ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemoverl GIF version

Theorem resqrexlemoverl 11186
Description: Lemma for resqrex 11191. Every term in the sequence is an overestimate compared with the limit 𝐿. Although this theorem is stated in terms of a particular sequence the proof could be adapted for any decreasing convergent sequence. (Contributed by Jim Kingdon, 9-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemgt0.rr (𝜑𝐿 ∈ ℝ)
resqrexlemgt0.lim (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
resqrexlemoverl.k (𝜑𝐾 ∈ ℕ)
Assertion
Ref Expression
resqrexlemoverl (𝜑𝐿 ≤ (𝐹𝐾))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑒,𝐹,𝑖,𝑗   𝑦,𝐹,𝑧,𝑖,𝑗   𝑒,𝐾,𝑖,𝑗   𝑦,𝐾,𝑧   𝑒,𝐿,𝑖,𝑗   𝑦,𝐿,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑒,𝑖,𝑗)   𝐴(𝑒,𝑖,𝑗)

Proof of Theorem resqrexlemoverl
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 oveq2 5930 . . . . . . . . 9 (𝑒 = (𝐿 − (𝐹𝐾)) → (𝐿 + 𝑒) = (𝐿 + (𝐿 − (𝐹𝐾))))
21breq2d 4045 . . . . . . . 8 (𝑒 = (𝐿 − (𝐹𝐾)) → ((𝐹𝑖) < (𝐿 + 𝑒) ↔ (𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾)))))
3 oveq2 5930 . . . . . . . . 9 (𝑒 = (𝐿 − (𝐹𝐾)) → ((𝐹𝑖) + 𝑒) = ((𝐹𝑖) + (𝐿 − (𝐹𝐾))))
43breq2d 4045 . . . . . . . 8 (𝑒 = (𝐿 − (𝐹𝐾)) → (𝐿 < ((𝐹𝑖) + 𝑒) ↔ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
52, 4anbi12d 473 . . . . . . 7 (𝑒 = (𝐿 − (𝐹𝐾)) → (((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾))))))
65rexralbidv 2523 . . . . . 6 (𝑒 = (𝐿 − (𝐹𝐾)) → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾))))))
7 resqrexlemgt0.lim . . . . . . 7 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
87adantr 276 . . . . . 6 ((𝜑 ∧ (𝐹𝐾) < 𝐿) → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
9 resqrexlemex.seq . . . . . . . . . . 11 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
10 resqrexlemex.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
11 resqrexlemex.agt0 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
129, 10, 11resqrexlemf 11172 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶ℝ+)
13 resqrexlemoverl.k . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ)
1412, 13ffvelcdmd 5698 . . . . . . . . 9 (𝜑 → (𝐹𝐾) ∈ ℝ+)
1514rpred 9771 . . . . . . . 8 (𝜑 → (𝐹𝐾) ∈ ℝ)
16 resqrexlemgt0.rr . . . . . . . 8 (𝜑𝐿 ∈ ℝ)
17 difrp 9767 . . . . . . . 8 (((𝐹𝐾) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝐹𝐾) < 𝐿 ↔ (𝐿 − (𝐹𝐾)) ∈ ℝ+))
1815, 16, 17syl2anc 411 . . . . . . 7 (𝜑 → ((𝐹𝐾) < 𝐿 ↔ (𝐿 − (𝐹𝐾)) ∈ ℝ+))
1918biimpa 296 . . . . . 6 ((𝜑 ∧ (𝐹𝐾) < 𝐿) → (𝐿 − (𝐹𝐾)) ∈ ℝ+)
206, 8, 19rspcdva 2873 . . . . 5 ((𝜑 ∧ (𝐹𝐾) < 𝐿) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
21 fveq2 5558 . . . . . . 7 (𝑗 = 𝑏 → (ℤ𝑗) = (ℤ𝑏))
2221raleqdv 2699 . . . . . 6 (𝑗 = 𝑏 → (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))) ↔ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾))))))
2322cbvrexv 2730 . . . . 5 (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))) ↔ ∃𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
2420, 23sylib 122 . . . 4 ((𝜑 ∧ (𝐹𝐾) < 𝐿) → ∃𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
25 fveq2 5558 . . . . . . . . . . 11 (𝑖 = 𝐾 → (𝐹𝑖) = (𝐹𝐾))
2625breq1d 4043 . . . . . . . . . 10 (𝑖 = 𝐾 → ((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ↔ (𝐹𝐾) < (𝐿 + (𝐿 − (𝐹𝐾)))))
2725oveq1d 5937 . . . . . . . . . . 11 (𝑖 = 𝐾 → ((𝐹𝑖) + (𝐿 − (𝐹𝐾))) = ((𝐹𝐾) + (𝐿 − (𝐹𝐾))))
2827breq2d 4045 . . . . . . . . . 10 (𝑖 = 𝐾 → (𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾))) ↔ 𝐿 < ((𝐹𝐾) + (𝐿 − (𝐹𝐾)))))
2926, 28anbi12d 473 . . . . . . . . 9 (𝑖 = 𝐾 → (((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))) ↔ ((𝐹𝐾) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝐾) + (𝐿 − (𝐹𝐾))))))
30 simprr 531 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
3130adantr 276 . . . . . . . . 9 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
32 simprl 529 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝑏 ∈ ℕ)
3332nnzd 9447 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝑏 ∈ ℤ)
3433adantr 276 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝑏 ∈ ℤ)
3513ad2antrr 488 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐾 ∈ ℕ)
3635nnzd 9447 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐾 ∈ ℤ)
3736adantr 276 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐾 ∈ ℤ)
38 simpr 110 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝑏𝐾)
39 eluz2 9607 . . . . . . . . . 10 (𝐾 ∈ (ℤ𝑏) ↔ (𝑏 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑏𝐾))
4034, 37, 38, 39syl3anbrc 1183 . . . . . . . . 9 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐾 ∈ (ℤ𝑏))
4129, 31, 40rspcdva 2873 . . . . . . . 8 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → ((𝐹𝐾) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝐾) + (𝐿 − (𝐹𝐾)))))
4241simprd 114 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐿 < ((𝐹𝐾) + (𝐿 − (𝐹𝐾))))
4314ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝐾) ∈ ℝ+)
4443rpcnd 9773 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝐾) ∈ ℂ)
4544adantr 276 . . . . . . . 8 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → (𝐹𝐾) ∈ ℂ)
4616ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐿 ∈ ℝ)
4746recnd 8055 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐿 ∈ ℂ)
4847adantr 276 . . . . . . . 8 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐿 ∈ ℂ)
4945, 48pncan3d 8340 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → ((𝐹𝐾) + (𝐿 − (𝐹𝐾))) = 𝐿)
5042, 49breqtrd 4059 . . . . . 6 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐿 < 𝐿)
5116ad3antrrr 492 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐿 ∈ ℝ)
5251ltnrd 8138 . . . . . 6 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → ¬ 𝐿 < 𝐿)
5350, 52pm2.21fal 1384 . . . . 5 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → ⊥)
5410ad3antrrr 492 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → 𝐴 ∈ ℝ)
5511ad3antrrr 492 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → 0 ≤ 𝐴)
5613ad3antrrr 492 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → 𝐾 ∈ ℕ)
5732adantr 276 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → 𝑏 ∈ ℕ)
58 simpr 110 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → 𝐾 < 𝑏)
599, 54, 55, 56, 57, 58resqrexlemdecn 11177 . . . . . 6 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → (𝐹𝑏) < (𝐹𝐾))
6015ad3antrrr 492 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → (𝐹𝐾) ∈ ℝ)
6112ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐹:ℕ⟶ℝ+)
6261, 32ffvelcdmd 5698 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝑏) ∈ ℝ+)
6362rpred 9771 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝑏) ∈ ℝ)
6463adantr 276 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → (𝐹𝑏) ∈ ℝ)
65 fveq2 5558 . . . . . . . . . . . . . . 15 (𝑖 = 𝑏 → (𝐹𝑖) = (𝐹𝑏))
6665breq1d 4043 . . . . . . . . . . . . . 14 (𝑖 = 𝑏 → ((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ↔ (𝐹𝑏) < (𝐿 + (𝐿 − (𝐹𝐾)))))
6765oveq1d 5937 . . . . . . . . . . . . . . 15 (𝑖 = 𝑏 → ((𝐹𝑖) + (𝐿 − (𝐹𝐾))) = ((𝐹𝑏) + (𝐿 − (𝐹𝐾))))
6867breq2d 4045 . . . . . . . . . . . . . 14 (𝑖 = 𝑏 → (𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾))) ↔ 𝐿 < ((𝐹𝑏) + (𝐿 − (𝐹𝐾)))))
6966, 68anbi12d 473 . . . . . . . . . . . . 13 (𝑖 = 𝑏 → (((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))) ↔ ((𝐹𝑏) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑏) + (𝐿 − (𝐹𝐾))))))
70 uzid 9615 . . . . . . . . . . . . . 14 (𝑏 ∈ ℤ → 𝑏 ∈ (ℤ𝑏))
7133, 70syl 14 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝑏 ∈ (ℤ𝑏))
7269, 30, 71rspcdva 2873 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ((𝐹𝑏) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑏) + (𝐿 − (𝐹𝐾)))))
7372simprd 114 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐿 < ((𝐹𝑏) + (𝐿 − (𝐹𝐾))))
7462rpcnd 9773 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝑏) ∈ ℂ)
7574, 47, 44addsubassd 8357 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (((𝐹𝑏) + 𝐿) − (𝐹𝐾)) = ((𝐹𝑏) + (𝐿 − (𝐹𝐾))))
7673, 75breqtrrd 4061 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐿 < (((𝐹𝑏) + 𝐿) − (𝐹𝐾)))
7715ad2antrr 488 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝐾) ∈ ℝ)
7863, 46readdcld 8056 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ((𝐹𝑏) + 𝐿) ∈ ℝ)
7977, 46, 78ltaddsub2d 8573 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (((𝐹𝐾) + 𝐿) < ((𝐹𝑏) + 𝐿) ↔ 𝐿 < (((𝐹𝑏) + 𝐿) − (𝐹𝐾))))
8076, 79mpbird 167 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ((𝐹𝐾) + 𝐿) < ((𝐹𝑏) + 𝐿))
8177, 63, 46ltadd1d 8565 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ((𝐹𝐾) < (𝐹𝑏) ↔ ((𝐹𝐾) + 𝐿) < ((𝐹𝑏) + 𝐿)))
8280, 81mpbird 167 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝐾) < (𝐹𝑏))
8382adantr 276 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → (𝐹𝐾) < (𝐹𝑏))
8460, 64, 83ltnsymd 8146 . . . . . 6 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → ¬ (𝐹𝑏) < (𝐹𝐾))
8559, 84pm2.21fal 1384 . . . . 5 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → ⊥)
86 zlelttric 9371 . . . . . 6 ((𝑏 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑏𝐾𝐾 < 𝑏))
8733, 36, 86syl2anc 411 . . . . 5 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝑏𝐾𝐾 < 𝑏))
8853, 85, 87mpjaodan 799 . . . 4 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ⊥)
8924, 88rexlimddv 2619 . . 3 ((𝜑 ∧ (𝐹𝐾) < 𝐿) → ⊥)
9089inegd 1383 . 2 (𝜑 → ¬ (𝐹𝐾) < 𝐿)
9116, 15lenltd 8144 . 2 (𝜑 → (𝐿 ≤ (𝐹𝐾) ↔ ¬ (𝐹𝐾) < 𝐿))
9290, 91mpbird 167 1 (𝜑𝐿 ≤ (𝐹𝐾))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wfal 1369  wcel 2167  wral 2475  wrex 2476  {csn 3622   class class class wbr 4033   × cxp 4661  wf 5254  cfv 5258  (class class class)co 5922  cmpo 5924  cc 7877  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   < clt 8061  cle 8062  cmin 8197   / cdiv 8699  cn 8990  2c2 9041  cz 9326  cuz 9601  +crp 9728  seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-seqfrec 10540  df-exp 10631
This theorem is referenced by:  resqrexlemglsq  11187
  Copyright terms: Public domain W3C validator