ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsopi GIF version

Theorem ltsopi 7321
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
ltsopi <N Or N

Proof of Theorem ltsopi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elirrv 4549 . . . . . 6 ¬ 𝑥𝑥
2 ltpiord 7320 . . . . . . 7 ((𝑥N𝑥N) → (𝑥 <N 𝑥𝑥𝑥))
32anidms 397 . . . . . 6 (𝑥N → (𝑥 <N 𝑥𝑥𝑥))
41, 3mtbiri 675 . . . . 5 (𝑥N → ¬ 𝑥 <N 𝑥)
54adantl 277 . . . 4 ((⊤ ∧ 𝑥N) → ¬ 𝑥 <N 𝑥)
6 pion 7311 . . . . . . . 8 (𝑧N𝑧 ∈ On)
7 ontr1 4391 . . . . . . . 8 (𝑧 ∈ On → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
86, 7syl 14 . . . . . . 7 (𝑧N → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
983ad2ant3 1020 . . . . . 6 ((𝑥N𝑦N𝑧N) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
10 ltpiord 7320 . . . . . . . 8 ((𝑥N𝑦N) → (𝑥 <N 𝑦𝑥𝑦))
11103adant3 1017 . . . . . . 7 ((𝑥N𝑦N𝑧N) → (𝑥 <N 𝑦𝑥𝑦))
12 ltpiord 7320 . . . . . . . 8 ((𝑦N𝑧N) → (𝑦 <N 𝑧𝑦𝑧))
13123adant1 1015 . . . . . . 7 ((𝑥N𝑦N𝑧N) → (𝑦 <N 𝑧𝑦𝑧))
1411, 13anbi12d 473 . . . . . 6 ((𝑥N𝑦N𝑧N) → ((𝑥 <N 𝑦𝑦 <N 𝑧) ↔ (𝑥𝑦𝑦𝑧)))
15 ltpiord 7320 . . . . . . 7 ((𝑥N𝑧N) → (𝑥 <N 𝑧𝑥𝑧))
16153adant2 1016 . . . . . 6 ((𝑥N𝑦N𝑧N) → (𝑥 <N 𝑧𝑥𝑧))
179, 14, 163imtr4d 203 . . . . 5 ((𝑥N𝑦N𝑧N) → ((𝑥 <N 𝑦𝑦 <N 𝑧) → 𝑥 <N 𝑧))
1817adantl 277 . . . 4 ((⊤ ∧ (𝑥N𝑦N𝑧N)) → ((𝑥 <N 𝑦𝑦 <N 𝑧) → 𝑥 <N 𝑧))
195, 18ispod 4306 . . 3 (⊤ → <N Po N)
20 pinn 7310 . . . . . 6 (𝑥N𝑥 ∈ ω)
21 pinn 7310 . . . . . 6 (𝑦N𝑦 ∈ ω)
22 nntri3or 6496 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
2320, 21, 22syl2an 289 . . . . 5 ((𝑥N𝑦N) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
24 biidd 172 . . . . . 6 ((𝑥N𝑦N) → (𝑥 = 𝑦𝑥 = 𝑦))
25 ltpiord 7320 . . . . . . 7 ((𝑦N𝑥N) → (𝑦 <N 𝑥𝑦𝑥))
2625ancoms 268 . . . . . 6 ((𝑥N𝑦N) → (𝑦 <N 𝑥𝑦𝑥))
2710, 24, 263orbi123d 1311 . . . . 5 ((𝑥N𝑦N) → ((𝑥 <N 𝑦𝑥 = 𝑦𝑦 <N 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
2823, 27mpbird 167 . . . 4 ((𝑥N𝑦N) → (𝑥 <N 𝑦𝑥 = 𝑦𝑦 <N 𝑥))
2928adantl 277 . . 3 ((⊤ ∧ (𝑥N𝑦N)) → (𝑥 <N 𝑦𝑥 = 𝑦𝑦 <N 𝑥))
3019, 29issod 4321 . 2 (⊤ → <N Or N)
3130mptru 1362 1 <N Or N
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3o 977  w3a 978  wtru 1354  wcel 2148   class class class wbr 4005   Or wor 4297  Oncon0 4365  ωcom 4591  Ncnpi 7273   <N clti 7276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-tr 4104  df-eprel 4291  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-ni 7305  df-lti 7308
This theorem is referenced by:  ltsonq  7399
  Copyright terms: Public domain W3C validator