Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsstri | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
eqsstr.1 | ⊢ 𝐴 = 𝐵 |
eqsstr.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
eqsstri | ⊢ 𝐴 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstr.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
2 | eqsstr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | sseq1i 3150 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
4 | 1, 3 | mpbir 145 | 1 ⊢ 𝐴 ⊆ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1332 ⊆ wss 3098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-11 1483 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-in 3104 df-ss 3111 |
This theorem is referenced by: eqsstrri 3157 ssrab2 3209 rabssab 3211 difdifdirss 3474 ifssun 3515 opabss 4024 brab2ga 4654 relopabi 4705 dmopabss 4791 resss 4883 relres 4887 exse2 4953 rnin 4988 rnxpss 5010 cnvcnvss 5033 dmmptss 5075 cocnvss 5104 fnres 5279 resasplitss 5342 fabexg 5350 f0 5353 ffvresb 5623 isoini2 5760 dmoprabss 5893 elmpocl 6008 tposssxp 6186 dftpos4 6200 smores 6229 smores2 6231 iordsmo 6234 swoer 6497 swoord1 6498 swoord2 6499 ecss 6510 ecopovsym 6565 ecopovtrn 6566 ecopover 6567 ecopovsymg 6568 ecopovtrng 6569 ecopoverg 6570 sbthlem7 6896 caserel 7017 ctssdccl 7041 pw1on 7140 pinn 7208 niex 7211 ltrelpi 7223 dmaddpi 7224 dmmulpi 7225 enqex 7259 ltrelnq 7264 enq0ex 7338 ltrelpr 7404 enrex 7636 ltrelsr 7637 ltrelre 7732 axaddf 7767 axmulf 7768 ltrelxr 7917 lerelxr 7919 nn0ssre 9073 nn0ssz 9164 rpre 9545 fz1ssfz0 9997 cau3 10992 fsum3cvg3 11270 isumshft 11364 explecnv 11379 clim2prod 11413 ntrivcvgap 11422 dvdszrcl 11665 dvdsflip 11716 infssuzcldc 11811 phimullem 12068 ctiunctlemuom 12116 structcnvcnv 12145 fvsetsid 12163 strleun 12218 dmtopon 12360 lmfval 12531 lmbrf 12554 cnconst2 12572 txuni2 12595 xmeter 12775 ivthinclemex 12959 dvrecap 13016 |
Copyright terms: Public domain | W3C validator |