| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resindir | GIF version | ||
| Description: Class restriction distributes over intersection. (Contributed by NM, 18-Dec-2008.) |
| Ref | Expression |
|---|---|
| resindir | ⊢ ((𝐴 ∩ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∩ (𝐵 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inindir 3391 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∩ (𝐵 ∩ (𝐶 × V))) | |
| 2 | df-res 4687 | . 2 ⊢ ((𝐴 ∩ 𝐵) ↾ 𝐶) = ((𝐴 ∩ 𝐵) ∩ (𝐶 × V)) | |
| 3 | df-res 4687 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 4 | df-res 4687 | . . 3 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
| 5 | 3, 4 | ineq12i 3372 | . 2 ⊢ ((𝐴 ↾ 𝐶) ∩ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∩ (𝐵 ∩ (𝐶 × V))) |
| 6 | 1, 2, 5 | 3eqtr4i 2236 | 1 ⊢ ((𝐴 ∩ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∩ (𝐵 ↾ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 Vcvv 2772 ∩ cin 3165 × cxp 4673 ↾ cres 4677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-res 4687 |
| This theorem is referenced by: inimass 5099 fnreseql 5690 |
| Copyright terms: Public domain | W3C validator |