Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > swopolem | GIF version |
Description: Perform the substitutions into the strict weak ordering law. (Contributed by Mario Carneiro, 31-Dec-2014.) |
Ref | Expression |
---|---|
swopolem.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) |
Ref | Expression |
---|---|
swopolem | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swopolem.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) | |
2 | 1 | ralrimivvva 2549 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) |
3 | breq1 3985 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝑅𝑦 ↔ 𝑋𝑅𝑦)) | |
4 | breq1 3985 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥𝑅𝑧 ↔ 𝑋𝑅𝑧)) | |
5 | 4 | orbi1d 781 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦) ↔ (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑦))) |
6 | 3, 5 | imbi12d 233 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ (𝑋𝑅𝑦 → (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
7 | breq2 3986 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋𝑅𝑦 ↔ 𝑋𝑅𝑌)) | |
8 | breq2 3986 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑧𝑅𝑦 ↔ 𝑧𝑅𝑌)) | |
9 | 8 | orbi2d 780 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝑋𝑅𝑧 ∨ 𝑧𝑅𝑦) ↔ (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑌))) |
10 | 7, 9 | imbi12d 233 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋𝑅𝑦 → (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ (𝑋𝑅𝑌 → (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑌)))) |
11 | breq2 3986 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑋𝑅𝑧 ↔ 𝑋𝑅𝑍)) | |
12 | breq1 3985 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑧𝑅𝑌 ↔ 𝑍𝑅𝑌)) | |
13 | 11, 12 | orbi12d 783 | . . . 4 ⊢ (𝑧 = 𝑍 → ((𝑋𝑅𝑧 ∨ 𝑧𝑅𝑌) ↔ (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌))) |
14 | 13 | imbi2d 229 | . . 3 ⊢ (𝑧 = 𝑍 → ((𝑋𝑅𝑌 → (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑌)) ↔ (𝑋𝑅𝑌 → (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌)))) |
15 | 6, 10, 14 | rspc3v 2846 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌)))) |
16 | 2, 15 | mpan9 279 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 698 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 ∀wral 2444 class class class wbr 3982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 |
This theorem is referenced by: swoer 6529 swoord1 6530 swoord2 6531 |
Copyright terms: Public domain | W3C validator |