ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvixp GIF version

Theorem cbvixp 6672
Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 20-Jun-2011.)
Hypotheses
Ref Expression
cbvixp.1 𝑦𝐵
cbvixp.2 𝑥𝐶
cbvixp.3 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvixp X𝑥𝐴 𝐵 = X𝑦𝐴 𝐶
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbvixp
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cbvixp.1 . . . . . 6 𝑦𝐵
21nfel2 2319 . . . . 5 𝑦(𝑓𝑥) ∈ 𝐵
3 cbvixp.2 . . . . . 6 𝑥𝐶
43nfel2 2319 . . . . 5 𝑥(𝑓𝑦) ∈ 𝐶
5 fveq2 5480 . . . . . 6 (𝑥 = 𝑦 → (𝑓𝑥) = (𝑓𝑦))
6 cbvixp.3 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝐶)
75, 6eleq12d 2235 . . . . 5 (𝑥 = 𝑦 → ((𝑓𝑥) ∈ 𝐵 ↔ (𝑓𝑦) ∈ 𝐶))
82, 4, 7cbvral 2685 . . . 4 (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ↔ ∀𝑦𝐴 (𝑓𝑦) ∈ 𝐶)
98anbi2i 453 . . 3 ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ∈ 𝐶))
109abbii 2280 . 2 {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)} = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ∈ 𝐶)}
11 dfixp 6657 . 2 X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
12 dfixp 6657 . 2 X𝑦𝐴 𝐶 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ∈ 𝐶)}
1310, 11, 123eqtr4i 2195 1 X𝑥𝐴 𝐵 = X𝑦𝐴 𝐶
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1342  wcel 2135  {cab 2150  wnfc 2293  wral 2442   Fn wfn 5177  cfv 5182  Xcixp 6655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2723  df-un 3115  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-iota 5147  df-fn 5185  df-fv 5190  df-ixp 6656
This theorem is referenced by:  cbvixpv  6673  mptelixpg  6691
  Copyright terms: Public domain W3C validator