ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resindir GIF version

Theorem resindir 4907
Description: Class restriction distributes over intersection. (Contributed by NM, 18-Dec-2008.)
Assertion
Ref Expression
resindir ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))

Proof of Theorem resindir
StepHypRef Expression
1 inindir 3345 . 2 ((𝐴𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∩ (𝐵 ∩ (𝐶 × V)))
2 df-res 4623 . 2 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐵) ∩ (𝐶 × V))
3 df-res 4623 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
4 df-res 4623 . . 3 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
53, 4ineq12i 3326 . 2 ((𝐴𝐶) ∩ (𝐵𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∩ (𝐵 ∩ (𝐶 × V)))
61, 2, 53eqtr4i 2201 1 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:   = wceq 1348  Vcvv 2730  cin 3120   × cxp 4609  cres 4613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-res 4623
This theorem is referenced by:  inimass  5027  fnreseql  5606
  Copyright terms: Public domain W3C validator