ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eqtr4ri GIF version

Theorem 3eqtr4ri 2237
Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypotheses
Ref Expression
3eqtr4i.1 𝐴 = 𝐵
3eqtr4i.2 𝐶 = 𝐴
3eqtr4i.3 𝐷 = 𝐵
Assertion
Ref Expression
3eqtr4ri 𝐷 = 𝐶

Proof of Theorem 3eqtr4ri
StepHypRef Expression
1 3eqtr4i.3 . . 3 𝐷 = 𝐵
2 3eqtr4i.1 . . 3 𝐴 = 𝐵
31, 2eqtr4i 2229 . 2 𝐷 = 𝐴
4 3eqtr4i.2 . 2 𝐶 = 𝐴
53, 4eqtr4i 2229 1 𝐷 = 𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-4 1533  ax-17 1549  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-cleq 2198
This theorem is referenced by:  cbvreucsf  3158  dfif6  3573  qdass  3730  tpidm12  3732  unipr  3864  dfdm4  4870  dmun  4885  resres  4971  inres  4976  resdifcom  4977  resiun1  4978  imainrect  5128  coundi  5184  coundir  5185  funopg  5305  offres  6220  mpomptsx  6283  cnvoprab  6320  snec  6683  halfpm6th  9257  numsucc  9543  decbin2  9644  fsumadd  11717  fsum2d  11746  fprodmul  11902  fprodfac  11926  fprodrec  11940  znnen  12769  txswaphmeolem  14792
  Copyright terms: Public domain W3C validator