ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltsopi GIF version

Theorem ltsopi 7261
Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
ltsopi <N Or N

Proof of Theorem ltsopi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elirrv 4525 . . . . . 6 ¬ 𝑥𝑥
2 ltpiord 7260 . . . . . . 7 ((𝑥N𝑥N) → (𝑥 <N 𝑥𝑥𝑥))
32anidms 395 . . . . . 6 (𝑥N → (𝑥 <N 𝑥𝑥𝑥))
41, 3mtbiri 665 . . . . 5 (𝑥N → ¬ 𝑥 <N 𝑥)
54adantl 275 . . . 4 ((⊤ ∧ 𝑥N) → ¬ 𝑥 <N 𝑥)
6 pion 7251 . . . . . . . 8 (𝑧N𝑧 ∈ On)
7 ontr1 4367 . . . . . . . 8 (𝑧 ∈ On → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
86, 7syl 14 . . . . . . 7 (𝑧N → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
983ad2ant3 1010 . . . . . 6 ((𝑥N𝑦N𝑧N) → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
10 ltpiord 7260 . . . . . . . 8 ((𝑥N𝑦N) → (𝑥 <N 𝑦𝑥𝑦))
11103adant3 1007 . . . . . . 7 ((𝑥N𝑦N𝑧N) → (𝑥 <N 𝑦𝑥𝑦))
12 ltpiord 7260 . . . . . . . 8 ((𝑦N𝑧N) → (𝑦 <N 𝑧𝑦𝑧))
13123adant1 1005 . . . . . . 7 ((𝑥N𝑦N𝑧N) → (𝑦 <N 𝑧𝑦𝑧))
1411, 13anbi12d 465 . . . . . 6 ((𝑥N𝑦N𝑧N) → ((𝑥 <N 𝑦𝑦 <N 𝑧) ↔ (𝑥𝑦𝑦𝑧)))
15 ltpiord 7260 . . . . . . 7 ((𝑥N𝑧N) → (𝑥 <N 𝑧𝑥𝑧))
16153adant2 1006 . . . . . 6 ((𝑥N𝑦N𝑧N) → (𝑥 <N 𝑧𝑥𝑧))
179, 14, 163imtr4d 202 . . . . 5 ((𝑥N𝑦N𝑧N) → ((𝑥 <N 𝑦𝑦 <N 𝑧) → 𝑥 <N 𝑧))
1817adantl 275 . . . 4 ((⊤ ∧ (𝑥N𝑦N𝑧N)) → ((𝑥 <N 𝑦𝑦 <N 𝑧) → 𝑥 <N 𝑧))
195, 18ispod 4282 . . 3 (⊤ → <N Po N)
20 pinn 7250 . . . . . 6 (𝑥N𝑥 ∈ ω)
21 pinn 7250 . . . . . 6 (𝑦N𝑦 ∈ ω)
22 nntri3or 6461 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
2320, 21, 22syl2an 287 . . . . 5 ((𝑥N𝑦N) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
24 biidd 171 . . . . . 6 ((𝑥N𝑦N) → (𝑥 = 𝑦𝑥 = 𝑦))
25 ltpiord 7260 . . . . . . 7 ((𝑦N𝑥N) → (𝑦 <N 𝑥𝑦𝑥))
2625ancoms 266 . . . . . 6 ((𝑥N𝑦N) → (𝑦 <N 𝑥𝑦𝑥))
2710, 24, 263orbi123d 1301 . . . . 5 ((𝑥N𝑦N) → ((𝑥 <N 𝑦𝑥 = 𝑦𝑦 <N 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥)))
2823, 27mpbird 166 . . . 4 ((𝑥N𝑦N) → (𝑥 <N 𝑦𝑥 = 𝑦𝑦 <N 𝑥))
2928adantl 275 . . 3 ((⊤ ∧ (𝑥N𝑦N)) → (𝑥 <N 𝑦𝑥 = 𝑦𝑦 <N 𝑥))
3019, 29issod 4297 . 2 (⊤ → <N Or N)
3130mptru 1352 1 <N Or N
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3o 967  w3a 968  wtru 1344  wcel 2136   class class class wbr 3982   Or wor 4273  Oncon0 4341  ωcom 4567  Ncnpi 7213   <N clti 7216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-tr 4081  df-eprel 4267  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-ni 7245  df-lti 7248
This theorem is referenced by:  ltsonq  7339
  Copyright terms: Public domain W3C validator