![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvixp | GIF version |
Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 20-Jun-2011.) |
Ref | Expression |
---|---|
cbvixp.1 | ⊢ Ⅎ𝑦𝐵 |
cbvixp.2 | ⊢ Ⅎ𝑥𝐶 |
cbvixp.3 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvixp | ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvixp.1 | . . . . . 6 ⊢ Ⅎ𝑦𝐵 | |
2 | 1 | nfel2 2248 | . . . . 5 ⊢ Ⅎ𝑦(𝑓‘𝑥) ∈ 𝐵 |
3 | cbvixp.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
4 | 3 | nfel2 2248 | . . . . 5 ⊢ Ⅎ𝑥(𝑓‘𝑦) ∈ 𝐶 |
5 | fveq2 5340 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑓‘𝑥) = (𝑓‘𝑦)) | |
6 | cbvixp.3 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
7 | 5, 6 | eleq12d 2165 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑓‘𝑥) ∈ 𝐵 ↔ (𝑓‘𝑦) ∈ 𝐶)) |
8 | 2, 4, 7 | cbvral 2600 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ∈ 𝐶) |
9 | 8 | anbi2i 446 | . . 3 ⊢ ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ∈ 𝐶)) |
10 | 9 | abbii 2210 | . 2 ⊢ {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ∈ 𝐶)} |
11 | dfixp 6497 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} | |
12 | dfixp 6497 | . 2 ⊢ X𝑦 ∈ 𝐴 𝐶 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ∈ 𝐶)} | |
13 | 10, 11, 12 | 3eqtr4i 2125 | 1 ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1296 ∈ wcel 1445 {cab 2081 Ⅎwnfc 2222 ∀wral 2370 Fn wfn 5044 ‘cfv 5049 Xcixp 6495 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-un 3017 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-iota 5014 df-fn 5052 df-fv 5057 df-ixp 6496 |
This theorem is referenced by: cbvixpv 6513 mptelixpg 6531 |
Copyright terms: Public domain | W3C validator |