| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cbvixp | GIF version | ||
| Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 20-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| cbvixp.1 | ⊢ Ⅎ𝑦𝐵 | 
| cbvixp.2 | ⊢ Ⅎ𝑥𝐶 | 
| cbvixp.3 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | 
| Ref | Expression | 
|---|---|
| cbvixp | ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbvixp.1 | . . . . . 6 ⊢ Ⅎ𝑦𝐵 | |
| 2 | 1 | nfel2 2352 | . . . . 5 ⊢ Ⅎ𝑦(𝑓‘𝑥) ∈ 𝐵 | 
| 3 | cbvixp.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
| 4 | 3 | nfel2 2352 | . . . . 5 ⊢ Ⅎ𝑥(𝑓‘𝑦) ∈ 𝐶 | 
| 5 | fveq2 5558 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑓‘𝑥) = (𝑓‘𝑦)) | |
| 6 | cbvixp.3 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 7 | 5, 6 | eleq12d 2267 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑓‘𝑥) ∈ 𝐵 ↔ (𝑓‘𝑦) ∈ 𝐶)) | 
| 8 | 2, 4, 7 | cbvral 2725 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ∈ 𝐶) | 
| 9 | 8 | anbi2i 457 | . . 3 ⊢ ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ∈ 𝐶)) | 
| 10 | 9 | abbii 2312 | . 2 ⊢ {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ∈ 𝐶)} | 
| 11 | dfixp 6759 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} | |
| 12 | dfixp 6759 | . 2 ⊢ X𝑦 ∈ 𝐴 𝐶 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ∈ 𝐶)} | |
| 13 | 10, 11, 12 | 3eqtr4i 2227 | 1 ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 {cab 2182 Ⅎwnfc 2326 ∀wral 2475 Fn wfn 5253 ‘cfv 5258 Xcixp 6757 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fn 5261 df-fv 5266 df-ixp 6758 | 
| This theorem is referenced by: cbvixpv 6775 mptelixpg 6793 | 
| Copyright terms: Public domain | W3C validator |