| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4ri | GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr4i.2 | ⊢ 𝐶 = 𝐴 |
| 3eqtr4i.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eqtr4ri | ⊢ 𝐷 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 2 | 3eqtr4i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | eqtr4i 2220 | . 2 ⊢ 𝐷 = 𝐴 |
| 4 | 3eqtr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
| 5 | 3, 4 | eqtr4i 2220 | 1 ⊢ 𝐷 = 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: cbvreucsf 3149 dfif6 3564 qdass 3720 tpidm12 3722 unipr 3854 dfdm4 4859 dmun 4874 resres 4959 inres 4964 resdifcom 4965 resiun1 4966 imainrect 5116 coundi 5172 coundir 5173 funopg 5293 offres 6193 mpomptsx 6256 cnvoprab 6293 snec 6656 halfpm6th 9213 numsucc 9498 decbin2 9599 fsumadd 11573 fsum2d 11602 fprodmul 11758 fprodfac 11782 fprodrec 11796 znnen 12625 txswaphmeolem 14566 |
| Copyright terms: Public domain | W3C validator |