| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > leabs | GIF version | ||
| Description: A real number is less than or equal to its absolute value. (Contributed by NM, 27-Feb-2005.) |
| Ref | Expression |
|---|---|
| leabs | ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → (abs‘𝐴) < 0) | |
| 2 | recn 8031 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 3 | absge0 11244 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴)) | |
| 4 | 2, 3 | syl 14 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 0 ≤ (abs‘𝐴)) |
| 5 | 4 | ad2antrr 488 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → 0 ≤ (abs‘𝐴)) |
| 6 | 0red 8046 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → 0 ∈ ℝ) | |
| 7 | abscl 11235 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
| 8 | 2, 7 | syl 14 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ) |
| 9 | 8 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → (abs‘𝐴) ∈ ℝ) |
| 10 | 6, 9 | lenltd 8163 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → (0 ≤ (abs‘𝐴) ↔ ¬ (abs‘𝐴) < 0)) |
| 11 | 5, 10 | mpbid 147 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → ¬ (abs‘𝐴) < 0) |
| 12 | 1, 11 | pm2.21fal 1384 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → ⊥) |
| 13 | simpll 527 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ) | |
| 14 | 0red 8046 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → 0 ∈ ℝ) | |
| 15 | simpr 110 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → 0 < 𝐴) | |
| 16 | 14, 13, 15 | ltled 8164 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → 0 ≤ 𝐴) |
| 17 | absid 11255 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) | |
| 18 | 13, 16, 17 | syl2anc 411 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → (abs‘𝐴) = 𝐴) |
| 19 | simplr 528 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → (abs‘𝐴) < 𝐴) | |
| 20 | 18, 19 | eqbrtrrd 4058 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → 𝐴 < 𝐴) |
| 21 | 13 | ltnrd 8157 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → ¬ 𝐴 < 𝐴) |
| 22 | 20, 21 | pm2.21fal 1384 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → ⊥) |
| 23 | 0re 8045 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 24 | axltwlin 8113 | . . . . . . 7 ⊢ (((abs‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘𝐴) < 𝐴 → ((abs‘𝐴) < 0 ∨ 0 < 𝐴))) | |
| 25 | 23, 24 | mp3an3 1337 | . . . . . 6 ⊢ (((abs‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((abs‘𝐴) < 𝐴 → ((abs‘𝐴) < 0 ∨ 0 < 𝐴))) |
| 26 | 8, 25 | mpancom 422 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴) < 𝐴 → ((abs‘𝐴) < 0 ∨ 0 < 𝐴))) |
| 27 | 26 | imp 124 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) → ((abs‘𝐴) < 0 ∨ 0 < 𝐴)) |
| 28 | 12, 22, 27 | mpjaodan 799 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) → ⊥) |
| 29 | 28 | inegd 1383 | . 2 ⊢ (𝐴 ∈ ℝ → ¬ (abs‘𝐴) < 𝐴) |
| 30 | id 19 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
| 31 | 30, 8 | lenltd 8163 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ (abs‘𝐴) ↔ ¬ (abs‘𝐴) < 𝐴)) |
| 32 | 29, 31 | mpbird 167 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1364 ⊥wfal 1369 ∈ wcel 2167 class class class wbr 4034 ‘cfv 5259 ℂcc 7896 ℝcr 7897 0cc0 7898 < clt 8080 ≤ cle 8081 abscabs 11181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 ax-pre-mulext 8016 ax-arch 8017 ax-caucvg 8018 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-reap 8621 df-ap 8628 df-div 8719 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-n0 9269 df-z 9346 df-uz 9621 df-rp 9748 df-seqfrec 10559 df-exp 10650 df-cj 11026 df-re 11027 df-im 11028 df-rsqrt 11182 df-abs 11183 |
| This theorem is referenced by: abslt 11272 absle 11273 abssubap0 11274 releabs 11280 leabsi 11312 leabsd 11345 dfabsmax 11401 |
| Copyright terms: Public domain | W3C validator |