ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq2i GIF version

Theorem ineq2i 3199
Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
Hypothesis
Ref Expression
ineq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
ineq2i (𝐶𝐴) = (𝐶𝐵)

Proof of Theorem ineq2i
StepHypRef Expression
1 ineq1i.1 . 2 𝐴 = 𝐵
2 ineq2 3196 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2ax-mp 7 1 (𝐶𝐴) = (𝐶𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1290  cin 2999
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-v 2622  df-in 3006
This theorem is referenced by:  in4  3217  inindir  3219  indif2  3244  difun1  3260  dfrab3ss  3278  dfif3  3410  intunsn  3732  rint0  3733  riin0  3807  res0  4730  resres  4738  resundi  4739  resindi  4741  inres  4743  resiun2  4746  resopab  4769  dfse2  4818  dminxp  4888  imainrect  4889  resdmres  4935  funimacnv  5103  unfiin  6690  sbthlemi5  6724  dmaddpi  6945  dmmulpi  6946  fsumiun  10932
  Copyright terms: Public domain W3C validator