ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leabs GIF version

Theorem leabs 11038
Description: A real number is less than or equal to its absolute value. (Contributed by NM, 27-Feb-2005.)
Assertion
Ref Expression
leabs (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴))

Proof of Theorem leabs
StepHypRef Expression
1 simpr 109 . . . . 5 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → (abs‘𝐴) < 0)
2 recn 7907 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 absge0 11024 . . . . . . . 8 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
42, 3syl 14 . . . . . . 7 (𝐴 ∈ ℝ → 0 ≤ (abs‘𝐴))
54ad2antrr 485 . . . . . 6 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → 0 ≤ (abs‘𝐴))
6 0red 7921 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → 0 ∈ ℝ)
7 abscl 11015 . . . . . . . . 9 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
82, 7syl 14 . . . . . . . 8 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ)
98ad2antrr 485 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → (abs‘𝐴) ∈ ℝ)
106, 9lenltd 8037 . . . . . 6 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → (0 ≤ (abs‘𝐴) ↔ ¬ (abs‘𝐴) < 0))
115, 10mpbid 146 . . . . 5 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → ¬ (abs‘𝐴) < 0)
121, 11pm2.21fal 1368 . . . 4 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → ⊥)
13 simpll 524 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
14 0red 7921 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → 0 ∈ ℝ)
15 simpr 109 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → 0 < 𝐴)
1614, 13, 15ltled 8038 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → 0 ≤ 𝐴)
17 absid 11035 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴)
1813, 16, 17syl2anc 409 . . . . . 6 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → (abs‘𝐴) = 𝐴)
19 simplr 525 . . . . . 6 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → (abs‘𝐴) < 𝐴)
2018, 19eqbrtrrd 4013 . . . . 5 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → 𝐴 < 𝐴)
2113ltnrd 8031 . . . . 5 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → ¬ 𝐴 < 𝐴)
2220, 21pm2.21fal 1368 . . . 4 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → ⊥)
23 0re 7920 . . . . . . 7 0 ∈ ℝ
24 axltwlin 7987 . . . . . . 7 (((abs‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘𝐴) < 𝐴 → ((abs‘𝐴) < 0 ∨ 0 < 𝐴)))
2523, 24mp3an3 1321 . . . . . 6 (((abs‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((abs‘𝐴) < 𝐴 → ((abs‘𝐴) < 0 ∨ 0 < 𝐴)))
268, 25mpancom 420 . . . . 5 (𝐴 ∈ ℝ → ((abs‘𝐴) < 𝐴 → ((abs‘𝐴) < 0 ∨ 0 < 𝐴)))
2726imp 123 . . . 4 ((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) → ((abs‘𝐴) < 0 ∨ 0 < 𝐴))
2812, 22, 27mpjaodan 793 . . 3 ((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) → ⊥)
2928inegd 1367 . 2 (𝐴 ∈ ℝ → ¬ (abs‘𝐴) < 𝐴)
30 id 19 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
3130, 8lenltd 8037 . 2 (𝐴 ∈ ℝ → (𝐴 ≤ (abs‘𝐴) ↔ ¬ (abs‘𝐴) < 𝐴))
3229, 31mpbird 166 1 (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 703   = wceq 1348  wfal 1353  wcel 2141   class class class wbr 3989  cfv 5198  cc 7772  cr 7773  0cc0 7774   < clt 7954  cle 7955  abscabs 10961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963
This theorem is referenced by:  abslt  11052  absle  11053  abssubap0  11054  releabs  11060  leabsi  11092  leabsd  11125  dfabsmax  11181
  Copyright terms: Public domain W3C validator