Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr4ri | GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eqtr4ri | ⊢ 𝐷 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
2 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 1, 2 | eqtr4i 2194 | . 2 ⊢ 𝐷 = 𝐴 |
4 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
5 | 3, 4 | eqtr4i 2194 | 1 ⊢ 𝐷 = 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: cbvreucsf 3113 dfif6 3527 qdass 3678 tpidm12 3680 unipr 3808 dfdm4 4801 dmun 4816 resres 4901 inres 4906 resdifcom 4907 resiun1 4908 imainrect 5054 coundi 5110 coundir 5111 funopg 5230 offres 6111 mpomptsx 6173 cnvoprab 6210 snec 6570 halfpm6th 9085 numsucc 9369 decbin2 9470 fsumadd 11356 fsum2d 11385 fprodmul 11541 fprodfac 11565 fprodrec 11579 znnen 12340 |
Copyright terms: Public domain | W3C validator |