| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstri | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| eqsstr.1 | ⊢ 𝐴 = 𝐵 |
| eqsstr.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| eqsstri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstr.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
| 2 | eqsstr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | sseq1i 3223 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: eqsstrri 3230 ssrab2 3282 ssrab3 3283 rabssab 3285 difdifdirss 3549 ifssun 3590 opabss 4116 brab2ga 4758 relopabi 4811 dmopabss 4899 resss 4992 relres 4996 exse2 5065 rnin 5101 rnxpss 5123 cnvcnvss 5146 dmmptss 5188 cocnvss 5217 fnres 5402 resasplitss 5467 fabexg 5475 f0 5478 ffvresb 5756 isoini2 5901 dmoprabss 6040 elmpocl 6154 tposssxp 6348 dftpos4 6362 smores 6391 smores2 6393 iordsmo 6396 swoer 6661 swoord1 6662 swoord2 6663 ecss 6676 ecopovsym 6731 ecopovtrn 6732 ecopover 6733 ecopovsymg 6734 ecopovtrng 6735 ecopoverg 6736 opabfi 7050 sbthlem7 7080 caserel 7204 ctssdccl 7228 pw1on 7357 pinn 7442 niex 7445 ltrelpi 7457 dmaddpi 7458 dmmulpi 7459 enqex 7493 ltrelnq 7498 enq0ex 7572 ltrelpr 7638 enrex 7870 ltrelsr 7871 ltrelre 7966 axaddf 8001 axmulf 8002 ltrelxr 8153 lerelxr 8155 nn0ssre 9319 nn0ssz 9410 rpre 9802 fz1ssfz0 10259 infssuzcldc 10400 swrd00g 11125 cau3 11501 fsum3cvg3 11782 isumshft 11876 explecnv 11891 clim2prod 11925 ntrivcvgap 11934 dvdszrcl 12178 dvdsflip 12237 phimullem 12622 eulerthlemfi 12625 eulerthlemrprm 12626 eulerthlema 12627 eulerthlemh 12628 eulerthlemth 12629 4sqlem1 12786 4sqlem19 12807 ctiunctlemuom 12882 structcnvcnv 12923 fvsetsid 12941 strleun 13011 dmtopon 14570 lmfval 14739 lmbrf 14762 cnconst2 14780 txuni2 14803 xmeter 14983 ivthinclemex 15189 dvidsslem 15240 dvconstss 15245 dvrecap 15260 lgsquadlemofi 15628 lgsquadlem1 15629 lgsquadlem2 15630 2sqlem7 15673 |
| Copyright terms: Public domain | W3C validator |