ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemoverl GIF version

Theorem resqrexlemoverl 11376
Description: Lemma for resqrex 11381. Every term in the sequence is an overestimate compared with the limit 𝐿. Although this theorem is stated in terms of a particular sequence the proof could be adapted for any decreasing convergent sequence. (Contributed by Jim Kingdon, 9-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemgt0.rr (𝜑𝐿 ∈ ℝ)
resqrexlemgt0.lim (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
resqrexlemoverl.k (𝜑𝐾 ∈ ℕ)
Assertion
Ref Expression
resqrexlemoverl (𝜑𝐿 ≤ (𝐹𝐾))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑒,𝐹,𝑖,𝑗   𝑦,𝐹,𝑧,𝑖,𝑗   𝑒,𝐾,𝑖,𝑗   𝑦,𝐾,𝑧   𝑒,𝐿,𝑖,𝑗   𝑦,𝐿,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑒,𝑖,𝑗)   𝐴(𝑒,𝑖,𝑗)

Proof of Theorem resqrexlemoverl
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 oveq2 5959 . . . . . . . . 9 (𝑒 = (𝐿 − (𝐹𝐾)) → (𝐿 + 𝑒) = (𝐿 + (𝐿 − (𝐹𝐾))))
21breq2d 4059 . . . . . . . 8 (𝑒 = (𝐿 − (𝐹𝐾)) → ((𝐹𝑖) < (𝐿 + 𝑒) ↔ (𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾)))))
3 oveq2 5959 . . . . . . . . 9 (𝑒 = (𝐿 − (𝐹𝐾)) → ((𝐹𝑖) + 𝑒) = ((𝐹𝑖) + (𝐿 − (𝐹𝐾))))
43breq2d 4059 . . . . . . . 8 (𝑒 = (𝐿 − (𝐹𝐾)) → (𝐿 < ((𝐹𝑖) + 𝑒) ↔ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
52, 4anbi12d 473 . . . . . . 7 (𝑒 = (𝐿 − (𝐹𝐾)) → (((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾))))))
65rexralbidv 2533 . . . . . 6 (𝑒 = (𝐿 − (𝐹𝐾)) → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾))))))
7 resqrexlemgt0.lim . . . . . . 7 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
87adantr 276 . . . . . 6 ((𝜑 ∧ (𝐹𝐾) < 𝐿) → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
9 resqrexlemex.seq . . . . . . . . . . 11 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
10 resqrexlemex.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
11 resqrexlemex.agt0 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
129, 10, 11resqrexlemf 11362 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶ℝ+)
13 resqrexlemoverl.k . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ)
1412, 13ffvelcdmd 5723 . . . . . . . . 9 (𝜑 → (𝐹𝐾) ∈ ℝ+)
1514rpred 9825 . . . . . . . 8 (𝜑 → (𝐹𝐾) ∈ ℝ)
16 resqrexlemgt0.rr . . . . . . . 8 (𝜑𝐿 ∈ ℝ)
17 difrp 9821 . . . . . . . 8 (((𝐹𝐾) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝐹𝐾) < 𝐿 ↔ (𝐿 − (𝐹𝐾)) ∈ ℝ+))
1815, 16, 17syl2anc 411 . . . . . . 7 (𝜑 → ((𝐹𝐾) < 𝐿 ↔ (𝐿 − (𝐹𝐾)) ∈ ℝ+))
1918biimpa 296 . . . . . 6 ((𝜑 ∧ (𝐹𝐾) < 𝐿) → (𝐿 − (𝐹𝐾)) ∈ ℝ+)
206, 8, 19rspcdva 2883 . . . . 5 ((𝜑 ∧ (𝐹𝐾) < 𝐿) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
21 fveq2 5583 . . . . . . 7 (𝑗 = 𝑏 → (ℤ𝑗) = (ℤ𝑏))
2221raleqdv 2709 . . . . . 6 (𝑗 = 𝑏 → (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))) ↔ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾))))))
2322cbvrexv 2740 . . . . 5 (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))) ↔ ∃𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
2420, 23sylib 122 . . . 4 ((𝜑 ∧ (𝐹𝐾) < 𝐿) → ∃𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
25 fveq2 5583 . . . . . . . . . . 11 (𝑖 = 𝐾 → (𝐹𝑖) = (𝐹𝐾))
2625breq1d 4057 . . . . . . . . . 10 (𝑖 = 𝐾 → ((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ↔ (𝐹𝐾) < (𝐿 + (𝐿 − (𝐹𝐾)))))
2725oveq1d 5966 . . . . . . . . . . 11 (𝑖 = 𝐾 → ((𝐹𝑖) + (𝐿 − (𝐹𝐾))) = ((𝐹𝐾) + (𝐿 − (𝐹𝐾))))
2827breq2d 4059 . . . . . . . . . 10 (𝑖 = 𝐾 → (𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾))) ↔ 𝐿 < ((𝐹𝐾) + (𝐿 − (𝐹𝐾)))))
2926, 28anbi12d 473 . . . . . . . . 9 (𝑖 = 𝐾 → (((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))) ↔ ((𝐹𝐾) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝐾) + (𝐿 − (𝐹𝐾))))))
30 simprr 531 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
3130adantr 276 . . . . . . . . 9 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
32 simprl 529 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝑏 ∈ ℕ)
3332nnzd 9501 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝑏 ∈ ℤ)
3433adantr 276 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝑏 ∈ ℤ)
3513ad2antrr 488 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐾 ∈ ℕ)
3635nnzd 9501 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐾 ∈ ℤ)
3736adantr 276 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐾 ∈ ℤ)
38 simpr 110 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝑏𝐾)
39 eluz2 9661 . . . . . . . . . 10 (𝐾 ∈ (ℤ𝑏) ↔ (𝑏 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑏𝐾))
4034, 37, 38, 39syl3anbrc 1184 . . . . . . . . 9 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐾 ∈ (ℤ𝑏))
4129, 31, 40rspcdva 2883 . . . . . . . 8 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → ((𝐹𝐾) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝐾) + (𝐿 − (𝐹𝐾)))))
4241simprd 114 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐿 < ((𝐹𝐾) + (𝐿 − (𝐹𝐾))))
4314ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝐾) ∈ ℝ+)
4443rpcnd 9827 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝐾) ∈ ℂ)
4544adantr 276 . . . . . . . 8 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → (𝐹𝐾) ∈ ℂ)
4616ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐿 ∈ ℝ)
4746recnd 8108 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐿 ∈ ℂ)
4847adantr 276 . . . . . . . 8 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐿 ∈ ℂ)
4945, 48pncan3d 8393 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → ((𝐹𝐾) + (𝐿 − (𝐹𝐾))) = 𝐿)
5042, 49breqtrd 4073 . . . . . 6 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐿 < 𝐿)
5116ad3antrrr 492 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐿 ∈ ℝ)
5251ltnrd 8191 . . . . . 6 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → ¬ 𝐿 < 𝐿)
5350, 52pm2.21fal 1393 . . . . 5 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → ⊥)
5410ad3antrrr 492 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → 𝐴 ∈ ℝ)
5511ad3antrrr 492 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → 0 ≤ 𝐴)
5613ad3antrrr 492 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → 𝐾 ∈ ℕ)
5732adantr 276 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → 𝑏 ∈ ℕ)
58 simpr 110 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → 𝐾 < 𝑏)
599, 54, 55, 56, 57, 58resqrexlemdecn 11367 . . . . . 6 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → (𝐹𝑏) < (𝐹𝐾))
6015ad3antrrr 492 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → (𝐹𝐾) ∈ ℝ)
6112ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐹:ℕ⟶ℝ+)
6261, 32ffvelcdmd 5723 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝑏) ∈ ℝ+)
6362rpred 9825 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝑏) ∈ ℝ)
6463adantr 276 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → (𝐹𝑏) ∈ ℝ)
65 fveq2 5583 . . . . . . . . . . . . . . 15 (𝑖 = 𝑏 → (𝐹𝑖) = (𝐹𝑏))
6665breq1d 4057 . . . . . . . . . . . . . 14 (𝑖 = 𝑏 → ((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ↔ (𝐹𝑏) < (𝐿 + (𝐿 − (𝐹𝐾)))))
6765oveq1d 5966 . . . . . . . . . . . . . . 15 (𝑖 = 𝑏 → ((𝐹𝑖) + (𝐿 − (𝐹𝐾))) = ((𝐹𝑏) + (𝐿 − (𝐹𝐾))))
6867breq2d 4059 . . . . . . . . . . . . . 14 (𝑖 = 𝑏 → (𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾))) ↔ 𝐿 < ((𝐹𝑏) + (𝐿 − (𝐹𝐾)))))
6966, 68anbi12d 473 . . . . . . . . . . . . 13 (𝑖 = 𝑏 → (((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))) ↔ ((𝐹𝑏) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑏) + (𝐿 − (𝐹𝐾))))))
70 uzid 9669 . . . . . . . . . . . . . 14 (𝑏 ∈ ℤ → 𝑏 ∈ (ℤ𝑏))
7133, 70syl 14 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝑏 ∈ (ℤ𝑏))
7269, 30, 71rspcdva 2883 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ((𝐹𝑏) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑏) + (𝐿 − (𝐹𝐾)))))
7372simprd 114 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐿 < ((𝐹𝑏) + (𝐿 − (𝐹𝐾))))
7462rpcnd 9827 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝑏) ∈ ℂ)
7574, 47, 44addsubassd 8410 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (((𝐹𝑏) + 𝐿) − (𝐹𝐾)) = ((𝐹𝑏) + (𝐿 − (𝐹𝐾))))
7673, 75breqtrrd 4075 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐿 < (((𝐹𝑏) + 𝐿) − (𝐹𝐾)))
7715ad2antrr 488 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝐾) ∈ ℝ)
7863, 46readdcld 8109 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ((𝐹𝑏) + 𝐿) ∈ ℝ)
7977, 46, 78ltaddsub2d 8626 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (((𝐹𝐾) + 𝐿) < ((𝐹𝑏) + 𝐿) ↔ 𝐿 < (((𝐹𝑏) + 𝐿) − (𝐹𝐾))))
8076, 79mpbird 167 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ((𝐹𝐾) + 𝐿) < ((𝐹𝑏) + 𝐿))
8177, 63, 46ltadd1d 8618 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ((𝐹𝐾) < (𝐹𝑏) ↔ ((𝐹𝐾) + 𝐿) < ((𝐹𝑏) + 𝐿)))
8280, 81mpbird 167 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝐾) < (𝐹𝑏))
8382adantr 276 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → (𝐹𝐾) < (𝐹𝑏))
8460, 64, 83ltnsymd 8199 . . . . . 6 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → ¬ (𝐹𝑏) < (𝐹𝐾))
8559, 84pm2.21fal 1393 . . . . 5 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → ⊥)
86 zlelttric 9424 . . . . . 6 ((𝑏 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑏𝐾𝐾 < 𝑏))
8733, 36, 86syl2anc 411 . . . . 5 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝑏𝐾𝐾 < 𝑏))
8853, 85, 87mpjaodan 800 . . . 4 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ⊥)
8924, 88rexlimddv 2629 . . 3 ((𝜑 ∧ (𝐹𝐾) < 𝐿) → ⊥)
9089inegd 1392 . 2 (𝜑 → ¬ (𝐹𝐾) < 𝐿)
9116, 15lenltd 8197 . 2 (𝜑 → (𝐿 ≤ (𝐹𝐾) ↔ ¬ (𝐹𝐾) < 𝐿))
9290, 91mpbird 167 1 (𝜑𝐿 ≤ (𝐹𝐾))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wfal 1378  wcel 2177  wral 2485  wrex 2486  {csn 3634   class class class wbr 4047   × cxp 4677  wf 5272  cfv 5276  (class class class)co 5951  cmpo 5953  cc 7930  cr 7931  0cc0 7932  1c1 7933   + caddc 7935   < clt 8114  cle 8115  cmin 8250   / cdiv 8752  cn 9043  2c2 9094  cz 9379  cuz 9655  +crp 9782  seqcseq 10599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-rp 9783  df-seqfrec 10600  df-exp 10691
This theorem is referenced by:  resqrexlemglsq  11377
  Copyright terms: Public domain W3C validator