ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swopolem GIF version

Theorem swopolem 4290
Description: Perform the substitutions into the strict weak ordering law. (Contributed by Mario Carneiro, 31-Dec-2014.)
Hypothesis
Ref Expression
swopolem.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))
Assertion
Ref Expression
swopolem ((𝜑 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍𝑍𝑅𝑌)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝜑,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑦,𝑌,𝑧   𝑧,𝑍
Allowed substitution hints:   𝑌(𝑥)   𝑍(𝑥,𝑦)

Proof of Theorem swopolem
StepHypRef Expression
1 swopolem.1 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))
21ralrimivvva 2553 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)))
3 breq1 3992 . . . 4 (𝑥 = 𝑋 → (𝑥𝑅𝑦𝑋𝑅𝑦))
4 breq1 3992 . . . . 5 (𝑥 = 𝑋 → (𝑥𝑅𝑧𝑋𝑅𝑧))
54orbi1d 786 . . . 4 (𝑥 = 𝑋 → ((𝑥𝑅𝑧𝑧𝑅𝑦) ↔ (𝑋𝑅𝑧𝑧𝑅𝑦)))
63, 5imbi12d 233 . . 3 (𝑥 = 𝑋 → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) ↔ (𝑋𝑅𝑦 → (𝑋𝑅𝑧𝑧𝑅𝑦))))
7 breq2 3993 . . . 4 (𝑦 = 𝑌 → (𝑋𝑅𝑦𝑋𝑅𝑌))
8 breq2 3993 . . . . 5 (𝑦 = 𝑌 → (𝑧𝑅𝑦𝑧𝑅𝑌))
98orbi2d 785 . . . 4 (𝑦 = 𝑌 → ((𝑋𝑅𝑧𝑧𝑅𝑦) ↔ (𝑋𝑅𝑧𝑧𝑅𝑌)))
107, 9imbi12d 233 . . 3 (𝑦 = 𝑌 → ((𝑋𝑅𝑦 → (𝑋𝑅𝑧𝑧𝑅𝑦)) ↔ (𝑋𝑅𝑌 → (𝑋𝑅𝑧𝑧𝑅𝑌))))
11 breq2 3993 . . . . 5 (𝑧 = 𝑍 → (𝑋𝑅𝑧𝑋𝑅𝑍))
12 breq1 3992 . . . . 5 (𝑧 = 𝑍 → (𝑧𝑅𝑌𝑍𝑅𝑌))
1311, 12orbi12d 788 . . . 4 (𝑧 = 𝑍 → ((𝑋𝑅𝑧𝑧𝑅𝑌) ↔ (𝑋𝑅𝑍𝑍𝑅𝑌)))
1413imbi2d 229 . . 3 (𝑧 = 𝑍 → ((𝑋𝑅𝑌 → (𝑋𝑅𝑧𝑧𝑅𝑌)) ↔ (𝑋𝑅𝑌 → (𝑋𝑅𝑍𝑍𝑅𝑌))))
156, 10, 14rspc3v 2850 . 2 ((𝑋𝐴𝑌𝐴𝑍𝐴) → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧𝑧𝑅𝑦)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍𝑍𝑅𝑌))))
162, 15mpan9 279 1 ((𝜑 ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍𝑍𝑅𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 703  w3a 973   = wceq 1348  wcel 2141  wral 2448   class class class wbr 3989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990
This theorem is referenced by:  swoer  6541  swoord1  6542  swoord2  6543
  Copyright terms: Public domain W3C validator