| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstri | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| eqsstr.1 | ⊢ 𝐴 = 𝐵 |
| eqsstr.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| eqsstri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstr.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
| 2 | eqsstr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | sseq1i 3250 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: eqsstrri 3257 ssrab2 3309 ssrab3 3310 rabssab 3312 difdifdirss 3576 ifssun 3617 opabss 4147 brab2ga 4793 relopabi 4846 dmopabss 4934 resss 5028 relres 5032 exse2 5101 rnin 5137 rnxpss 5159 cnvcnvss 5182 dmmptss 5224 cocnvss 5253 fnres 5439 resasplitss 5504 fabexg 5512 f0 5515 ffvresb 5797 isoini2 5942 dmoprabss 6085 elmpocl 6199 tposssxp 6393 dftpos4 6407 smores 6436 smores2 6438 iordsmo 6441 swoer 6706 swoord1 6707 swoord2 6708 ecss 6721 ecopovsym 6776 ecopovtrn 6777 ecopover 6778 ecopovsymg 6779 ecopovtrng 6780 ecopoverg 6781 opabfi 7096 sbthlem7 7126 caserel 7250 ctssdccl 7274 pw1on 7407 pinn 7492 niex 7495 ltrelpi 7507 dmaddpi 7508 dmmulpi 7509 enqex 7543 ltrelnq 7548 enq0ex 7622 ltrelpr 7688 enrex 7920 ltrelsr 7921 ltrelre 8016 axaddf 8051 axmulf 8052 ltrelxr 8203 lerelxr 8205 nn0ssre 9369 nn0ssz 9460 rpre 9852 fz1ssfz0 10309 infssuzcldc 10450 swrd00g 11176 cau3 11621 fsum3cvg3 11902 isumshft 11996 explecnv 12011 clim2prod 12045 ntrivcvgap 12054 dvdszrcl 12298 dvdsflip 12357 phimullem 12742 eulerthlemfi 12745 eulerthlemrprm 12746 eulerthlema 12747 eulerthlemh 12748 eulerthlemth 12749 4sqlem1 12906 4sqlem19 12927 ctiunctlemuom 13002 structcnvcnv 13043 fvsetsid 13061 strleun 13132 dmtopon 14691 lmfval 14860 lmbrf 14883 cnconst2 14901 txuni2 14924 xmeter 15104 ivthinclemex 15310 dvidsslem 15361 dvconstss 15366 dvrecap 15381 lgsquadlemofi 15749 lgsquadlem1 15750 lgsquadlem2 15751 2sqlem7 15794 |
| Copyright terms: Public domain | W3C validator |