ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq2i GIF version

Theorem ineq2i 3371
Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
Hypothesis
Ref Expression
ineq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
ineq2i (𝐶𝐴) = (𝐶𝐵)

Proof of Theorem ineq2i
StepHypRef Expression
1 ineq1i.1 . 2 𝐴 = 𝐵
2 ineq2 3368 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2ax-mp 5 1 (𝐶𝐴) = (𝐶𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1373  cin 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172
This theorem is referenced by:  in4  3389  inindir  3391  indif2  3417  difun1  3433  dfrab3ss  3451  dfif3  3584  intunsn  3923  rint0  3924  riin0  3999  res0  4963  resres  4971  resundi  4972  resindi  4974  inres  4976  resiun2  4979  resopab  5003  dfse2  5055  dminxp  5127  imainrect  5128  resdmres  5174  funimacnv  5350  unfiin  7023  sbthlemi5  7063  dmaddpi  7438  dmmulpi  7439  fsumiun  11788  ressval2  12898  ressval3d  12904  lgsquadlem3  15556
  Copyright terms: Public domain W3C validator