| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ineq2i | GIF version | ||
| Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| ineq2i | ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | ineq2 3368 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∩ cin 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 |
| This theorem is referenced by: in4 3389 inindir 3391 indif2 3417 difun1 3433 dfrab3ss 3451 dfif3 3584 intunsn 3923 rint0 3924 riin0 3999 res0 4963 resres 4971 resundi 4972 resindi 4974 inres 4976 resiun2 4979 resopab 5003 dfse2 5055 dminxp 5127 imainrect 5128 resdmres 5174 funimacnv 5350 unfiin 7023 sbthlemi5 7063 dmaddpi 7438 dmmulpi 7439 fsumiun 11788 ressval2 12898 ressval3d 12904 lgsquadlem3 15556 |
| Copyright terms: Public domain | W3C validator |