ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsonq GIF version

Theorem ltsonq 7339
Description: 'Less than' is a strict ordering on positive fractions. (Contributed by NM, 19-Feb-1996.) (Revised by Mario Carneiro, 4-May-2013.)
Assertion
Ref Expression
ltsonq <Q Or Q

Proof of Theorem ltsonq
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7289 . . . . . 6 Q = ((N × N) / ~Q )
2 id 19 . . . . . . . 8 ([⟨𝑧, 𝑤⟩] ~Q = 𝑥 → [⟨𝑧, 𝑤⟩] ~Q = 𝑥)
32, 2breq12d 3995 . . . . . . 7 ([⟨𝑧, 𝑤⟩] ~Q = 𝑥 → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q𝑥 <Q 𝑥))
43notbid 657 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~Q = 𝑥 → (¬ [⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ¬ 𝑥 <Q 𝑥))
5 ltsopi 7261 . . . . . . . 8 <N Or N
6 ltrelpi 7265 . . . . . . . 8 <N ⊆ (N × N)
75, 6soirri 4998 . . . . . . 7 ¬ (𝑤 ·N 𝑧) <N (𝑤 ·N 𝑧)
8 ordpipqqs 7315 . . . . . . . . 9 (((𝑧N𝑤N) ∧ (𝑧N𝑤N)) → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑧 ·N 𝑤) <N (𝑤 ·N 𝑧)))
98anidms 395 . . . . . . . 8 ((𝑧N𝑤N) → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑧 ·N 𝑤) <N (𝑤 ·N 𝑧)))
10 mulcompig 7272 . . . . . . . . 9 ((𝑧N𝑤N) → (𝑧 ·N 𝑤) = (𝑤 ·N 𝑧))
1110breq1d 3992 . . . . . . . 8 ((𝑧N𝑤N) → ((𝑧 ·N 𝑤) <N (𝑤 ·N 𝑧) ↔ (𝑤 ·N 𝑧) <N (𝑤 ·N 𝑧)))
129, 11bitrd 187 . . . . . . 7 ((𝑧N𝑤N) → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑤 ·N 𝑧) <N (𝑤 ·N 𝑧)))
137, 12mtbiri 665 . . . . . 6 ((𝑧N𝑤N) → ¬ [⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q )
141, 4, 13ecoptocl 6588 . . . . 5 (𝑥Q → ¬ 𝑥 <Q 𝑥)
1514adantl 275 . . . 4 ((⊤ ∧ 𝑥Q) → ¬ 𝑥 <Q 𝑥)
16 breq1 3985 . . . . . . . 8 ([⟨𝑎, 𝑏⟩] ~Q = 𝑥 → ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q𝑥 <Q [⟨𝑐, 𝑑⟩] ~Q ))
1716anbi1d 461 . . . . . . 7 ([⟨𝑎, 𝑏⟩] ~Q = 𝑥 → (([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ) ↔ (𝑥 <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )))
18 breq1 3985 . . . . . . 7 ([⟨𝑎, 𝑏⟩] ~Q = 𝑥 → ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q𝑥 <Q [⟨𝑒, 𝑓⟩] ~Q ))
1917, 18imbi12d 233 . . . . . 6 ([⟨𝑎, 𝑏⟩] ~Q = 𝑥 → ((([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ) → [⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ) ↔ ((𝑥 <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ) → 𝑥 <Q [⟨𝑒, 𝑓⟩] ~Q )))
20 breq2 3986 . . . . . . . 8 ([⟨𝑐, 𝑑⟩] ~Q = 𝑦 → (𝑥 <Q [⟨𝑐, 𝑑⟩] ~Q𝑥 <Q 𝑦))
21 breq1 3985 . . . . . . . 8 ([⟨𝑐, 𝑑⟩] ~Q = 𝑦 → ([⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q𝑦 <Q [⟨𝑒, 𝑓⟩] ~Q ))
2220, 21anbi12d 465 . . . . . . 7 ([⟨𝑐, 𝑑⟩] ~Q = 𝑦 → ((𝑥 <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ) ↔ (𝑥 <Q 𝑦𝑦 <Q [⟨𝑒, 𝑓⟩] ~Q )))
2322imbi1d 230 . . . . . 6 ([⟨𝑐, 𝑑⟩] ~Q = 𝑦 → (((𝑥 <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ) → 𝑥 <Q [⟨𝑒, 𝑓⟩] ~Q ) ↔ ((𝑥 <Q 𝑦𝑦 <Q [⟨𝑒, 𝑓⟩] ~Q ) → 𝑥 <Q [⟨𝑒, 𝑓⟩] ~Q )))
24 breq2 3986 . . . . . . . 8 ([⟨𝑒, 𝑓⟩] ~Q = 𝑧 → (𝑦 <Q [⟨𝑒, 𝑓⟩] ~Q𝑦 <Q 𝑧))
2524anbi2d 460 . . . . . . 7 ([⟨𝑒, 𝑓⟩] ~Q = 𝑧 → ((𝑥 <Q 𝑦𝑦 <Q [⟨𝑒, 𝑓⟩] ~Q ) ↔ (𝑥 <Q 𝑦𝑦 <Q 𝑧)))
26 breq2 3986 . . . . . . 7 ([⟨𝑒, 𝑓⟩] ~Q = 𝑧 → (𝑥 <Q [⟨𝑒, 𝑓⟩] ~Q𝑥 <Q 𝑧))
2725, 26imbi12d 233 . . . . . 6 ([⟨𝑒, 𝑓⟩] ~Q = 𝑧 → (((𝑥 <Q 𝑦𝑦 <Q [⟨𝑒, 𝑓⟩] ~Q ) → 𝑥 <Q [⟨𝑒, 𝑓⟩] ~Q ) ↔ ((𝑥 <Q 𝑦𝑦 <Q 𝑧) → 𝑥 <Q 𝑧)))
28 ordpipqqs 7315 . . . . . . . . . . . . . . . 16 (((𝑎N𝑏N) ∧ (𝑐N𝑑N)) → ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ↔ (𝑎 ·N 𝑑) <N (𝑏 ·N 𝑐)))
29283adant3 1007 . . . . . . . . . . . . . . 15 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ↔ (𝑎 ·N 𝑑) <N (𝑏 ·N 𝑐)))
30 simp1l 1011 . . . . . . . . . . . . . . . . 17 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → 𝑎N)
31 simp2r 1014 . . . . . . . . . . . . . . . . 17 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → 𝑑N)
32 mulclpi 7269 . . . . . . . . . . . . . . . . 17 ((𝑎N𝑑N) → (𝑎 ·N 𝑑) ∈ N)
3330, 31, 32syl2anc 409 . . . . . . . . . . . . . . . 16 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (𝑎 ·N 𝑑) ∈ N)
34 simp1r 1012 . . . . . . . . . . . . . . . . 17 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → 𝑏N)
35 simp2l 1013 . . . . . . . . . . . . . . . . 17 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → 𝑐N)
36 mulclpi 7269 . . . . . . . . . . . . . . . . 17 ((𝑏N𝑐N) → (𝑏 ·N 𝑐) ∈ N)
3734, 35, 36syl2anc 409 . . . . . . . . . . . . . . . 16 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (𝑏 ·N 𝑐) ∈ N)
38 simp3r 1016 . . . . . . . . . . . . . . . . 17 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → 𝑓N)
39 mulclpi 7269 . . . . . . . . . . . . . . . . 17 ((𝑐N𝑓N) → (𝑐 ·N 𝑓) ∈ N)
4035, 38, 39syl2anc 409 . . . . . . . . . . . . . . . 16 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (𝑐 ·N 𝑓) ∈ N)
41 ltmpig 7280 . . . . . . . . . . . . . . . 16 (((𝑎 ·N 𝑑) ∈ N ∧ (𝑏 ·N 𝑐) ∈ N ∧ (𝑐 ·N 𝑓) ∈ N) → ((𝑎 ·N 𝑑) <N (𝑏 ·N 𝑐) ↔ ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑐 ·N 𝑓) ·N (𝑏 ·N 𝑐))))
4233, 37, 40, 41syl3anc 1228 . . . . . . . . . . . . . . 15 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑎 ·N 𝑑) <N (𝑏 ·N 𝑐) ↔ ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑐 ·N 𝑓) ·N (𝑏 ·N 𝑐))))
4329, 42bitrd 187 . . . . . . . . . . . . . 14 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ↔ ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑐 ·N 𝑓) ·N (𝑏 ·N 𝑐))))
4443biimpa 294 . . . . . . . . . . . . 13 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ [⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ) → ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑐 ·N 𝑓) ·N (𝑏 ·N 𝑐)))
4544adantrr 471 . . . . . . . . . . . 12 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑐 ·N 𝑓) ·N (𝑏 ·N 𝑐)))
46 mulcompig 7272 . . . . . . . . . . . . . 14 (((𝑐 ·N 𝑓) ∈ N ∧ (𝑏 ·N 𝑐) ∈ N) → ((𝑐 ·N 𝑓) ·N (𝑏 ·N 𝑐)) = ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)))
4740, 37, 46syl2anc 409 . . . . . . . . . . . . 13 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑐 ·N 𝑓) ·N (𝑏 ·N 𝑐)) = ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)))
4847adantr 274 . . . . . . . . . . . 12 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → ((𝑐 ·N 𝑓) ·N (𝑏 ·N 𝑐)) = ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)))
4945, 48breqtrd 4008 . . . . . . . . . . 11 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)))
50 ordpipqqs 7315 . . . . . . . . . . . . . . 15 (((𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ([⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ↔ (𝑐 ·N 𝑓) <N (𝑑 ·N 𝑒)))
51503adant1 1005 . . . . . . . . . . . . . 14 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ([⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ↔ (𝑐 ·N 𝑓) <N (𝑑 ·N 𝑒)))
52 simp3l 1015 . . . . . . . . . . . . . . . 16 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → 𝑒N)
53 mulclpi 7269 . . . . . . . . . . . . . . . 16 ((𝑑N𝑒N) → (𝑑 ·N 𝑒) ∈ N)
5431, 52, 53syl2anc 409 . . . . . . . . . . . . . . 15 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (𝑑 ·N 𝑒) ∈ N)
55 ltmpig 7280 . . . . . . . . . . . . . . 15 (((𝑐 ·N 𝑓) ∈ N ∧ (𝑑 ·N 𝑒) ∈ N ∧ (𝑏 ·N 𝑐) ∈ N) → ((𝑐 ·N 𝑓) <N (𝑑 ·N 𝑒) ↔ ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒))))
5640, 54, 37, 55syl3anc 1228 . . . . . . . . . . . . . 14 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑐 ·N 𝑓) <N (𝑑 ·N 𝑒) ↔ ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒))))
5751, 56bitrd 187 . . . . . . . . . . . . 13 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ([⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ↔ ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒))))
5857biimpa 294 . . . . . . . . . . . 12 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ) → ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒)))
5958adantrl 470 . . . . . . . . . . 11 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒)))
605, 6sotri 4999 . . . . . . . . . . 11 ((((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)) ∧ ((𝑏 ·N 𝑐) ·N (𝑐 ·N 𝑓)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒))) → ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒)))
6149, 59, 60syl2anc 409 . . . . . . . . . 10 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒)))
62 mulcompig 7272 . . . . . . . . . . . . . . 15 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
6362adantl 275 . . . . . . . . . . . . . 14 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
64 mulasspig 7273 . . . . . . . . . . . . . . 15 ((𝑥N𝑦N𝑧N) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧)))
6564adantl 275 . . . . . . . . . . . . . 14 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ (𝑥N𝑦N𝑧N)) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧)))
66 mulclpi 7269 . . . . . . . . . . . . . . 15 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) ∈ N)
6766adantl 275 . . . . . . . . . . . . . 14 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) ∈ N)
6835, 31, 30, 63, 65, 38, 67caov411d 6027 . . . . . . . . . . . . 13 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑐 ·N 𝑑) ·N (𝑎 ·N 𝑓)) = ((𝑎 ·N 𝑑) ·N (𝑐 ·N 𝑓)))
6963, 33, 40caovcomd 5998 . . . . . . . . . . . . 13 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑎 ·N 𝑑) ·N (𝑐 ·N 𝑓)) = ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)))
7068, 69eqtrd 2198 . . . . . . . . . . . 12 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑐 ·N 𝑑) ·N (𝑎 ·N 𝑓)) = ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)))
7135, 31, 34, 63, 65, 52, 67caov4d 6026 . . . . . . . . . . . . 13 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑐 ·N 𝑑) ·N (𝑏 ·N 𝑒)) = ((𝑐 ·N 𝑏) ·N (𝑑 ·N 𝑒)))
7263, 35, 34caovcomd 5998 . . . . . . . . . . . . . 14 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (𝑐 ·N 𝑏) = (𝑏 ·N 𝑐))
7372oveq1d 5857 . . . . . . . . . . . . 13 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑐 ·N 𝑏) ·N (𝑑 ·N 𝑒)) = ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒)))
7471, 73eqtrd 2198 . . . . . . . . . . . 12 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑐 ·N 𝑑) ·N (𝑏 ·N 𝑒)) = ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒)))
7570, 74breq12d 3995 . . . . . . . . . . 11 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (((𝑐 ·N 𝑑) ·N (𝑎 ·N 𝑓)) <N ((𝑐 ·N 𝑑) ·N (𝑏 ·N 𝑒)) ↔ ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒))))
7675adantr 274 . . . . . . . . . 10 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → (((𝑐 ·N 𝑑) ·N (𝑎 ·N 𝑓)) <N ((𝑐 ·N 𝑑) ·N (𝑏 ·N 𝑒)) ↔ ((𝑐 ·N 𝑓) ·N (𝑎 ·N 𝑑)) <N ((𝑏 ·N 𝑐) ·N (𝑑 ·N 𝑒))))
7761, 76mpbird 166 . . . . . . . . 9 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → ((𝑐 ·N 𝑑) ·N (𝑎 ·N 𝑓)) <N ((𝑐 ·N 𝑑) ·N (𝑏 ·N 𝑒)))
78 mulclpi 7269 . . . . . . . . . . . 12 ((𝑎N𝑓N) → (𝑎 ·N 𝑓) ∈ N)
7930, 38, 78syl2anc 409 . . . . . . . . . . 11 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (𝑎 ·N 𝑓) ∈ N)
80 mulclpi 7269 . . . . . . . . . . . 12 ((𝑏N𝑒N) → (𝑏 ·N 𝑒) ∈ N)
8134, 52, 80syl2anc 409 . . . . . . . . . . 11 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (𝑏 ·N 𝑒) ∈ N)
82 mulclpi 7269 . . . . . . . . . . . 12 ((𝑐N𝑑N) → (𝑐 ·N 𝑑) ∈ N)
8335, 31, 82syl2anc 409 . . . . . . . . . . 11 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (𝑐 ·N 𝑑) ∈ N)
84 ltmpig 7280 . . . . . . . . . . 11 (((𝑎 ·N 𝑓) ∈ N ∧ (𝑏 ·N 𝑒) ∈ N ∧ (𝑐 ·N 𝑑) ∈ N) → ((𝑎 ·N 𝑓) <N (𝑏 ·N 𝑒) ↔ ((𝑐 ·N 𝑑) ·N (𝑎 ·N 𝑓)) <N ((𝑐 ·N 𝑑) ·N (𝑏 ·N 𝑒))))
8579, 81, 83, 84syl3anc 1228 . . . . . . . . . 10 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ((𝑎 ·N 𝑓) <N (𝑏 ·N 𝑒) ↔ ((𝑐 ·N 𝑑) ·N (𝑎 ·N 𝑓)) <N ((𝑐 ·N 𝑑) ·N (𝑏 ·N 𝑒))))
8685adantr 274 . . . . . . . . 9 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → ((𝑎 ·N 𝑓) <N (𝑏 ·N 𝑒) ↔ ((𝑐 ·N 𝑑) ·N (𝑎 ·N 𝑓)) <N ((𝑐 ·N 𝑑) ·N (𝑏 ·N 𝑒))))
8777, 86mpbird 166 . . . . . . . 8 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → (𝑎 ·N 𝑓) <N (𝑏 ·N 𝑒))
88 ordpipqqs 7315 . . . . . . . . . 10 (((𝑎N𝑏N) ∧ (𝑒N𝑓N)) → ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ↔ (𝑎 ·N 𝑓) <N (𝑏 ·N 𝑒)))
89883adant2 1006 . . . . . . . . 9 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ↔ (𝑎 ·N 𝑓) <N (𝑏 ·N 𝑒)))
9089adantr 274 . . . . . . . 8 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ↔ (𝑎 ·N 𝑓) <N (𝑏 ·N 𝑒)))
9187, 90mpbird 166 . . . . . . 7 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) ∧ ([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )) → [⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q )
9291ex 114 . . . . . 6 (((𝑎N𝑏N) ∧ (𝑐N𝑑N) ∧ (𝑒N𝑓N)) → (([⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑐, 𝑑⟩] ~Q ∧ [⟨𝑐, 𝑑⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ) → [⟨𝑎, 𝑏⟩] ~Q <Q [⟨𝑒, 𝑓⟩] ~Q ))
931, 19, 23, 27, 923ecoptocl 6590 . . . . 5 ((𝑥Q𝑦Q𝑧Q) → ((𝑥 <Q 𝑦𝑦 <Q 𝑧) → 𝑥 <Q 𝑧))
9493adantl 275 . . . 4 ((⊤ ∧ (𝑥Q𝑦Q𝑧Q)) → ((𝑥 <Q 𝑦𝑦 <Q 𝑧) → 𝑥 <Q 𝑧))
9515, 94ispod 4282 . . 3 (⊤ → <Q Po Q)
96 nqtri3or 7337 . . . 4 ((𝑥Q𝑦Q) → (𝑥 <Q 𝑦𝑥 = 𝑦𝑦 <Q 𝑥))
9796adantl 275 . . 3 ((⊤ ∧ (𝑥Q𝑦Q)) → (𝑥 <Q 𝑦𝑥 = 𝑦𝑦 <Q 𝑥))
9895, 97issod 4297 . 2 (⊤ → <Q Or Q)
9998mptru 1352 1 <Q Or Q
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3o 967  w3a 968   = wceq 1343  wtru 1344  wcel 2136  cop 3579   class class class wbr 3982   Or wor 4273  (class class class)co 5842  [cec 6499  Ncnpi 7213   ·N cmi 7215   <N clti 7216   ~Q ceq 7220  Qcnq 7221   <Q cltq 7226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-mi 7247  df-lti 7248  df-enq 7288  df-nqqs 7289  df-ltnqqs 7294
This theorem is referenced by:  nqtric  7340  lt2addnq  7345  lt2mulnq  7346  ltbtwnnqq  7356  prarloclemarch2  7360  genplt2i  7451  genpdisj  7464  addlocprlemgt  7475  nqprdisj  7485  nqprloc  7486  addnqprlemfl  7500  addnqprlemfu  7501  prmuloclemcalc  7506  mulnqprlemfl  7516  mulnqprlemfu  7517  distrlem4prl  7525  distrlem4pru  7526  ltsopr  7537  ltexprlemopl  7542  ltexprlemopu  7544  ltexprlemdisj  7547  ltexprlemru  7553  recexprlemlol  7567  recexprlemupu  7569  recexprlemdisj  7571  recexprlemss1l  7576  recexprlemss1u  7577  cauappcvgprlemopl  7587  cauappcvgprlemlol  7588  cauappcvgprlemupu  7590  cauappcvgprlemdisj  7592  cauappcvgprlemloc  7593  cauappcvgprlemladdfu  7595  cauappcvgprlemladdru  7597  cauappcvgprlemladdrl  7598  caucvgprlemk  7606  caucvgprlemnkj  7607  caucvgprlemnbj  7608  caucvgprlemm  7609  caucvgprlemopl  7610  caucvgprlemlol  7611  caucvgprlemupu  7613  caucvgprlemloc  7616  caucvgprlemladdfu  7618  caucvgprprlemloccalc  7625  caucvgprprlemml  7635  caucvgprprlemopl  7638  suplocexprlemru  7660
  Copyright terms: Public domain W3C validator