| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4ri | GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
| 3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eqtr4ri | ⊢ 𝐷 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 2 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | eqtr4i 2253 | . 2 ⊢ 𝐷 = 𝐴 |
| 4 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
| 5 | 3, 4 | eqtr4i 2253 | 1 ⊢ 𝐷 = 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: cbvreucsf 3189 dfif6 3604 qdass 3763 tpidm12 3765 unipr 3901 dfdm4 4914 dmun 4929 resres 5016 inres 5021 resdifcom 5022 resiun1 5023 imainrect 5173 coundi 5229 coundir 5230 funopg 5351 offres 6278 mpomptsx 6341 cnvoprab 6378 snec 6741 halfpm6th 9327 numsucc 9613 decbin2 9714 fsumadd 11912 fsum2d 11941 fprodmul 12097 fprodfac 12121 fprodrec 12135 znnen 12964 txswaphmeolem 14988 |
| Copyright terms: Public domain | W3C validator |