((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))) ↔ ((𝐹𝑏) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑏) + (𝐿 − (𝐹𝐾))))))
70 uzid 9289 . . . . . . . . . . . . . 14 (𝑏 ∈ ℤ → 𝑏 ∈ (ℤ𝑏))
7133, 70syl 14 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝑏 ∈ (ℤ𝑏))
7269, 30, 71rspcdva 2766 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ((𝐹𝑏) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑏) + (𝐿 − (𝐹𝐾)))))
7372simprd 113 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐿 < ((𝐹𝑏) + (𝐿 − (𝐹𝐾))))
7462rpcnd 9431 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝑏) ∈ ℂ)
7574, 47, 44addsubassd 8057 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (((𝐹𝑏) + 𝐿) − (𝐹𝐾)) = ((𝐹𝑏) + (𝐿 − (𝐹𝐾))))
7673, 75breqtrrd 3924 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐿 < (((𝐹𝑏) + 𝐿) − (𝐹𝐾)))
7715ad2antrr 477 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝐾) ∈ ℝ)
7863, 46readdcld 7759 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ((𝐹𝑏) + 𝐿) ∈ ℝ)
7977, 46, 78ltaddsub2d 8271 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (((𝐹𝐾) + 𝐿) < ((𝐹𝑏) + 𝐿) ↔ 𝐿 < (((𝐹𝑏) + 𝐿) − (𝐹𝐾))))
8076, 79mpbird 166 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ((𝐹𝐾) + 𝐿) < ((𝐹𝑏) + 𝐿))
8177, 63, 46ltadd1d 8263 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ((𝐹𝐾) < (𝐹𝑏) ↔ ((𝐹𝐾) + 𝐿) < ((𝐹𝑏) + 𝐿)))
8280, 81mpbird 166 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝐾) < (𝐹𝑏))
8382adantr 272 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → (𝐹𝐾) < (𝐹𝑏))
8460, 64, 83ltnsymd 7846 . . . . . 6 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → ¬ (𝐹𝑏) < (𝐹𝐾))
8559, 84pm2.21fal 1334 . . . . 5 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → ⊥)
86 zlelttric 9050 . . . . . 6 ((𝑏 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑏𝐾𝐾 < 𝑏))
8733, 36, 86syl2anc 406 . . . . 5 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝑏𝐾𝐾 < 𝑏))
8853, 85, 87mpjaodan 770 . . . 4 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ⊥)
8924, 88rexlimddv 2529 . . 3 ((𝜑 ∧ (𝐹𝐾) < 𝐿) → ⊥)
9089inegd 1333 . 2 (𝜑 → ¬ (𝐹𝐾) < 𝐿)
9116, 15lenltd 7844 . 2 (𝜑 → (𝐿 ≤ (𝐹𝐾) ↔ ¬ (𝐹𝐾) < 𝐿))
9290, 91mpbird 166 1 (𝜑𝐿 ≤ (𝐹𝐾))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 680   = wceq 1314  ⊥wfal 1319   ∈ wcel 1463  ∀wral 2391  ∃wrex 2392  {csn 3495   class class class wbr 3897   × cxp 4505  ⟶wf 5087  ‘cfv 5091  (class class class)co 5740   ∈ cmpo 5742  ℂcc 7582  ℝcr 7583  0cc0 7584  1c1 7585   + caddc 7587   < clt 7764   ≤ cle 7765   − cmin 7897   / cdiv 8392  ℕcn 8677  2c2 8728  ℤcz 9005  ℤ≥cuz 9275  ℝ+crp 9390  seqcseq 10158 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702 This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8393  df-inn 8678  df-2 8736  df-3 8737  df-4 8738  df-n0 8929  df-z 9006  df-uz 9276  df-rp 9391  df-seqfrec 10159  df-exp 10233 This theorem is referenced by:  resqrexlemglsq  10734
 Copyright terms: Public domain W3C validator