![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resindir | GIF version |
Description: Class restriction distributes over intersection. (Contributed by NM, 18-Dec-2008.) |
Ref | Expression |
---|---|
resindir | ⊢ ((𝐴 ∩ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∩ (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inindir 3365 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∩ (𝐵 ∩ (𝐶 × V))) | |
2 | df-res 4650 | . 2 ⊢ ((𝐴 ∩ 𝐵) ↾ 𝐶) = ((𝐴 ∩ 𝐵) ∩ (𝐶 × V)) | |
3 | df-res 4650 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
4 | df-res 4650 | . . 3 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
5 | 3, 4 | ineq12i 3346 | . 2 ⊢ ((𝐴 ↾ 𝐶) ∩ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∩ (𝐵 ∩ (𝐶 × V))) |
6 | 1, 2, 5 | 3eqtr4i 2218 | 1 ⊢ ((𝐴 ∩ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∩ (𝐵 ↾ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 Vcvv 2749 ∩ cin 3140 × cxp 4636 ↾ cres 4640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-v 2751 df-in 3147 df-res 4650 |
This theorem is referenced by: inimass 5057 fnreseql 5639 |
Copyright terms: Public domain | W3C validator |