Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsstri | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
eqsstr.1 | ⊢ 𝐴 = 𝐵 |
eqsstr.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
eqsstri | ⊢ 𝐴 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstr.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
2 | eqsstr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | sseq1i 3167 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
4 | 1, 3 | mpbir 145 | 1 ⊢ 𝐴 ⊆ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ⊆ wss 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3121 df-ss 3128 |
This theorem is referenced by: eqsstrri 3174 ssrab2 3226 ssrab3 3227 rabssab 3229 difdifdirss 3492 ifssun 3533 opabss 4045 brab2ga 4678 relopabi 4729 dmopabss 4815 resss 4907 relres 4911 exse2 4977 rnin 5012 rnxpss 5034 cnvcnvss 5057 dmmptss 5099 cocnvss 5128 fnres 5303 resasplitss 5366 fabexg 5374 f0 5377 ffvresb 5647 isoini2 5786 dmoprabss 5920 elmpocl 6035 tposssxp 6213 dftpos4 6227 smores 6256 smores2 6258 iordsmo 6261 swoer 6525 swoord1 6526 swoord2 6527 ecss 6538 ecopovsym 6593 ecopovtrn 6594 ecopover 6595 ecopovsymg 6596 ecopovtrng 6597 ecopoverg 6598 sbthlem7 6924 caserel 7048 ctssdccl 7072 pw1on 7178 pinn 7246 niex 7249 ltrelpi 7261 dmaddpi 7262 dmmulpi 7263 enqex 7297 ltrelnq 7302 enq0ex 7376 ltrelpr 7442 enrex 7674 ltrelsr 7675 ltrelre 7770 axaddf 7805 axmulf 7806 ltrelxr 7955 lerelxr 7957 nn0ssre 9114 nn0ssz 9205 rpre 9592 fz1ssfz0 10048 cau3 11053 fsum3cvg3 11333 isumshft 11427 explecnv 11442 clim2prod 11476 ntrivcvgap 11485 dvdszrcl 11728 dvdsflip 11785 infssuzcldc 11880 phimullem 12153 eulerthlemfi 12156 eulerthlemrprm 12157 eulerthlema 12158 eulerthlemh 12159 eulerthlemth 12160 4sqlem1 12314 ctiunctlemuom 12365 structcnvcnv 12406 fvsetsid 12424 strleun 12479 dmtopon 12621 lmfval 12792 lmbrf 12815 cnconst2 12833 txuni2 12856 xmeter 13036 ivthinclemex 13220 dvrecap 13277 2sqlem7 13557 |
Copyright terms: Public domain | W3C validator |