Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inres | GIF version |
Description: Move intersection into class restriction. (Contributed by NM, 18-Dec-2008.) |
Ref | Expression |
---|---|
inres | ⊢ (𝐴 ∩ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ 𝐵) ↾ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inass 3332 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 × V)) = (𝐴 ∩ (𝐵 ∩ (𝐶 × V))) | |
2 | df-res 4616 | . 2 ⊢ ((𝐴 ∩ 𝐵) ↾ 𝐶) = ((𝐴 ∩ 𝐵) ∩ (𝐶 × V)) | |
3 | df-res 4616 | . . 3 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
4 | 3 | ineq2i 3320 | . 2 ⊢ (𝐴 ∩ (𝐵 ↾ 𝐶)) = (𝐴 ∩ (𝐵 ∩ (𝐶 × V))) |
5 | 1, 2, 4 | 3eqtr4ri 2197 | 1 ⊢ (𝐴 ∩ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ 𝐵) ↾ 𝐶) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 Vcvv 2726 ∩ cin 3115 × cxp 4602 ↾ cres 4606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-res 4616 |
This theorem is referenced by: resindm 4926 |
Copyright terms: Public domain | W3C validator |