Theorem List for Intuitionistic Logic Explorer - 4901-5000 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | nfcnv 4901 |
Bound-variable hypothesis builder for converse. (Contributed by NM,
31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
|
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥◡𝐴 |
| |
| Theorem | opelcnvg 4902 |
Ordered-pair membership in converse. (Contributed by NM, 13-May-1999.)
(Proof shortened by Andrew Salmon, 27-Aug-2011.)
|
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (〈𝐴, 𝐵〉 ∈ ◡𝑅 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅)) |
| |
| Theorem | brcnvg 4903 |
The converse of a binary relation swaps arguments. Theorem 11 of [Suppes]
p. 61. (Contributed by NM, 10-Oct-2005.)
|
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
| |
| Theorem | opelcnv 4904 |
Ordered-pair membership in converse. (Contributed by NM,
13-Aug-1995.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ ◡𝑅 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅) |
| |
| Theorem | brcnv 4905 |
The converse of a binary relation swaps arguments. Theorem 11 of
[Suppes] p. 61. (Contributed by NM,
13-Aug-1995.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
| |
| Theorem | csbcnvg 4906 |
Move class substitution in and out of the converse of a function.
(Contributed by Thierry Arnoux, 8-Feb-2017.)
|
| ⊢ (𝐴 ∈ 𝑉 → ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹) |
| |
| Theorem | cnvco 4907 |
Distributive law of converse over class composition. Theorem 26 of
[Suppes] p. 64. (Contributed by NM,
19-Mar-1998.) (Proof shortened by
Andrew Salmon, 27-Aug-2011.)
|
| ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) |
| |
| Theorem | cnvuni 4908* |
The converse of a class union is the (indexed) union of the converses of
its members. (Contributed by NM, 11-Aug-2004.)
|
| ⊢ ◡∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 ◡𝑥 |
| |
| Theorem | dfdm3 4909* |
Alternate definition of domain. Definition 6.5(1) of [TakeutiZaring]
p. 24. (Contributed by NM, 28-Dec-1996.)
|
| ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴} |
| |
| Theorem | dfrn2 4910* |
Alternate definition of range. Definition 4 of [Suppes] p. 60.
(Contributed by NM, 27-Dec-1996.)
|
| ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| |
| Theorem | dfrn3 4911* |
Alternate definition of range. Definition 6.5(2) of [TakeutiZaring]
p. 24. (Contributed by NM, 28-Dec-1996.)
|
| ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴} |
| |
| Theorem | elrn2g 4912* |
Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.)
|
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵)) |
| |
| Theorem | elrng 4913* |
Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.)
|
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)) |
| |
| Theorem | ssrelrn 4914* |
If a relation is a subset of a cartesian product, then for each element
of the range of the relation there is an element of the first set of the
cartesian product which is related to the element of the range by the
relation. (Contributed by AV, 24-Oct-2020.)
|
| ⊢ ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎 ∈ 𝐴 𝑎𝑅𝑌) |
| |
| Theorem | dfdm4 4915 |
Alternate definition of domain. (Contributed by NM, 28-Dec-1996.)
|
| ⊢ dom 𝐴 = ran ◡𝐴 |
| |
| Theorem | dfdmf 4916* |
Definition of domain, using bound-variable hypotheses instead of
distinct variable conditions. (Contributed by NM, 8-Mar-1995.)
(Revised by Mario Carneiro, 15-Oct-2016.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
| |
| Theorem | csbdmg 4917 |
Distribute proper substitution through the domain of a class.
(Contributed by Jim Kingdon, 8-Dec-2018.)
|
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌dom 𝐵 = dom ⦋𝐴 / 𝑥⦌𝐵) |
| |
| Theorem | eldmg 4918* |
Domain membership. Theorem 4 of [Suppes] p. 59.
(Contributed by Mario
Carneiro, 9-Jul-2014.)
|
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) |
| |
| Theorem | eldm2g 4919* |
Domain membership. Theorem 4 of [Suppes] p. 59.
(Contributed by NM,
27-Jan-1997.) (Revised by Mario Carneiro, 9-Jul-2014.)
|
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵)) |
| |
| Theorem | eldm 4920* |
Membership in a domain. Theorem 4 of [Suppes]
p. 59. (Contributed by
NM, 2-Apr-2004.)
|
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦) |
| |
| Theorem | eldm2 4921* |
Membership in a domain. Theorem 4 of [Suppes]
p. 59. (Contributed by
NM, 1-Aug-1994.)
|
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵) |
| |
| Theorem | dmss 4922 |
Subset theorem for domain. (Contributed by NM, 11-Aug-1994.)
|
| ⊢ (𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵) |
| |
| Theorem | dmeq 4923 |
Equality theorem for domain. (Contributed by NM, 11-Aug-1994.)
|
| ⊢ (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵) |
| |
| Theorem | dmeqi 4924 |
Equality inference for domain. (Contributed by NM, 4-Mar-2004.)
|
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ dom 𝐴 = dom 𝐵 |
| |
| Theorem | dmeqd 4925 |
Equality deduction for domain. (Contributed by NM, 4-Mar-2004.)
|
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → dom 𝐴 = dom 𝐵) |
| |
| Theorem | opeldm 4926 |
Membership of first of an ordered pair in a domain. (Contributed by NM,
30-Jul-1995.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶) |
| |
| Theorem | breldm 4927 |
Membership of first of a binary relation in a domain. (Contributed by
NM, 30-Jul-1995.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| |
| Theorem | opeldmg 4928 |
Membership of first of an ordered pair in a domain. (Contributed by Jim
Kingdon, 9-Jul-2019.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶)) |
| |
| Theorem | breldmg 4929 |
Membership of first of a binary relation in a domain. (Contributed by
NM, 21-Mar-2007.)
|
| ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
| |
| Theorem | dmun 4930 |
The domain of a union is the union of domains. Exercise 56(a) of
[Enderton] p. 65. (Contributed by NM,
12-Aug-1994.) (Proof shortened
by Andrew Salmon, 27-Aug-2011.)
|
| ⊢ dom (𝐴 ∪ 𝐵) = (dom 𝐴 ∪ dom 𝐵) |
| |
| Theorem | dmin 4931 |
The domain of an intersection belong to the intersection of domains.
Theorem 6 of [Suppes] p. 60.
(Contributed by NM, 15-Sep-2004.)
|
| ⊢ dom (𝐴 ∩ 𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵) |
| |
| Theorem | dmiun 4932 |
The domain of an indexed union. (Contributed by Mario Carneiro,
26-Apr-2016.)
|
| ⊢ dom ∪
𝑥 ∈ 𝐴 𝐵 = ∪
𝑥 ∈ 𝐴 dom 𝐵 |
| |
| Theorem | dmuni 4933* |
The domain of a union. Part of Exercise 8 of [Enderton] p. 41.
(Contributed by NM, 3-Feb-2004.)
|
| ⊢ dom ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 dom 𝑥 |
| |
| Theorem | dmopab 4934* |
The domain of a class of ordered pairs. (Contributed by NM,
16-May-1995.) (Revised by Mario Carneiro, 4-Dec-2016.)
|
| ⊢ dom {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑} |
| |
| Theorem | dmopabss 4935* |
Upper bound for the domain of a restricted class of ordered pairs.
(Contributed by NM, 31-Jan-2004.)
|
| ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 |
| |
| Theorem | dmopab3 4936* |
The domain of a restricted class of ordered pairs. (Contributed by NM,
31-Jan-2004.)
|
| ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = 𝐴) |
| |
| Theorem | dm0 4937 |
The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1]
p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew
Salmon, 27-Aug-2011.)
|
| ⊢ dom ∅ = ∅ |
| |
| Theorem | dmi 4938 |
The domain of the identity relation is the universe. (Contributed by
NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
|
| ⊢ dom I = V |
| |
| Theorem | dmv 4939 |
The domain of the universe is the universe. (Contributed by NM,
8-Aug-2003.)
|
| ⊢ dom V = V |
| |
| Theorem | dm0rn0 4940 |
An empty domain implies an empty range. For a similar theorem for
whether the domain and range are inhabited, see dmmrnm 4943. (Contributed
by NM, 21-May-1998.)
|
| ⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) |
| |
| Theorem | reldm0 4941 |
A relation is empty iff its domain is empty. For a similar theorem for
whether the relation and domain are inhabited, see reldmm 4942.
(Contributed by NM, 15-Sep-2004.)
|
| ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) |
| |
| Theorem | reldmm 4942* |
A relation is inhabited iff its domain is inhabited. (Contributed by
Jim Kingdon, 30-Jan-2026.)
|
| ⊢ (Rel 𝐴 → (∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑦 𝑦 ∈ dom 𝐴)) |
| |
| Theorem | dmmrnm 4943* |
A domain is inhabited if and only if the range is inhabited.
(Contributed by Jim Kingdon, 15-Dec-2018.)
|
| ⊢ (∃𝑥 𝑥 ∈ dom 𝐴 ↔ ∃𝑦 𝑦 ∈ ran 𝐴) |
| |
| Theorem | dmxpm 4944* |
The domain of a cross product. Part of Theorem 3.13(x) of [Monk1]
p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew
Salmon, 27-Aug-2011.)
|
| ⊢ (∃𝑥 𝑥 ∈ 𝐵 → dom (𝐴 × 𝐵) = 𝐴) |
| |
| Theorem | dmxpid 4945 |
The domain of a square Cartesian product. (Contributed by NM,
28-Jul-1995.) (Revised by Jim Kingdon, 11-Apr-2023.)
|
| ⊢ dom (𝐴 × 𝐴) = 𝐴 |
| |
| Theorem | dmxpin 4946 |
The domain of the intersection of two square Cartesian products. Unlike
dmin 4931, equality holds. (Contributed by NM,
29-Jan-2008.)
|
| ⊢ dom ((𝐴 × 𝐴) ∩ (𝐵 × 𝐵)) = (𝐴 ∩ 𝐵) |
| |
| Theorem | xpid11 4947 |
The Cartesian product of a class with itself is one-to-one. (Contributed
by NM, 5-Nov-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
|
| ⊢ ((𝐴 × 𝐴) = (𝐵 × 𝐵) ↔ 𝐴 = 𝐵) |
| |
| Theorem | dmcnvcnv 4948 |
The domain of the double converse of a class (which doesn't have to be a
relation as in dfrel2 5179). (Contributed by NM, 8-Apr-2007.)
|
| ⊢ dom ◡◡𝐴 = dom 𝐴 |
| |
| Theorem | rncnvcnv 4949 |
The range of the double converse of a class. (Contributed by NM,
8-Apr-2007.)
|
| ⊢ ran ◡◡𝐴 = ran 𝐴 |
| |
| Theorem | elreldm 4950 |
The first member of an ordered pair in a relation belongs to the domain
of the relation. (Contributed by NM, 28-Jul-2004.)
|
| ⊢ ((Rel 𝐴 ∧ 𝐵 ∈ 𝐴) → ∩ ∩ 𝐵
∈ dom 𝐴) |
| |
| Theorem | rneq 4951 |
Equality theorem for range. (Contributed by NM, 29-Dec-1996.)
|
| ⊢ (𝐴 = 𝐵 → ran 𝐴 = ran 𝐵) |
| |
| Theorem | rneqi 4952 |
Equality inference for range. (Contributed by NM, 4-Mar-2004.)
|
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ ran 𝐴 = ran 𝐵 |
| |
| Theorem | rneqd 4953 |
Equality deduction for range. (Contributed by NM, 4-Mar-2004.)
|
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ran 𝐴 = ran 𝐵) |
| |
| Theorem | rnss 4954 |
Subset theorem for range. (Contributed by NM, 22-Mar-1998.)
|
| ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
| |
| Theorem | brelrng 4955 |
The second argument of a binary relation belongs to its range.
(Contributed by NM, 29-Jun-2008.)
|
| ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶) |
| |
| Theorem | opelrng 4956 |
Membership of second member of an ordered pair in a range. (Contributed
by Jim Kingdon, 26-Jan-2019.)
|
| ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 〈𝐴, 𝐵〉 ∈ 𝐶) → 𝐵 ∈ ran 𝐶) |
| |
| Theorem | brelrn 4957 |
The second argument of a binary relation belongs to its range.
(Contributed by NM, 13-Aug-2004.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (𝐴𝐶𝐵 → 𝐵 ∈ ran 𝐶) |
| |
| Theorem | opelrn 4958 |
Membership of second member of an ordered pair in a range. (Contributed
by NM, 23-Feb-1997.)
|
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈
V ⇒ ⊢ (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐵 ∈ ran 𝐶) |
| |
| Theorem | releldm 4959 |
The first argument of a binary relation belongs to its domain.
(Contributed by NM, 2-Jul-2008.)
|
| ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) |
| |
| Theorem | relelrn 4960 |
The second argument of a binary relation belongs to its range.
(Contributed by NM, 2-Jul-2008.)
|
| ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐵 ∈ ran 𝑅) |
| |
| Theorem | releldmb 4961* |
Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015.)
|
| ⊢ (Rel 𝑅 → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥)) |
| |
| Theorem | relelrnb 4962* |
Membership in a range. (Contributed by Mario Carneiro, 5-Nov-2015.)
|
| ⊢ (Rel 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴)) |
| |
| Theorem | releldmi 4963 |
The first argument of a binary relation belongs to its domain.
(Contributed by NM, 28-Apr-2015.)
|
| ⊢ Rel 𝑅 ⇒ ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ dom 𝑅) |
| |
| Theorem | relelrni 4964 |
The second argument of a binary relation belongs to its range.
(Contributed by NM, 28-Apr-2015.)
|
| ⊢ Rel 𝑅 ⇒ ⊢ (𝐴𝑅𝐵 → 𝐵 ∈ ran 𝑅) |
| |
| Theorem | dfrnf 4965* |
Definition of range, using bound-variable hypotheses instead of distinct
variable conditions. (Contributed by NM, 14-Aug-1995.) (Revised by
Mario Carneiro, 15-Oct-2016.)
|
| ⊢ Ⅎ𝑥𝐴
& ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ ran 𝐴 = {𝑦 ∣ ∃𝑥 𝑥𝐴𝑦} |
| |
| Theorem | elrn2 4966* |
Membership in a range. (Contributed by NM, 10-Jul-1994.)
|
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵) |
| |
| Theorem | elrn 4967* |
Membership in a range. (Contributed by NM, 2-Apr-2004.)
|
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴) |
| |
| Theorem | nfdm 4968 |
Bound-variable hypothesis builder for domain. (Contributed by NM,
30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
|
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥dom 𝐴 |
| |
| Theorem | nfrn 4969 |
Bound-variable hypothesis builder for range. (Contributed by NM,
1-Sep-1999.) (Revised by Mario Carneiro, 15-Oct-2016.)
|
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥ran 𝐴 |
| |
| Theorem | dmiin 4970 |
Domain of an intersection. (Contributed by FL, 15-Oct-2012.)
|
| ⊢ dom ∩
𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 dom 𝐵 |
| |
| Theorem | rnopab 4971* |
The range of a class of ordered pairs. (Contributed by NM,
14-Aug-1995.) (Revised by Mario Carneiro, 4-Dec-2016.)
|
| ⊢ ran {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑦 ∣ ∃𝑥𝜑} |
| |
| Theorem | rnmpt 4972* |
The range of a function in maps-to notation. (Contributed by Scott
Fenton, 21-Mar-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
| |
| Theorem | elrnmpt 4973* |
The range of a function in maps-to notation. (Contributed by Mario
Carneiro, 20-Feb-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
| |
| Theorem | elrnmpt1s 4974* |
Elementhood in an image set. (Contributed by Mario Carneiro,
12-Sep-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)
& ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) ⇒ ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ ran 𝐹) |
| |
| Theorem | elrnmpt1 4975 |
Elementhood in an image set. (Contributed by Mario Carneiro,
31-Aug-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ ran 𝐹) |
| |
| Theorem | elrnmptg 4976* |
Membership in the range of a function. (Contributed by NM,
27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
| |
| Theorem | elrnmpti 4977* |
Membership in the range of a function. (Contributed by NM,
30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)
& ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
| |
| Theorem | elrnmptdv 4978* |
Elementhood in the range of a function in maps-to notation, deduction
form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)
& ⊢ (𝜑 → 𝐶 ∈ 𝐴)
& ⊢ (𝜑 → 𝐷 ∈ 𝑉)
& ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐷 = 𝐵) ⇒ ⊢ (𝜑 → 𝐷 ∈ ran 𝐹) |
| |
| Theorem | elrnmpt2d 4979* |
Elementhood in the range of a function in maps-to notation, deduction
form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
|
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)
& ⊢ (𝜑 → 𝐶 ∈ ran 𝐹) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
| |
| Theorem | rn0 4980 |
The range of the empty set is empty. Part of Theorem 3.8(v) of [Monk1]
p. 36. (Contributed by NM, 4-Jul-1994.)
|
| ⊢ ran ∅ = ∅ |
| |
| Theorem | dfiun3g 4981 |
Alternate definition of indexed union when 𝐵 is a set. (Contributed
by Mario Carneiro, 31-Aug-2015.)
|
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪
𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| |
| Theorem | dfiin3g 4982 |
Alternate definition of indexed intersection when 𝐵 is a set.
(Contributed by Mario Carneiro, 31-Aug-2015.)
|
| ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∩
𝑥 ∈ 𝐴 𝐵 = ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| |
| Theorem | dfiun3 4983 |
Alternate definition of indexed union when 𝐵 is a set. (Contributed
by Mario Carneiro, 31-Aug-2015.)
|
| ⊢ 𝐵 ∈ V ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
| |
| Theorem | dfiin3 4984 |
Alternate definition of indexed intersection when 𝐵 is a set.
(Contributed by Mario Carneiro, 31-Aug-2015.)
|
| ⊢ 𝐵 ∈ V ⇒ ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
| |
| Theorem | riinint 4985* |
Express a relative indexed intersection as an intersection.
(Contributed by Stefan O'Rear, 22-Feb-2015.)
|
| ⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 𝑆 ⊆ 𝑋) → (𝑋 ∩ ∩
𝑘 ∈ 𝐼 𝑆) = ∩ ({𝑋} ∪ ran (𝑘 ∈ 𝐼 ↦ 𝑆))) |
| |
| Theorem | relrn0 4986 |
A relation is empty iff its range is empty. (Contributed by NM,
15-Sep-2004.)
|
| ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅)) |
| |
| Theorem | dmrnssfld 4987 |
The domain and range of a class are included in its double union.
(Contributed by NM, 13-May-2008.)
|
| ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪
∪ 𝐴 |
| |
| Theorem | dmexg 4988 |
The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26.
(Contributed by NM, 7-Apr-1995.)
|
| ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) |
| |
| Theorem | rnexg 4989 |
The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26.
Similar to Lemma 3D of [Enderton] p. 41.
(Contributed by NM,
31-Mar-1995.)
|
| ⊢ (𝐴 ∈ 𝑉 → ran 𝐴 ∈ V) |
| |
| Theorem | dmexd 4990 |
The domain of a set is a set. (Contributed by Glauco Siliprandi,
26-Jun-2021.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → dom 𝐴 ∈ V) |
| |
| Theorem | dmex 4991 |
The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring]
p. 26. (Contributed by NM, 7-Jul-2008.)
|
| ⊢ 𝐴 ∈ V ⇒ ⊢ dom 𝐴 ∈ V |
| |
| Theorem | rnex 4992 |
The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26.
Similar to Lemma 3D of [Enderton] p.
41. (Contributed by NM,
7-Jul-2008.)
|
| ⊢ 𝐴 ∈ V ⇒ ⊢ ran 𝐴 ∈ V |
| |
| Theorem | iprc 4993 |
The identity function is a proper class. This means, for example, that we
cannot use it as a member of the class of continuous functions unless it
is restricted to a set. (Contributed by NM, 1-Jan-2007.)
|
| ⊢ ¬ I ∈ V |
| |
| Theorem | dmcoss 4994 |
Domain of a composition. Theorem 21 of [Suppes]
p. 63. (Contributed by
NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
|
| ⊢ dom (𝐴 ∘ 𝐵) ⊆ dom 𝐵 |
| |
| Theorem | rncoss 4995 |
Range of a composition. (Contributed by NM, 19-Mar-1998.)
|
| ⊢ ran (𝐴 ∘ 𝐵) ⊆ ran 𝐴 |
| |
| Theorem | dmcosseq 4996 |
Domain of a composition. (Contributed by NM, 28-May-1998.) (Proof
shortened by Andrew Salmon, 27-Aug-2011.)
|
| ⊢ (ran 𝐵 ⊆ dom 𝐴 → dom (𝐴 ∘ 𝐵) = dom 𝐵) |
| |
| Theorem | dmcoeq 4997 |
Domain of a composition. (Contributed by NM, 19-Mar-1998.)
|
| ⊢ (dom 𝐴 = ran 𝐵 → dom (𝐴 ∘ 𝐵) = dom 𝐵) |
| |
| Theorem | rncoeq 4998 |
Range of a composition. (Contributed by NM, 19-Mar-1998.)
|
| ⊢ (dom 𝐴 = ran 𝐵 → ran (𝐴 ∘ 𝐵) = ran 𝐴) |
| |
| Theorem | reseq1 4999 |
Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.)
|
| ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
| |
| Theorem | reseq2 5000 |
Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.)
|
| ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) |