Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  leabs GIF version

Theorem leabs 10951
 Description: A real number is less than or equal to its absolute value. (Contributed by NM, 27-Feb-2005.)
Assertion
Ref Expression
leabs (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴))

Proof of Theorem leabs
StepHypRef Expression
1 simpr 109 . . . . 5 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → (abs‘𝐴) < 0)
2 recn 7844 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 absge0 10937 . . . . . . . 8 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
42, 3syl 14 . . . . . . 7 (𝐴 ∈ ℝ → 0 ≤ (abs‘𝐴))
54ad2antrr 480 . . . . . 6 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → 0 ≤ (abs‘𝐴))
6 0red 7858 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → 0 ∈ ℝ)
7 abscl 10928 . . . . . . . . 9 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
82, 7syl 14 . . . . . . . 8 (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ)
98ad2antrr 480 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → (abs‘𝐴) ∈ ℝ)
106, 9lenltd 7972 . . . . . 6 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → (0 ≤ (abs‘𝐴) ↔ ¬ (abs‘𝐴) < 0))
115, 10mpbid 146 . . . . 5 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → ¬ (abs‘𝐴) < 0)
121, 11pm2.21fal 1352 . . . 4 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → ⊥)
13 simpll 519 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
14 0red 7858 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → 0 ∈ ℝ)
15 simpr 109 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → 0 < 𝐴)
1614, 13, 15ltled 7973 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → 0 ≤ 𝐴)
17 absid 10948 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴)
1813, 16, 17syl2anc 409 . . . . . 6 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → (abs‘𝐴) = 𝐴)
19 simplr 520 . . . . . 6 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → (abs‘𝐴) < 𝐴)
2018, 19eqbrtrrd 3984 . . . . 5 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → 𝐴 < 𝐴)
2113ltnrd 7967 . . . . 5 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → ¬ 𝐴 < 𝐴)
2220, 21pm2.21fal 1352 . . . 4 (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → ⊥)
23 0re 7857 . . . . . . 7 0 ∈ ℝ
24 axltwlin 7924 . . . . . . 7 (((abs‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘𝐴) < 𝐴 → ((abs‘𝐴) < 0 ∨ 0 < 𝐴)))
2523, 24mp3an3 1305 . . . . . 6 (((abs‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((abs‘𝐴) < 𝐴 → ((abs‘𝐴) < 0 ∨ 0 < 𝐴)))
268, 25mpancom 419 . . . . 5 (𝐴 ∈ ℝ → ((abs‘𝐴) < 𝐴 → ((abs‘𝐴) < 0 ∨ 0 < 𝐴)))
2726imp 123 . . . 4 ((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) → ((abs‘𝐴) < 0 ∨ 0 < 𝐴))
2812, 22, 27mpjaodan 788 . . 3 ((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) → ⊥)
2928inegd 1351 . 2 (𝐴 ∈ ℝ → ¬ (abs‘𝐴) < 𝐴)
30 id 19 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
3130, 8lenltd 7972 . 2 (𝐴 ∈ ℝ → (𝐴 ≤ (abs‘𝐴) ↔ ¬ (abs‘𝐴) < 𝐴))
3229, 31mpbird 166 1 (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ∨ wo 698   = wceq 1332  ⊥wfal 1337   ∈ wcel 2125   class class class wbr 3961  ‘cfv 5163  ℂcc 7709  ℝcr 7710  0cc0 7711   < clt 7891   ≤ cle 7892  abscabs 10874 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-frec 6328  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-n0 9070  df-z 9147  df-uz 9419  df-rp 9539  df-seqfrec 10323  df-exp 10397  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876 This theorem is referenced by:  abslt  10965  absle  10966  abssubap0  10967  releabs  10973  leabsi  11005  leabsd  11038  dfabsmax  11094
 Copyright terms: Public domain W3C validator