| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4ri | GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
| 3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eqtr4ri | ⊢ 𝐷 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 2 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | eqtr4i 2228 | . 2 ⊢ 𝐷 = 𝐴 |
| 4 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
| 5 | 3, 4 | eqtr4i 2228 | 1 ⊢ 𝐷 = 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: cbvreucsf 3157 dfif6 3572 qdass 3729 tpidm12 3731 unipr 3863 dfdm4 4869 dmun 4884 resres 4970 inres 4975 resdifcom 4976 resiun1 4977 imainrect 5127 coundi 5183 coundir 5184 funopg 5304 offres 6219 mpomptsx 6282 cnvoprab 6319 snec 6682 halfpm6th 9256 numsucc 9542 decbin2 9643 fsumadd 11659 fsum2d 11688 fprodmul 11844 fprodfac 11868 fprodrec 11882 znnen 12711 txswaphmeolem 14734 |
| Copyright terms: Public domain | W3C validator |