![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ineq2i | GIF version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
ineq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
ineq2i | ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | ineq2 3354 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∩ cin 3152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 |
This theorem is referenced by: in4 3375 inindir 3377 indif2 3403 difun1 3419 dfrab3ss 3437 dfif3 3570 intunsn 3908 rint0 3909 riin0 3984 res0 4946 resres 4954 resundi 4955 resindi 4957 inres 4959 resiun2 4962 resopab 4986 dfse2 5038 dminxp 5110 imainrect 5111 resdmres 5157 funimacnv 5330 unfiin 6982 sbthlemi5 7020 dmaddpi 7385 dmmulpi 7386 fsumiun 11620 ressval2 12684 ressval3d 12690 |
Copyright terms: Public domain | W3C validator |