| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ineq2i | GIF version | ||
| Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| ineq2i | ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | ineq2 3372 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∩ cin 3169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3176 |
| This theorem is referenced by: in4 3393 inindir 3395 indif2 3421 difun1 3437 dfrab3ss 3455 dfif3 3589 intunsn 3932 rint0 3933 riin0 4008 res0 4977 resres 4985 resundi 4986 resindi 4988 inres 4990 resiun2 4993 resopab 5017 dfse2 5069 dminxp 5141 imainrect 5142 resdmres 5188 funimacnv 5364 unfiin 7044 sbthlemi5 7084 dmaddpi 7468 dmmulpi 7469 fsumiun 11873 ressval2 12983 ressval3d 12989 lgsquadlem3 15641 |
| Copyright terms: Public domain | W3C validator |