ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindicclemicc GIF version

Theorem dedekindicclemicc 14952
Description: Lemma for dedekindicc 14953. Same as dedekindicc 14953, except that we merely show 𝑥 to be an element of (𝐴[,]𝐵). Later we will strengthen that to (𝐴(,)𝐵). (Contributed by Jim Kingdon, 5-Jan-2024.)
Hypotheses
Ref Expression
dedekindicc.a (𝜑𝐴 ∈ ℝ)
dedekindicc.b (𝜑𝐵 ∈ ℝ)
dedekindicc.lss (𝜑𝐿 ⊆ (𝐴[,]𝐵))
dedekindicc.uss (𝜑𝑈 ⊆ (𝐴[,]𝐵))
dedekindicc.lm (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
dedekindicc.um (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
dedekindicc.lr (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
dedekindicc.ur (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
dedekindicc.disj (𝜑 → (𝐿𝑈) = ∅)
dedekindicc.loc (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
dedekindicc.ab (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
dedekindicclemicc (𝜑 → ∃!𝑥 ∈ (𝐴[,]𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
Distinct variable groups:   𝐴,𝑞,𝑟,𝑥   𝐵,𝑞,𝑟,𝑥   𝐿,𝑞,𝑟,𝑥   𝑈,𝑞,𝑟,𝑥   𝜑,𝑞,𝑟,𝑥

Proof of Theorem dedekindicclemicc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dedekindicc.a . . 3 (𝜑𝐴 ∈ ℝ)
2 dedekindicc.b . . 3 (𝜑𝐵 ∈ ℝ)
3 dedekindicc.lss . . 3 (𝜑𝐿 ⊆ (𝐴[,]𝐵))
4 dedekindicc.uss . . 3 (𝜑𝑈 ⊆ (𝐴[,]𝐵))
5 dedekindicc.lm . . 3 (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
6 dedekindicc.um . . 3 (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
7 dedekindicc.lr . . 3 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
8 dedekindicc.ur . . 3 (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
9 dedekindicc.disj . . 3 (𝜑 → (𝐿𝑈) = ∅)
10 dedekindicc.loc . . 3 (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
11 dedekindicc.ab . . 3 (𝜑𝐴 < 𝐵)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11dedekindicclemlu 14950 . 2 (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
131ad4antr 494 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑥 < 𝑦) → 𝐴 ∈ ℝ)
142ad4antr 494 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑥 < 𝑦) → 𝐵 ∈ ℝ)
153ad4antr 494 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑥 < 𝑦) → 𝐿 ⊆ (𝐴[,]𝐵))
164ad4antr 494 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑥 < 𝑦) → 𝑈 ⊆ (𝐴[,]𝐵))
175ad4antr 494 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑥 < 𝑦) → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
186ad4antr 494 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑥 < 𝑦) → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
197ad4antr 494 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑥 < 𝑦) → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
208ad4antr 494 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑥 < 𝑦) → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
219ad4antr 494 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑥 < 𝑦) → (𝐿𝑈) = ∅)
2210ad4antr 494 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑥 < 𝑦) → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
2311ad4antr 494 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑥 < 𝑦) → 𝐴 < 𝐵)
24 simprll 537 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) → 𝑥 ∈ (𝐴[,]𝐵))
2524ad3antrrr 492 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (𝐴[,]𝐵))
26 simprr 531 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) → (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
2726ad3antrrr 492 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑥 < 𝑦) → (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
28 simprlr 538 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) → 𝑦 ∈ (𝐴[,]𝐵))
2928ad3antrrr 492 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (𝐴[,]𝐵))
30 simpllr 534 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑥 < 𝑦) → (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟))
31 simpr 110 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
3213, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 29, 30, 31dedekindicclemeu 14951 . . . . . . . . 9 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑥 < 𝑦) → ⊥)
331ad4antr 494 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑦 < 𝑥) → 𝐴 ∈ ℝ)
342ad4antr 494 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑦 < 𝑥) → 𝐵 ∈ ℝ)
353ad4antr 494 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑦 < 𝑥) → 𝐿 ⊆ (𝐴[,]𝐵))
364ad4antr 494 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑦 < 𝑥) → 𝑈 ⊆ (𝐴[,]𝐵))
375ad4antr 494 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑦 < 𝑥) → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)
386ad4antr 494 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑦 < 𝑥) → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)
397ad4antr 494 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑦 < 𝑥) → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
408ad4antr 494 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑦 < 𝑥) → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
419ad4antr 494 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑦 < 𝑥) → (𝐿𝑈) = ∅)
4210ad4antr 494 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑦 < 𝑥) → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
4311ad4antr 494 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑦 < 𝑥) → 𝐴 < 𝐵)
4428ad3antrrr 492 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑦 < 𝑥) → 𝑦 ∈ (𝐴[,]𝐵))
45 simpllr 534 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑦 < 𝑥) → (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟))
4624ad3antrrr 492 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑦 < 𝑥) → 𝑥 ∈ (𝐴[,]𝐵))
4726ad3antrrr 492 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑦 < 𝑥) → (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
48 simpr 110 . . . . . . . . . 10 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑦 < 𝑥) → 𝑦 < 𝑥)
4933, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48dedekindicclemeu 14951 . . . . . . . . 9 (((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) ∧ 𝑦 < 𝑥) → ⊥)
50 simpr 110 . . . . . . . . . 10 ((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) → 𝑥 # 𝑦)
51 iccssre 10047 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
521, 2, 51syl2anc 411 . . . . . . . . . . . . 13 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
5352ad3antrrr 492 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) → (𝐴[,]𝐵) ⊆ ℝ)
5424ad2antrr 488 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) → 𝑥 ∈ (𝐴[,]𝐵))
5553, 54sseldd 3185 . . . . . . . . . . 11 ((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) → 𝑥 ∈ ℝ)
5628ad2antrr 488 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) → 𝑦 ∈ (𝐴[,]𝐵))
5753, 56sseldd 3185 . . . . . . . . . . 11 ((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) → 𝑦 ∈ ℝ)
58 reaplt 8632 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 # 𝑦 ↔ (𝑥 < 𝑦𝑦 < 𝑥)))
5955, 57, 58syl2anc 411 . . . . . . . . . 10 ((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) → (𝑥 # 𝑦 ↔ (𝑥 < 𝑦𝑦 < 𝑥)))
6050, 59mpbid 147 . . . . . . . . 9 ((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) → (𝑥 < 𝑦𝑦 < 𝑥))
6132, 49, 60mpjaodan 799 . . . . . . . 8 ((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ∧ 𝑥 # 𝑦) → ⊥)
6261inegd 1383 . . . . . . 7 (((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) → ¬ 𝑥 # 𝑦)
6352ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) → (𝐴[,]𝐵) ⊆ ℝ)
6424adantr 276 . . . . . . . . . 10 (((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) → 𝑥 ∈ (𝐴[,]𝐵))
6563, 64sseldd 3185 . . . . . . . . 9 (((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) → 𝑥 ∈ ℝ)
6665recnd 8072 . . . . . . . 8 (((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) → 𝑥 ∈ ℂ)
6728adantr 276 . . . . . . . . . 10 (((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) → 𝑦 ∈ (𝐴[,]𝐵))
6863, 67sseldd 3185 . . . . . . . . 9 (((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) → 𝑦 ∈ ℝ)
6968recnd 8072 . . . . . . . 8 (((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) → 𝑦 ∈ ℂ)
70 apti 8666 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = 𝑦 ↔ ¬ 𝑥 # 𝑦))
7166, 69, 70syl2anc 411 . . . . . . 7 (((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) → (𝑥 = 𝑦 ↔ ¬ 𝑥 # 𝑦))
7262, 71mpbird 167 . . . . . 6 (((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) → 𝑥 = 𝑦)
73 ancom 266 . . . . . . . . . . . . . . 15 ((∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟) ↔ (∀𝑟𝑈 𝑥 < 𝑟 ∧ ∀𝑞𝐿 𝑞 < 𝑥))
7473anbi2i 457 . . . . . . . . . . . . . 14 (((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)) ↔ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑟𝑈 𝑥 < 𝑟 ∧ ∀𝑞𝐿 𝑞 < 𝑥)))
75 anass 401 . . . . . . . . . . . . . 14 ((((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ ∀𝑟𝑈 𝑥 < 𝑟) ∧ ∀𝑞𝐿 𝑞 < 𝑥) ↔ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑟𝑈 𝑥 < 𝑟 ∧ ∀𝑞𝐿 𝑞 < 𝑥)))
7674, 75bitr4i 187 . . . . . . . . . . . . 13 (((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)) ↔ (((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ ∀𝑟𝑈 𝑥 < 𝑟) ∧ ∀𝑞𝐿 𝑞 < 𝑥))
7776anbi2i 457 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ↔ (𝜑 ∧ (((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ ∀𝑟𝑈 𝑥 < 𝑟) ∧ ∀𝑞𝐿 𝑞 < 𝑥)))
78 anass 401 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ ∀𝑟𝑈 𝑥 < 𝑟)) ∧ ∀𝑞𝐿 𝑞 < 𝑥) ↔ (𝜑 ∧ (((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ ∀𝑟𝑈 𝑥 < 𝑟) ∧ ∀𝑞𝐿 𝑞 < 𝑥)))
7977, 78bitr4i 187 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ↔ ((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ ∀𝑟𝑈 𝑥 < 𝑟)) ∧ ∀𝑞𝐿 𝑞 < 𝑥))
8079anbi1i 458 . . . . . . . . . 10 (((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ↔ (((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ ∀𝑟𝑈 𝑥 < 𝑟)) ∧ ∀𝑞𝐿 𝑞 < 𝑥) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)))
81 anass 401 . . . . . . . . . 10 ((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ ∀𝑟𝑈 𝑥 < 𝑟)) ∧ ∀𝑞𝐿 𝑞 < 𝑥) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ↔ ((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ ∀𝑟𝑈 𝑥 < 𝑟)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟))))
8280, 81bitri 184 . . . . . . . . 9 (((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ↔ ((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ ∀𝑟𝑈 𝑥 < 𝑟)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟))))
83 anass 401 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ ∀𝑟𝑈 𝑥 < 𝑟) ↔ (𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ ∀𝑟𝑈 𝑥 < 𝑟)))
8483bicomi 132 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ ∀𝑟𝑈 𝑥 < 𝑟)) ↔ ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ ∀𝑟𝑈 𝑥 < 𝑟))
8584anbi1i 458 . . . . . . . . . 10 (((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ ∀𝑟𝑈 𝑥 < 𝑟)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟))) ↔ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ ∀𝑟𝑈 𝑥 < 𝑟) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟))))
86 anass 401 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ ∀𝑟𝑈 𝑥 < 𝑟) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟))) ↔ ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (∀𝑟𝑈 𝑥 < 𝑟 ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)))))
8785, 86bitri 184 . . . . . . . . 9 (((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ ∀𝑟𝑈 𝑥 < 𝑟)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟))) ↔ ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (∀𝑟𝑈 𝑥 < 𝑟 ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)))))
8882, 87bitri 184 . . . . . . . 8 (((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ↔ ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (∀𝑟𝑈 𝑥 < 𝑟 ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)))))
89 anass 401 . . . . . . . . . 10 (((∀𝑟𝑈 𝑥 < 𝑟 ∧ ∀𝑞𝐿 𝑞 < 𝑥) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ↔ (∀𝑟𝑈 𝑥 < 𝑟 ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟))))
90 ancom 266 . . . . . . . . . . 11 ((∀𝑟𝑈 𝑥 < 𝑟 ∧ ∀𝑞𝐿 𝑞 < 𝑥) ↔ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
9190anbi1i 458 . . . . . . . . . 10 (((∀𝑟𝑈 𝑥 < 𝑟 ∧ ∀𝑞𝐿 𝑞 < 𝑥) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ↔ ((∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)))
9289, 91bitr3i 186 . . . . . . . . 9 ((∀𝑟𝑈 𝑥 < 𝑟 ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟))) ↔ ((∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)))
9392anbi2i 457 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ (∀𝑟𝑈 𝑥 < 𝑟 ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)))) ↔ ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ ((∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟))))
9488, 93bitri 184 . . . . . . 7 (((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) ↔ ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ ((∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟))))
9594imbi1i 238 . . . . . 6 ((((𝜑 ∧ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) ∧ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) → 𝑥 = 𝑦) ↔ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ ((∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟))) → 𝑥 = 𝑦))
9672, 95mpbi 145 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ ((∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟))) → 𝑥 = 𝑦)
9796ex 115 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) → (((∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) → 𝑥 = 𝑦))
9897ralrimivva 2579 . . 3 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(((∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) → 𝑥 = 𝑦))
99 breq2 4038 . . . . . 6 (𝑥 = 𝑦 → (𝑞 < 𝑥𝑞 < 𝑦))
10099ralbidv 2497 . . . . 5 (𝑥 = 𝑦 → (∀𝑞𝐿 𝑞 < 𝑥 ↔ ∀𝑞𝐿 𝑞 < 𝑦))
101 breq1 4037 . . . . . 6 (𝑥 = 𝑦 → (𝑥 < 𝑟𝑦 < 𝑟))
102101ralbidv 2497 . . . . 5 (𝑥 = 𝑦 → (∀𝑟𝑈 𝑥 < 𝑟 ↔ ∀𝑟𝑈 𝑦 < 𝑟))
103100, 102anbi12d 473 . . . 4 (𝑥 = 𝑦 → ((∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟) ↔ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)))
104103rmo4 2957 . . 3 (∃*𝑥 ∈ (𝐴[,]𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟) ↔ ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(((∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟) ∧ (∀𝑞𝐿 𝑞 < 𝑦 ∧ ∀𝑟𝑈 𝑦 < 𝑟)) → 𝑥 = 𝑦))
10598, 104sylibr 134 . 2 (𝜑 → ∃*𝑥 ∈ (𝐴[,]𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
106 reu5 2714 . 2 (∃!𝑥 ∈ (𝐴[,]𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟) ↔ (∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟) ∧ ∃*𝑥 ∈ (𝐴[,]𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟)))
10712, 105, 106sylanbrc 417 1 (𝜑 → ∃!𝑥 ∈ (𝐴[,]𝐵)(∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wfal 1369  wcel 2167  wral 2475  wrex 2476  ∃!wreu 2477  ∃*wrmo 2478  cin 3156  wss 3157  c0 3451   class class class wbr 4034  (class class class)co 5925  cc 7894  cr 7895   < clt 8078   # cap 8625  [,]cicc 9983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016  ax-pre-suploc 8017
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-rp 9746  df-icc 9987  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181
This theorem is referenced by:  dedekindicc  14953
  Copyright terms: Public domain W3C validator