ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq2i GIF version

Theorem ineq2i 3345
Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.)
Hypothesis
Ref Expression
ineq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
ineq2i (𝐶𝐴) = (𝐶𝐵)

Proof of Theorem ineq2i
StepHypRef Expression
1 ineq1i.1 . 2 𝐴 = 𝐵
2 ineq2 3342 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2ax-mp 5 1 (𝐶𝐴) = (𝐶𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1363  cin 3140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-in 3147
This theorem is referenced by:  in4  3363  inindir  3365  indif2  3391  difun1  3407  dfrab3ss  3425  dfif3  3559  intunsn  3894  rint0  3895  riin0  3970  res0  4923  resres  4931  resundi  4932  resindi  4934  inres  4936  resiun2  4939  resopab  4963  dfse2  5013  dminxp  5085  imainrect  5086  resdmres  5132  funimacnv  5304  unfiin  6938  sbthlemi5  6973  dmaddpi  7337  dmmulpi  7338  fsumiun  11498  ressval2  12539  ressval3d  12545
  Copyright terms: Public domain W3C validator