| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > swopolem | GIF version | ||
| Description: Perform the substitutions into the strict weak ordering law. (Contributed by Mario Carneiro, 31-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| swopolem.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) | 
| Ref | Expression | 
|---|---|
| swopolem | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | swopolem.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) | |
| 2 | 1 | ralrimivvva 2580 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) | 
| 3 | breq1 4036 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝑅𝑦 ↔ 𝑋𝑅𝑦)) | |
| 4 | breq1 4036 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥𝑅𝑧 ↔ 𝑋𝑅𝑧)) | |
| 5 | 4 | orbi1d 792 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦) ↔ (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑦))) | 
| 6 | 3, 5 | imbi12d 234 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ (𝑋𝑅𝑦 → (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑦)))) | 
| 7 | breq2 4037 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋𝑅𝑦 ↔ 𝑋𝑅𝑌)) | |
| 8 | breq2 4037 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑧𝑅𝑦 ↔ 𝑧𝑅𝑌)) | |
| 9 | 8 | orbi2d 791 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝑋𝑅𝑧 ∨ 𝑧𝑅𝑦) ↔ (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑌))) | 
| 10 | 7, 9 | imbi12d 234 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋𝑅𝑦 → (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ (𝑋𝑅𝑌 → (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑌)))) | 
| 11 | breq2 4037 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑋𝑅𝑧 ↔ 𝑋𝑅𝑍)) | |
| 12 | breq1 4036 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑧𝑅𝑌 ↔ 𝑍𝑅𝑌)) | |
| 13 | 11, 12 | orbi12d 794 | . . . 4 ⊢ (𝑧 = 𝑍 → ((𝑋𝑅𝑧 ∨ 𝑧𝑅𝑌) ↔ (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌))) | 
| 14 | 13 | imbi2d 230 | . . 3 ⊢ (𝑧 = 𝑍 → ((𝑋𝑅𝑌 → (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑌)) ↔ (𝑋𝑅𝑌 → (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌)))) | 
| 15 | 6, 10, 14 | rspc3v 2884 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌)))) | 
| 16 | 2, 15 | mpan9 281 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∀wral 2475 class class class wbr 4033 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 | 
| This theorem is referenced by: swoer 6620 swoord1 6621 swoord2 6622 | 
| Copyright terms: Public domain | W3C validator |