| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstri | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| eqsstr.1 | ⊢ 𝐴 = 𝐵 |
| eqsstr.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| eqsstri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstr.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
| 2 | eqsstr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | sseq1i 3218 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: eqsstrri 3225 ssrab2 3277 ssrab3 3278 rabssab 3280 difdifdirss 3544 ifssun 3584 opabss 4107 brab2ga 4748 relopabi 4801 dmopabss 4888 resss 4980 relres 4984 exse2 5053 rnin 5089 rnxpss 5111 cnvcnvss 5134 dmmptss 5176 cocnvss 5205 fnres 5386 resasplitss 5449 fabexg 5457 f0 5460 ffvresb 5737 isoini2 5878 dmoprabss 6017 elmpocl 6131 tposssxp 6325 dftpos4 6339 smores 6368 smores2 6370 iordsmo 6373 swoer 6638 swoord1 6639 swoord2 6640 ecss 6653 ecopovsym 6708 ecopovtrn 6709 ecopover 6710 ecopovsymg 6711 ecopovtrng 6712 ecopoverg 6713 opabfi 7017 sbthlem7 7047 caserel 7171 ctssdccl 7195 pw1on 7320 pinn 7404 niex 7407 ltrelpi 7419 dmaddpi 7420 dmmulpi 7421 enqex 7455 ltrelnq 7460 enq0ex 7534 ltrelpr 7600 enrex 7832 ltrelsr 7833 ltrelre 7928 axaddf 7963 axmulf 7964 ltrelxr 8115 lerelxr 8117 nn0ssre 9281 nn0ssz 9372 rpre 9764 fz1ssfz0 10221 infssuzcldc 10359 cau3 11345 fsum3cvg3 11626 isumshft 11720 explecnv 11735 clim2prod 11769 ntrivcvgap 11778 dvdszrcl 12022 dvdsflip 12081 phimullem 12466 eulerthlemfi 12469 eulerthlemrprm 12470 eulerthlema 12471 eulerthlemh 12472 eulerthlemth 12473 4sqlem1 12630 4sqlem19 12651 ctiunctlemuom 12726 structcnvcnv 12767 fvsetsid 12785 strleun 12855 dmtopon 14413 lmfval 14582 lmbrf 14605 cnconst2 14623 txuni2 14646 xmeter 14826 ivthinclemex 15032 dvidsslem 15083 dvconstss 15088 dvrecap 15103 lgsquadlemofi 15471 lgsquadlem1 15472 lgsquadlem2 15473 2sqlem7 15516 |
| Copyright terms: Public domain | W3C validator |