![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvixp | GIF version |
Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 20-Jun-2011.) |
Ref | Expression |
---|---|
cbvixp.1 | ⊢ Ⅎ𝑦𝐵 |
cbvixp.2 | ⊢ Ⅎ𝑥𝐶 |
cbvixp.3 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvixp | ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvixp.1 | . . . . . 6 ⊢ Ⅎ𝑦𝐵 | |
2 | 1 | nfel2 2332 | . . . . 5 ⊢ Ⅎ𝑦(𝑓‘𝑥) ∈ 𝐵 |
3 | cbvixp.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
4 | 3 | nfel2 2332 | . . . . 5 ⊢ Ⅎ𝑥(𝑓‘𝑦) ∈ 𝐶 |
5 | fveq2 5515 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑓‘𝑥) = (𝑓‘𝑦)) | |
6 | cbvixp.3 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
7 | 5, 6 | eleq12d 2248 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑓‘𝑥) ∈ 𝐵 ↔ (𝑓‘𝑦) ∈ 𝐶)) |
8 | 2, 4, 7 | cbvral 2699 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ∈ 𝐶) |
9 | 8 | anbi2i 457 | . . 3 ⊢ ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ∈ 𝐶)) |
10 | 9 | abbii 2293 | . 2 ⊢ {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ∈ 𝐶)} |
11 | dfixp 6699 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} | |
12 | dfixp 6699 | . 2 ⊢ X𝑦 ∈ 𝐴 𝐶 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ∈ 𝐶)} | |
13 | 10, 11, 12 | 3eqtr4i 2208 | 1 ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 {cab 2163 Ⅎwnfc 2306 ∀wral 2455 Fn wfn 5211 ‘cfv 5216 Xcixp 6697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-un 3133 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-iota 5178 df-fn 5219 df-fv 5224 df-ixp 6698 |
This theorem is referenced by: cbvixpv 6715 mptelixpg 6733 |
Copyright terms: Public domain | W3C validator |