ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq2i GIF version

Theorem ineq2i 3402
Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
Hypothesis
Ref Expression
ineq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
ineq2i (𝐶𝐴) = (𝐶𝐵)

Proof of Theorem ineq2i
StepHypRef Expression
1 ineq1i.1 . 2 𝐴 = 𝐵
2 ineq2 3399 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2ax-mp 5 1 (𝐶𝐴) = (𝐶𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1395  cin 3196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203
This theorem is referenced by:  in4  3420  inindir  3422  indif2  3448  difun1  3464  dfrab3ss  3482  dfif3  3616  intunsn  3960  rint0  3961  riin0  4036  res0  5008  resres  5016  resundi  5017  resindi  5019  inres  5021  resiun2  5024  resopab  5048  dfse2  5100  dminxp  5172  imainrect  5173  resdmres  5219  funimacnv  5396  unfiin  7084  sbthlemi5  7124  dmaddpi  7508  dmmulpi  7509  fsumiun  11983  ressval2  13094  ressval3d  13100  lgsquadlem3  15752
  Copyright terms: Public domain W3C validator