ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsopi GIF version

Theorem ltsopi 7387
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
ltsopi <N Or N

Proof of Theorem ltsopi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elirrv 4584 . . . . . 6 ¬ 𝑥𝑥
2 ltpiord 7386 . . . . . . 7 ((𝑥N𝑥N) → (𝑥 <N 𝑥𝑥𝑥))
32anidms 397 . . . . . 6 (𝑥N → (𝑥 <N 𝑥𝑥𝑥))
41, 3mtbiri 676 . . . . 5 (𝑥N → ¬ 𝑥 <N 𝑥)
54adantl 277 . . . 4 ((⊤ ∧ 𝑥N) → ¬ 𝑥 <N 𝑥)
6 pion 7377 . . . . . . . 8 (𝑧N𝑧 ∈ On)
7 ontr1 4424 . . . . . . . 8 (𝑧 ∈ On → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
86, 7syl 14 . . . . . . 7 (𝑧N → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
983ad2ant3 1022 . . . . . 6 ((𝑥N𝑦N𝑧N) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
10 ltpiord 7386 . . . . . . . 8 ((𝑥N𝑦N) → (𝑥 <N 𝑦𝑥𝑦))
11103adant3 1019 . . . . . . 7 ((𝑥N𝑦N𝑧N) → (𝑥 <N 𝑦𝑥𝑦))
12 ltpiord 7386 . . . . . . . 8 ((𝑦N𝑧N) → (𝑦 <N 𝑧𝑦𝑧))
13123adant1 1017 . . . . . . 7 ((𝑥N𝑦N𝑧N) → (𝑦 <N 𝑧𝑦𝑧))
1411, 13anbi12d 473 . . . . . 6 ((𝑥N𝑦N𝑧N) → ((𝑥 <N 𝑦𝑦 <N 𝑧) ↔ (𝑥𝑦𝑦𝑧)))
15 ltpiord 7386 . . . . . . 7 ((𝑥N𝑧N) → (𝑥 <N 𝑧𝑥𝑧))
16153adant2 1018 . . . . . 6 ((𝑥N𝑦N𝑧N) → (𝑥 <N 𝑧𝑥𝑧))
179, 14, 163imtr4d 203 . . . . 5 ((𝑥N𝑦N𝑧N) → ((𝑥 <N 𝑦𝑦 <N 𝑧) → 𝑥 <N 𝑧))
1817adantl 277 . . . 4 ((⊤ ∧ (𝑥N𝑦N𝑧N)) → ((𝑥 <N 𝑦𝑦 <N 𝑧) → 𝑥 <N 𝑧))
195, 18ispod 4339 . . 3 (⊤ → <N Po N)
20 pinn 7376 . . . . . 6 (𝑥N𝑥 ∈ ω)
21 pinn 7376 . . . . . 6 (𝑦N𝑦 ∈ ω)
22 nntri3or 6551 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
2320, 21, 22syl2an 289 . . . . 5 ((𝑥N𝑦N) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
24 biidd 172 . . . . . 6 ((𝑥N𝑦N) → (𝑥 = 𝑦𝑥 = 𝑦))
25 ltpiord 7386 . . . . . . 7 ((𝑦N𝑥N) → (𝑦 <N 𝑥𝑦𝑥))
2625ancoms 268 . . . . . 6 ((𝑥N𝑦N) → (𝑦 <N 𝑥𝑦𝑥))
2710, 24, 263orbi123d 1322 . . . . 5 ((𝑥N𝑦N) → ((𝑥 <N 𝑦𝑥 = 𝑦𝑦 <N 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
2823, 27mpbird 167 . . . 4 ((𝑥N𝑦N) → (𝑥 <N 𝑦𝑥 = 𝑦𝑦 <N 𝑥))
2928adantl 277 . . 3 ((⊤ ∧ (𝑥N𝑦N)) → (𝑥 <N 𝑦𝑥 = 𝑦𝑦 <N 𝑥))
3019, 29issod 4354 . 2 (⊤ → <N Or N)
3130mptru 1373 1 <N Or N
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3o 979  w3a 980  wtru 1365  wcel 2167   class class class wbr 4033   Or wor 4330  Oncon0 4398  ωcom 4626  Ncnpi 7339   <N clti 7342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-tr 4132  df-eprel 4324  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-ni 7371  df-lti 7374
This theorem is referenced by:  ltsonq  7465
  Copyright terms: Public domain W3C validator