ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemoverl GIF version

Theorem resqrexlemoverl 11498
Description: Lemma for resqrex 11503. Every term in the sequence is an overestimate compared with the limit 𝐿. Although this theorem is stated in terms of a particular sequence the proof could be adapted for any decreasing convergent sequence. (Contributed by Jim Kingdon, 9-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemgt0.rr (𝜑𝐿 ∈ ℝ)
resqrexlemgt0.lim (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
resqrexlemoverl.k (𝜑𝐾 ∈ ℕ)
Assertion
Ref Expression
resqrexlemoverl (𝜑𝐿 ≤ (𝐹𝐾))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑒,𝐹,𝑖,𝑗   𝑦,𝐹,𝑧,𝑖,𝑗   𝑒,𝐾,𝑖,𝑗   𝑦,𝐾,𝑧   𝑒,𝐿,𝑖,𝑗   𝑦,𝐿,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑒,𝑖,𝑗)   𝐴(𝑒,𝑖,𝑗)

Proof of Theorem resqrexlemoverl
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 oveq2 5982 . . . . . . . . 9 (𝑒 = (𝐿 − (𝐹𝐾)) → (𝐿 + 𝑒) = (𝐿 + (𝐿 − (𝐹𝐾))))
21breq2d 4074 . . . . . . . 8 (𝑒 = (𝐿 − (𝐹𝐾)) → ((𝐹𝑖) < (𝐿 + 𝑒) ↔ (𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾)))))
3 oveq2 5982 . . . . . . . . 9 (𝑒 = (𝐿 − (𝐹𝐾)) → ((𝐹𝑖) + 𝑒) = ((𝐹𝑖) + (𝐿 − (𝐹𝐾))))
43breq2d 4074 . . . . . . . 8 (𝑒 = (𝐿 − (𝐹𝐾)) → (𝐿 < ((𝐹𝑖) + 𝑒) ↔ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
52, 4anbi12d 473 . . . . . . 7 (𝑒 = (𝐿 − (𝐹𝐾)) → (((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾))))))
65rexralbidv 2536 . . . . . 6 (𝑒 = (𝐿 − (𝐹𝐾)) → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾))))))
7 resqrexlemgt0.lim . . . . . . 7 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
87adantr 276 . . . . . 6 ((𝜑 ∧ (𝐹𝐾) < 𝐿) → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
9 resqrexlemex.seq . . . . . . . . . . 11 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
10 resqrexlemex.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
11 resqrexlemex.agt0 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
129, 10, 11resqrexlemf 11484 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶ℝ+)
13 resqrexlemoverl.k . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ)
1412, 13ffvelcdmd 5744 . . . . . . . . 9 (𝜑 → (𝐹𝐾) ∈ ℝ+)
1514rpred 9860 . . . . . . . 8 (𝜑 → (𝐹𝐾) ∈ ℝ)
16 resqrexlemgt0.rr . . . . . . . 8 (𝜑𝐿 ∈ ℝ)
17 difrp 9856 . . . . . . . 8 (((𝐹𝐾) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝐹𝐾) < 𝐿 ↔ (𝐿 − (𝐹𝐾)) ∈ ℝ+))
1815, 16, 17syl2anc 411 . . . . . . 7 (𝜑 → ((𝐹𝐾) < 𝐿 ↔ (𝐿 − (𝐹𝐾)) ∈ ℝ+))
1918biimpa 296 . . . . . 6 ((𝜑 ∧ (𝐹𝐾) < 𝐿) → (𝐿 − (𝐹𝐾)) ∈ ℝ+)
206, 8, 19rspcdva 2892 . . . . 5 ((𝜑 ∧ (𝐹𝐾) < 𝐿) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
21 fveq2 5603 . . . . . . 7 (𝑗 = 𝑏 → (ℤ𝑗) = (ℤ𝑏))
2221raleqdv 2714 . . . . . 6 (𝑗 = 𝑏 → (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))) ↔ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾))))))
2322cbvrexv 2746 . . . . 5 (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))) ↔ ∃𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
2420, 23sylib 122 . . . 4 ((𝜑 ∧ (𝐹𝐾) < 𝐿) → ∃𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
25 fveq2 5603 . . . . . . . . . . 11 (𝑖 = 𝐾 → (𝐹𝑖) = (𝐹𝐾))
2625breq1d 4072 . . . . . . . . . 10 (𝑖 = 𝐾 → ((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ↔ (𝐹𝐾) < (𝐿 + (𝐿 − (𝐹𝐾)))))
2725oveq1d 5989 . . . . . . . . . . 11 (𝑖 = 𝐾 → ((𝐹𝑖) + (𝐿 − (𝐹𝐾))) = ((𝐹𝐾) + (𝐿 − (𝐹𝐾))))
2827breq2d 4074 . . . . . . . . . 10 (𝑖 = 𝐾 → (𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾))) ↔ 𝐿 < ((𝐹𝐾) + (𝐿 − (𝐹𝐾)))))
2926, 28anbi12d 473 . . . . . . . . 9 (𝑖 = 𝐾 → (((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))) ↔ ((𝐹𝐾) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝐾) + (𝐿 − (𝐹𝐾))))))
30 simprr 531 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
3130adantr 276 . . . . . . . . 9 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))
32 simprl 529 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝑏 ∈ ℕ)
3332nnzd 9536 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝑏 ∈ ℤ)
3433adantr 276 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝑏 ∈ ℤ)
3513ad2antrr 488 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐾 ∈ ℕ)
3635nnzd 9536 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐾 ∈ ℤ)
3736adantr 276 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐾 ∈ ℤ)
38 simpr 110 . . . . . . . . . 10 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝑏𝐾)
39 eluz2 9696 . . . . . . . . . 10 (𝐾 ∈ (ℤ𝑏) ↔ (𝑏 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑏𝐾))
4034, 37, 38, 39syl3anbrc 1186 . . . . . . . . 9 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐾 ∈ (ℤ𝑏))
4129, 31, 40rspcdva 2892 . . . . . . . 8 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → ((𝐹𝐾) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝐾) + (𝐿 − (𝐹𝐾)))))
4241simprd 114 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐿 < ((𝐹𝐾) + (𝐿 − (𝐹𝐾))))
4314ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝐾) ∈ ℝ+)
4443rpcnd 9862 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝐾) ∈ ℂ)
4544adantr 276 . . . . . . . 8 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → (𝐹𝐾) ∈ ℂ)
4616ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐿 ∈ ℝ)
4746recnd 8143 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐿 ∈ ℂ)
4847adantr 276 . . . . . . . 8 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐿 ∈ ℂ)
4945, 48pncan3d 8428 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → ((𝐹𝐾) + (𝐿 − (𝐹𝐾))) = 𝐿)
5042, 49breqtrd 4088 . . . . . 6 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐿 < 𝐿)
5116ad3antrrr 492 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → 𝐿 ∈ ℝ)
5251ltnrd 8226 . . . . . 6 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → ¬ 𝐿 < 𝐿)
5350, 52pm2.21fal 1395 . . . . 5 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝑏𝐾) → ⊥)
5410ad3antrrr 492 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → 𝐴 ∈ ℝ)
5511ad3antrrr 492 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → 0 ≤ 𝐴)
5613ad3antrrr 492 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → 𝐾 ∈ ℕ)
5732adantr 276 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → 𝑏 ∈ ℕ)
58 simpr 110 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → 𝐾 < 𝑏)
599, 54, 55, 56, 57, 58resqrexlemdecn 11489 . . . . . 6 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → (𝐹𝑏) < (𝐹𝐾))
6015ad3antrrr 492 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → (𝐹𝐾) ∈ ℝ)
6112ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐹:ℕ⟶ℝ+)
6261, 32ffvelcdmd 5744 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝑏) ∈ ℝ+)
6362rpred 9860 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝑏) ∈ ℝ)
6463adantr 276 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → (𝐹𝑏) ∈ ℝ)
65 fveq2 5603 . . . . . . . . . . . . . . 15 (𝑖 = 𝑏 → (𝐹𝑖) = (𝐹𝑏))
6665breq1d 4072 . . . . . . . . . . . . . 14 (𝑖 = 𝑏 → ((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ↔ (𝐹𝑏) < (𝐿 + (𝐿 − (𝐹𝐾)))))
6765oveq1d 5989 . . . . . . . . . . . . . . 15 (𝑖 = 𝑏 → ((𝐹𝑖) + (𝐿 − (𝐹𝐾))) = ((𝐹𝑏) + (𝐿 − (𝐹𝐾))))
6867breq2d 4074 . . . . . . . . . . . . . 14 (𝑖 = 𝑏 → (𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾))) ↔ 𝐿 < ((𝐹𝑏) + (𝐿 − (𝐹𝐾)))))
6966, 68anbi12d 473 . . . . . . . . . . . . 13 (𝑖 = 𝑏 → (((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))) ↔ ((𝐹𝑏) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑏) + (𝐿 − (𝐹𝐾))))))
70 uzid 9704 . . . . . . . . . . . . . 14 (𝑏 ∈ ℤ → 𝑏 ∈ (ℤ𝑏))
7133, 70syl 14 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝑏 ∈ (ℤ𝑏))
7269, 30, 71rspcdva 2892 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ((𝐹𝑏) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑏) + (𝐿 − (𝐹𝐾)))))
7372simprd 114 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐿 < ((𝐹𝑏) + (𝐿 − (𝐹𝐾))))
7462rpcnd 9862 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝑏) ∈ ℂ)
7574, 47, 44addsubassd 8445 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (((𝐹𝑏) + 𝐿) − (𝐹𝐾)) = ((𝐹𝑏) + (𝐿 − (𝐹𝐾))))
7673, 75breqtrrd 4090 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → 𝐿 < (((𝐹𝑏) + 𝐿) − (𝐹𝐾)))
7715ad2antrr 488 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝐾) ∈ ℝ)
7863, 46readdcld 8144 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ((𝐹𝑏) + 𝐿) ∈ ℝ)
7977, 46, 78ltaddsub2d 8661 . . . . . . . . . 10 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (((𝐹𝐾) + 𝐿) < ((𝐹𝑏) + 𝐿) ↔ 𝐿 < (((𝐹𝑏) + 𝐿) − (𝐹𝐾))))
8076, 79mpbird 167 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ((𝐹𝐾) + 𝐿) < ((𝐹𝑏) + 𝐿))
8177, 63, 46ltadd1d 8653 . . . . . . . . 9 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ((𝐹𝐾) < (𝐹𝑏) ↔ ((𝐹𝐾) + 𝐿) < ((𝐹𝑏) + 𝐿)))
8280, 81mpbird 167 . . . . . . . 8 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝐹𝐾) < (𝐹𝑏))
8382adantr 276 . . . . . . 7 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → (𝐹𝐾) < (𝐹𝑏))
8460, 64, 83ltnsymd 8234 . . . . . 6 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → ¬ (𝐹𝑏) < (𝐹𝐾))
8559, 84pm2.21fal 1395 . . . . 5 ((((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) ∧ 𝐾 < 𝑏) → ⊥)
86 zlelttric 9459 . . . . . 6 ((𝑏 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑏𝐾𝐾 < 𝑏))
8733, 36, 86syl2anc 411 . . . . 5 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → (𝑏𝐾𝐾 < 𝑏))
8853, 85, 87mpjaodan 802 . . . 4 (((𝜑 ∧ (𝐹𝐾) < 𝐿) ∧ (𝑏 ∈ ℕ ∧ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + (𝐿 − (𝐹𝐾))) ∧ 𝐿 < ((𝐹𝑖) + (𝐿 − (𝐹𝐾)))))) → ⊥)
8924, 88rexlimddv 2633 . . 3 ((𝜑 ∧ (𝐹𝐾) < 𝐿) → ⊥)
9089inegd 1394 . 2 (𝜑 → ¬ (𝐹𝐾) < 𝐿)
9116, 15lenltd 8232 . 2 (𝜑 → (𝐿 ≤ (𝐹𝐾) ↔ ¬ (𝐹𝐾) < 𝐿))
9290, 91mpbird 167 1 (𝜑𝐿 ≤ (𝐹𝐾))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 712   = wceq 1375  wfal 1380  wcel 2180  wral 2488  wrex 2489  {csn 3646   class class class wbr 4062   × cxp 4694  wf 5290  cfv 5294  (class class class)co 5974  cmpo 5976  cc 7965  cr 7966  0cc0 7967  1c1 7968   + caddc 7970   < clt 8149  cle 8150  cmin 8285   / cdiv 8787  cn 9078  2c2 9129  cz 9414  cuz 9690  +crp 9817  seqcseq 10636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-rp 9818  df-seqfrec 10637  df-exp 10728
This theorem is referenced by:  resqrexlemglsq  11499
  Copyright terms: Public domain W3C validator