ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsonq GIF version

Theorem ltsonq 7388
Description: 'Less than' is a strict ordering on positive fractions. (Contributed by NM, 19-Feb-1996.) (Revised by Mario Carneiro, 4-May-2013.)
Assertion
Ref Expression
ltsonq <Q Or Q

Proof of Theorem ltsonq
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7338 . . . . . 6 Q = ((N × N) / ~Q )
2 id 19 . . . . . . . 8 ([⟨𝑧, 𝑤⟩] ~Q = 𝑥 → [⟨𝑧, 𝑤⟩] ~Q = 𝑥)
32, 2breq12d 4013 . . . . . . 7 ([⟨𝑧, 𝑤⟩] ~Q = 𝑥 → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q𝑥 <Q 𝑥))
43notbid 667 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~Q = 𝑥 → (¬ [⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ¬ 𝑥 <Q 𝑥))
5 ltsopi 7310 . . . . . . . 8 <N Or N
6 ltrelpi 7314 . . . . . . . 8 <N ⊆ (N × N)
75, 6soirri 5019 . . . . . . 7 ¬ (𝑤 ·N 𝑧) <N (𝑤 ·N 𝑧)
8 ordpipqqs 7364 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑧N𝑤N)) → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑧 ·N 𝑤) <N (𝑤 ·N 𝑧)))
98anidms 397 . . . . . . . 8 ((𝑧N𝑤N) → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑧 ·N 𝑤) <N (𝑤 ·N 𝑧)))
10 mulcompig 7321 . . . . . . . . 9 ((𝑧N𝑤N) → (𝑧 ·N 𝑤) = (𝑤 ·N 𝑧))
1110breq1d 4010 . . . . . . . 8 ((𝑧N𝑤N) → ((𝑧 ·N 𝑤) <N (𝑤 ·N 𝑧) ↔ (𝑤 ·N 𝑧) <N (𝑤 ·N 𝑧)))
129, 11bitrd 188 . . . . . . 7 ((𝑧N𝑤N) → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑤 ·N 𝑧) <N (𝑤 ·N 𝑧)))
137, 12mtbiri 675 . . . . . 6 ((𝑧N𝑤N) → ¬ [⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q )
141, 4, 13ecoptocl 6616 . . . . 5 (𝑥Q → ¬ 𝑥 <Q 𝑥)
1514adantl 277 . . . 4 ((⊤ ∧ 𝑥Q) → ¬ 𝑥 <Q 𝑥)
16 breq1 4003 . . . . . . . 8 ([⟨𝑎, 𝑏⟩] ~Q = 𝑥 → ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q𝑥 <Q [⟨𝑐, 𝑑⟩] ~Q ))
1716anbi1d 465 . . . . . . 7 ([⟨𝑎, 𝑏⟩] ~Q = 𝑥 → (([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ) ↔ (𝑥 <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )))
18 breq1 4003 . . . . . . 7 ([⟨𝑎, 𝑏⟩] ~Q = 𝑥 → ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q𝑥 <Q [⟨𝑒, 𝑓⟩] ~Q ))
1917, 18imbi12d 234 . . . . . 6 ([⟨𝑎, 𝑏⟩] ~Q = 𝑥 → ((([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ) → [⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ) ↔ ((𝑥 <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ) → 𝑥 <Q [⟨𝑒, 𝑓⟩] ~Q )))
20 breq2 4004 . . . . . . . 8 ([⟨𝑐, 𝑑⟩] ~Q = 𝑦 → (𝑥 <Q [⟨𝑐, 𝑑⟩] ~Q𝑥 <Q 𝑦))
21 breq1 4003 . . . . . . . 8 ([⟨𝑐, 𝑑⟩] ~Q = 𝑦 → ([⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q𝑦 <Q [⟨𝑒, 𝑓⟩] ~Q ))
2220, 21anbi12d 473 . . . . . . 7 ([⟨𝑐, 𝑑⟩] ~Q = 𝑦 → ((𝑥 <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ) ↔ (𝑥 <Q 𝑦𝑦 <Q [⟨𝑒, 𝑓⟩] ~Q )))
2322imbi1d 231 . . . . . 6 ([⟨𝑐, 𝑑⟩] ~Q = 𝑦 → (((𝑥 <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ) → 𝑥 <Q [⟨𝑒, 𝑓⟩] ~Q ) ↔ ((𝑥 <Q 𝑦𝑦 <Q [⟨𝑒, 𝑓⟩] ~Q ) → 𝑥 <Q [⟨𝑒, 𝑓⟩] ~Q )))
24 breq2 4004 . . . . . . . 8 ([⟨𝑒, 𝑓⟩] ~Q = 𝑧 → (𝑦 <Q [⟨𝑒, 𝑓⟩] ~Q𝑦 <Q 𝑧))
2524anbi2d 464 . . . . . . 7 ([⟨𝑒, 𝑓⟩] ~Q = 𝑧 → ((𝑥 <Q 𝑦𝑦 <Q [⟨𝑒, 𝑓⟩] ~Q ) ↔ (𝑥 <Q 𝑦𝑦 <Q 𝑧)))
26 breq2 4004 . . . . . . 7 ([⟨𝑒, 𝑓⟩] ~Q = 𝑧 → (𝑥 <Q [⟨𝑒, 𝑓⟩] ~Q𝑥 <Q 𝑧))
2725, 26imbi12d 234 . . . . . 6 ([⟨𝑒, 𝑓⟩] ~Q = 𝑧 → (((𝑥 <Q 𝑦𝑦 <Q [⟨𝑒, 𝑓⟩] ~Q ) → 𝑥 <Q [⟨𝑒, 𝑓⟩] ~Q ) ↔ ((𝑥 <Q 𝑦𝑦 <Q 𝑧) → 𝑥 <Q 𝑧)))
28 ordpipqqs 7364 . . . . . . . . . . . . . . . 16 (((𝑎N𝑏N) ∧ (𝑐N𝑑N)) → ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ↔ (𝑎 ·N 𝑑) <N (𝑏 ·N 𝑐)))
29283adant3 1017 . . . . . . . . . . . . . . 15 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ↔ (𝑎 ·N 𝑑) <N (𝑏 ·N 𝑐)))
30 simp1l 1021 . . . . . . . . . . . . . . . . 17 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → 𝑎N)
31 simp2r 1024 . . . . . . . . . . . . . . . . 17 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → 𝑑N)
32 mulclpi 7318 . . . . . . . . . . . . . . . . 17 ((𝑎N𝑑N) → (𝑎 ·N 𝑑) ∈ N)
3330, 31, 32syl2anc 411 . . . . . . . . . . . . . . . 16 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (𝑎 ·N 𝑑) ∈ N)
34 simp1r 1022 . . . . . . . . . . . . . . . . 17 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → 𝑏N)
35 simp2l 1023 . . . . . . . . . . . . . . . . 17 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → 𝑐N)
36 mulclpi 7318 . . . . . . . . . . . . . . . . 17 ((𝑏N𝑐N) → (𝑏 ·N 𝑐) ∈ N)
3734, 35, 36syl2anc 411 . . . . . . . . . . . . . . . 16 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (𝑏 ·N 𝑐) ∈ N)
38 simp3r 1026 . . . . . . . . . . . . . . . . 17 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → 𝑓N)
39 mulclpi 7318 . . . . . . . . . . . . . . . . 17 ((𝑐N𝑓N) → (𝑐 ·N 𝑓) ∈ N)
4035, 38, 39syl2anc 411 . . . . . . . . . . . . . . . 16 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (𝑐 ·N 𝑓) ∈ N)
41 ltmpig 7329 . . . . . . . . . . . . . . . 16 (((𝑎 ·N 𝑑) ∈ N ∧ (𝑏 ·N 𝑐) ∈ N ∧ (𝑐 ·N 𝑓) ∈ N) → ((𝑎 ·N 𝑑) <N (𝑏 ·N 𝑐) ↔ ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑐 ·N 𝑓) ·N (𝑏 ·N 𝑐))))
4233, 37, 40, 41syl3anc 1238 . . . . . . . . . . . . . . 15 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑎 ·N 𝑑) <N (𝑏 ·N 𝑐) ↔ ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑐 ·N 𝑓) ·N (𝑏 ·N 𝑐))))
4329, 42bitrd 188 . . . . . . . . . . . . . 14 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ↔ ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑐 ·N 𝑓) ·N (𝑏 ·N 𝑐))))
4443biimpa 296 . . . . . . . . . . . . 13 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ [⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ) → ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑐 ·N 𝑓) ·N (𝑏 ·N 𝑐)))
4544adantrr 479 . . . . . . . . . . . 12 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑐 ·N 𝑓) ·N (𝑏 ·N 𝑐)))
46 mulcompig 7321 . . . . . . . . . . . . . 14 (((𝑐 ·N 𝑓) ∈ N ∧ (𝑏 ·N 𝑐) ∈ N) → ((𝑐 ·N 𝑓) ·N (𝑏 ·N 𝑐)) = ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)))
4740, 37, 46syl2anc 411 . . . . . . . . . . . . 13 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑐 ·N 𝑓) ·N (𝑏 ·N 𝑐)) = ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)))
4847adantr 276 . . . . . . . . . . . 12 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → ((𝑐 ·N 𝑓) ·N (𝑏 ·N 𝑐)) = ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)))
4945, 48breqtrd 4026 . . . . . . . . . . 11 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)))
50 ordpipqqs 7364 . . . . . . . . . . . . . . 15 (((𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ([⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ↔ (𝑐 ·N 𝑓) <N (𝑑 ·N 𝑒)))
51503adant1 1015 . . . . . . . . . . . . . 14 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ([⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ↔ (𝑐 ·N 𝑓) <N (𝑑 ·N 𝑒)))
52 simp3l 1025 . . . . . . . . . . . . . . . 16 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → 𝑒N)
53 mulclpi 7318 . . . . . . . . . . . . . . . 16 ((𝑑N𝑒N) → (𝑑 ·N 𝑒) ∈ N)
5431, 52, 53syl2anc 411 . . . . . . . . . . . . . . 15 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (𝑑 ·N 𝑒) ∈ N)
55 ltmpig 7329 . . . . . . . . . . . . . . 15 (((𝑐 ·N 𝑓) ∈ N ∧ (𝑑 ·N 𝑒) ∈ N ∧ (𝑏 ·N 𝑐) ∈ N) → ((𝑐 ·N 𝑓) <N (𝑑 ·N 𝑒) ↔ ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒))))
5640, 54, 37, 55syl3anc 1238 . . . . . . . . . . . . . 14 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑐 ·N 𝑓) <N (𝑑 ·N 𝑒) ↔ ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒))))
5751, 56bitrd 188 . . . . . . . . . . . . 13 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ([⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ↔ ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒))))
5857biimpa 296 . . . . . . . . . . . 12 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ) → ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒)))
5958adantrl 478 . . . . . . . . . . 11 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒)))
605, 6sotri 5020 . . . . . . . . . . 11 ((((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)) ∧ ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒))) → ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒)))
6149, 59, 60syl2anc 411 . . . . . . . . . 10 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒)))
62 mulcompig 7321 . . . . . . . . . . . . . . 15 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
6362adantl 277 . . . . . . . . . . . . . 14 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
64 mulasspig 7322 . . . . . . . . . . . . . . 15 ((𝑥N𝑦N𝑧N) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧)))
6564adantl 277 . . . . . . . . . . . . . 14 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ (𝑥N𝑦N𝑧N)) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧)))
66 mulclpi 7318 . . . . . . . . . . . . . . 15 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) ∈ N)
6766adantl 277 . . . . . . . . . . . . . 14 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) ∈ N)
6835, 31, 30, 63, 65, 38, 67caov411d 6054 . . . . . . . . . . . . 13 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑐 ·N 𝑑) ·N (𝑎 ·N 𝑓)) = ((𝑎 ·N 𝑑) ·N (𝑐 ·N 𝑓)))
6963, 33, 40caovcomd 6025 . . . . . . . . . . . . 13 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑎 ·N 𝑑) ·N (𝑐 ·N 𝑓)) = ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)))
7068, 69eqtrd 2210 . . . . . . . . . . . 12 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑐 ·N 𝑑) ·N (𝑎 ·N 𝑓)) = ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)))
7135, 31, 34, 63, 65, 52, 67caov4d 6053 . . . . . . . . . . . . 13 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑐 ·N 𝑑) ·N (𝑏 ·N 𝑒)) = ((𝑐 ·N 𝑏) ·N (𝑑 ·N 𝑒)))
7263, 35, 34caovcomd 6025 . . . . . . . . . . . . . 14 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (𝑐 ·N 𝑏) = (𝑏 ·N 𝑐))
7372oveq1d 5884 . . . . . . . . . . . . 13 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑐 ·N 𝑏) ·N (𝑑 ·N 𝑒)) = ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒)))
7471, 73eqtrd 2210 . . . . . . . . . . . 12 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑐 ·N 𝑑) ·N (𝑏 ·N 𝑒)) = ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒)))
7570, 74breq12d 4013 . . . . . . . . . . 11 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (((𝑐 ·N 𝑑) ·N (𝑎 ·N 𝑓)) <N ((𝑐 ·N 𝑑) ·N (𝑏 ·N 𝑒)) ↔ ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒))))
7675adantr 276 . . . . . . . . . 10 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → (((𝑐 ·N 𝑑) ·N (𝑎 ·N 𝑓)) <N ((𝑐 ·N 𝑑) ·N (𝑏 ·N 𝑒)) ↔ ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒))))
7761, 76mpbird 167 . . . . . . . . 9 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → ((𝑐 ·N 𝑑) ·N (𝑎 ·N 𝑓)) <N ((𝑐 ·N 𝑑) ·N (𝑏 ·N 𝑒)))
78 mulclpi 7318 . . . . . . . . . . . 12 ((𝑎N𝑓N) → (𝑎 ·N 𝑓) ∈ N)
7930, 38, 78syl2anc 411 . . . . . . . . . . 11 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (𝑎 ·N 𝑓) ∈ N)
80 mulclpi 7318 . . . . . . . . . . . 12 ((𝑏N𝑒N) → (𝑏 ·N 𝑒) ∈ N)
8134, 52, 80syl2anc 411 . . . . . . . . . . 11 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (𝑏 ·N 𝑒) ∈ N)
82 mulclpi 7318 . . . . . . . . . . . 12 ((𝑐N𝑑N) → (𝑐 ·N 𝑑) ∈ N)
8335, 31, 82syl2anc 411 . . . . . . . . . . 11 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (𝑐 ·N 𝑑) ∈ N)
84 ltmpig 7329 . . . . . . . . . . 11 (((𝑎 ·N 𝑓) ∈ N ∧ (𝑏 ·N 𝑒) ∈ N ∧ (𝑐 ·N 𝑑) ∈ N) → ((𝑎 ·N 𝑓) <N (𝑏 ·N 𝑒) ↔ ((𝑐 ·N 𝑑) ·N (𝑎 ·N 𝑓)) <N ((𝑐 ·N 𝑑) ·N (𝑏 ·N 𝑒))))
8579, 81, 83, 84syl3anc 1238 . . . . . . . . . 10 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑎 ·N 𝑓) <N (𝑏 ·N 𝑒) ↔ ((𝑐 ·N 𝑑) ·N (𝑎 ·N 𝑓)) <N ((𝑐 ·N 𝑑) ·N (𝑏 ·N 𝑒))))
8685adantr 276 . . . . . . . . 9 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → ((𝑎 ·N 𝑓) <N (𝑏 ·N 𝑒) ↔ ((𝑐 ·N 𝑑) ·N (𝑎 ·N 𝑓)) <N ((𝑐 ·N 𝑑) ·N (𝑏 ·N 𝑒))))
8777, 86mpbird 167 . . . . . . . 8 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → (𝑎 ·N 𝑓) <N (𝑏 ·N 𝑒))
88 ordpipqqs 7364 . . . . . . . . . 10 (((𝑎N𝑏N) ∧ (𝑒N𝑓N)) → ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ↔ (𝑎 ·N 𝑓) <N (𝑏 ·N 𝑒)))
89883adant2 1016 . . . . . . . . 9 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ↔ (𝑎 ·N 𝑓) <N (𝑏 ·N 𝑒)))
9089adantr 276 . . . . . . . 8 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ↔ (𝑎 ·N 𝑓) <N (𝑏 ·N 𝑒)))
9187, 90mpbird 167 . . . . . . 7 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → [⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )
9291ex 115 . . . . . 6 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ) → [⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ))
931, 19, 23, 27, 923ecoptocl 6618 . . . . 5 ((𝑥Q𝑦Q𝑧Q) → ((𝑥 <Q 𝑦𝑦 <Q 𝑧) → 𝑥 <Q 𝑧))
9493adantl 277 . . . 4 ((⊤ ∧ (𝑥Q𝑦Q𝑧Q)) → ((𝑥 <Q 𝑦𝑦 <Q 𝑧) → 𝑥 <Q 𝑧))
9515, 94ispod 4301 . . 3 (⊤ → <Q Po Q)
96 nqtri3or 7386 . . . 4 ((𝑥Q𝑦Q) → (𝑥 <Q 𝑦𝑥 = 𝑦𝑦 <Q 𝑥))
9796adantl 277 . . 3 ((⊤ ∧ (𝑥Q𝑦Q)) → (𝑥 <Q 𝑦𝑥 = 𝑦𝑦 <Q 𝑥))
9895, 97issod 4316 . 2 (⊤ → <Q Or Q)
9998mptru 1362 1 <Q Or Q
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3o 977  w3a 978   = wceq 1353  wtru 1354  wcel 2148  cop 3594   class class class wbr 4000   Or wor 4292  (class class class)co 5869  [cec 6527  Ncnpi 7262   ·N cmi 7264   <N clti 7265   ~Q ceq 7269  Qcnq 7270   <Q cltq 7275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-eprel 4286  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-mi 7296  df-lti 7297  df-enq 7337  df-nqqs 7338  df-ltnqqs 7343
This theorem is referenced by:  nqtric  7389  lt2addnq  7394  lt2mulnq  7395  ltbtwnnqq  7405  prarloclemarch2  7409  genplt2i  7500  genpdisj  7513  addlocprlemgt  7524  nqprdisj  7534  nqprloc  7535  addnqprlemfl  7549  addnqprlemfu  7550  prmuloclemcalc  7555  mulnqprlemfl  7565  mulnqprlemfu  7566  distrlem4prl  7574  distrlem4pru  7575  ltsopr  7586  ltexprlemopl  7591  ltexprlemopu  7593  ltexprlemdisj  7596  ltexprlemru  7602  recexprlemlol  7616  recexprlemupu  7618  recexprlemdisj  7620  recexprlemss1l  7625  recexprlemss1u  7626  cauappcvgprlemopl  7636  cauappcvgprlemlol  7637  cauappcvgprlemupu  7639  cauappcvgprlemdisj  7641  cauappcvgprlemloc  7642  cauappcvgprlemladdfu  7644  cauappcvgprlemladdru  7646  cauappcvgprlemladdrl  7647  caucvgprlemk  7655  caucvgprlemnkj  7656  caucvgprlemnbj  7657  caucvgprlemm  7658  caucvgprlemopl  7659  caucvgprlemlol  7660  caucvgprlemupu  7662  caucvgprlemloc  7665  caucvgprlemladdfu  7667  caucvgprprlemloccalc  7674  caucvgprprlemml  7684  caucvgprprlemopl  7687  suplocexprlemru  7709
  Copyright terms: Public domain W3C validator