| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resindir | GIF version | ||
| Description: Class restriction distributes over intersection. (Contributed by NM, 18-Dec-2008.) |
| Ref | Expression |
|---|---|
| resindir | ⊢ ((𝐴 ∩ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∩ (𝐵 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inindir 3422 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∩ (𝐵 ∩ (𝐶 × V))) | |
| 2 | df-res 4730 | . 2 ⊢ ((𝐴 ∩ 𝐵) ↾ 𝐶) = ((𝐴 ∩ 𝐵) ∩ (𝐶 × V)) | |
| 3 | df-res 4730 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 4 | df-res 4730 | . . 3 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
| 5 | 3, 4 | ineq12i 3403 | . 2 ⊢ ((𝐴 ↾ 𝐶) ∩ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∩ (𝐵 ∩ (𝐶 × V))) |
| 6 | 1, 2, 5 | 3eqtr4i 2260 | 1 ⊢ ((𝐴 ∩ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∩ (𝐵 ↾ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 Vcvv 2799 ∩ cin 3196 × cxp 4716 ↾ cres 4720 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-res 4730 |
| This theorem is referenced by: inimass 5144 fnreseql 5744 |
| Copyright terms: Public domain | W3C validator |