Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr4ri | GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eqtr4ri | ⊢ 𝐷 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
2 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 1, 2 | eqtr4i 2194 | . 2 ⊢ 𝐷 = 𝐴 |
4 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
5 | 3, 4 | eqtr4i 2194 | 1 ⊢ 𝐷 = 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: cbvreucsf 3113 dfif6 3528 qdass 3680 tpidm12 3682 unipr 3810 dfdm4 4803 dmun 4818 resres 4903 inres 4908 resdifcom 4909 resiun1 4910 imainrect 5056 coundi 5112 coundir 5113 funopg 5232 offres 6114 mpomptsx 6176 cnvoprab 6213 snec 6574 halfpm6th 9098 numsucc 9382 decbin2 9483 fsumadd 11369 fsum2d 11398 fprodmul 11554 fprodfac 11578 fprodrec 11592 znnen 12353 |
Copyright terms: Public domain | W3C validator |