![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > leabs | GIF version |
Description: A real number is less than or equal to its absolute value. (Contributed by NM, 27-Feb-2005.) |
Ref | Expression |
---|---|
leabs | ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → (abs‘𝐴) < 0) | |
2 | recn 7969 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
3 | absge0 11096 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴)) | |
4 | 2, 3 | syl 14 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 0 ≤ (abs‘𝐴)) |
5 | 4 | ad2antrr 488 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → 0 ≤ (abs‘𝐴)) |
6 | 0red 7983 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → 0 ∈ ℝ) | |
7 | abscl 11087 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
8 | 2, 7 | syl 14 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ) |
9 | 8 | ad2antrr 488 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → (abs‘𝐴) ∈ ℝ) |
10 | 6, 9 | lenltd 8100 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → (0 ≤ (abs‘𝐴) ↔ ¬ (abs‘𝐴) < 0)) |
11 | 5, 10 | mpbid 147 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → ¬ (abs‘𝐴) < 0) |
12 | 1, 11 | pm2.21fal 1384 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ (abs‘𝐴) < 0) → ⊥) |
13 | simpll 527 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ) | |
14 | 0red 7983 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → 0 ∈ ℝ) | |
15 | simpr 110 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → 0 < 𝐴) | |
16 | 14, 13, 15 | ltled 8101 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → 0 ≤ 𝐴) |
17 | absid 11107 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) | |
18 | 13, 16, 17 | syl2anc 411 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → (abs‘𝐴) = 𝐴) |
19 | simplr 528 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → (abs‘𝐴) < 𝐴) | |
20 | 18, 19 | eqbrtrrd 4042 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → 𝐴 < 𝐴) |
21 | 13 | ltnrd 8094 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → ¬ 𝐴 < 𝐴) |
22 | 20, 21 | pm2.21fal 1384 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) ∧ 0 < 𝐴) → ⊥) |
23 | 0re 7982 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
24 | axltwlin 8050 | . . . . . . 7 ⊢ (((abs‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘𝐴) < 𝐴 → ((abs‘𝐴) < 0 ∨ 0 < 𝐴))) | |
25 | 23, 24 | mp3an3 1337 | . . . . . 6 ⊢ (((abs‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((abs‘𝐴) < 𝐴 → ((abs‘𝐴) < 0 ∨ 0 < 𝐴))) |
26 | 8, 25 | mpancom 422 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((abs‘𝐴) < 𝐴 → ((abs‘𝐴) < 0 ∨ 0 < 𝐴))) |
27 | 26 | imp 124 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) → ((abs‘𝐴) < 0 ∨ 0 < 𝐴)) |
28 | 12, 22, 27 | mpjaodan 799 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (abs‘𝐴) < 𝐴) → ⊥) |
29 | 28 | inegd 1383 | . 2 ⊢ (𝐴 ∈ ℝ → ¬ (abs‘𝐴) < 𝐴) |
30 | id 19 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
31 | 30, 8 | lenltd 8100 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ (abs‘𝐴) ↔ ¬ (abs‘𝐴) < 𝐴)) |
32 | 29, 31 | mpbird 167 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1364 ⊥wfal 1369 ∈ wcel 2160 class class class wbr 4018 ‘cfv 5232 ℂcc 7834 ℝcr 7835 0cc0 7836 < clt 8017 ≤ cle 8018 abscabs 11033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 ax-cnex 7927 ax-resscn 7928 ax-1cn 7929 ax-1re 7930 ax-icn 7931 ax-addcl 7932 ax-addrcl 7933 ax-mulcl 7934 ax-mulrcl 7935 ax-addcom 7936 ax-mulcom 7937 ax-addass 7938 ax-mulass 7939 ax-distr 7940 ax-i2m1 7941 ax-0lt1 7942 ax-1rid 7943 ax-0id 7944 ax-rnegex 7945 ax-precex 7946 ax-cnre 7947 ax-pre-ltirr 7948 ax-pre-ltwlin 7949 ax-pre-lttrn 7950 ax-pre-apti 7951 ax-pre-ltadd 7952 ax-pre-mulgt0 7953 ax-pre-mulext 7954 ax-arch 7955 ax-caucvg 7956 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4308 df-po 4311 df-iso 4312 df-iord 4381 df-on 4383 df-ilim 4384 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5234 df-fn 5235 df-f 5236 df-f1 5237 df-fo 5238 df-f1o 5239 df-fv 5240 df-riota 5848 df-ov 5895 df-oprab 5896 df-mpo 5897 df-1st 6160 df-2nd 6161 df-recs 6325 df-frec 6411 df-pnf 8019 df-mnf 8020 df-xr 8021 df-ltxr 8022 df-le 8023 df-sub 8155 df-neg 8156 df-reap 8557 df-ap 8564 df-div 8655 df-inn 8945 df-2 9003 df-3 9004 df-4 9005 df-n0 9202 df-z 9279 df-uz 9554 df-rp 9679 df-seqfrec 10472 df-exp 10546 df-cj 10878 df-re 10879 df-im 10880 df-rsqrt 11034 df-abs 11035 |
This theorem is referenced by: abslt 11124 absle 11125 abssubap0 11126 releabs 11132 leabsi 11164 leabsd 11197 dfabsmax 11253 |
Copyright terms: Public domain | W3C validator |