| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstri | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| eqsstr.1 | ⊢ 𝐴 = 𝐵 |
| eqsstr.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| eqsstri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstr.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
| 2 | eqsstr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | sseq1i 3210 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: eqsstrri 3217 ssrab2 3269 ssrab3 3270 rabssab 3272 difdifdirss 3536 ifssun 3576 opabss 4098 brab2ga 4739 relopabi 4792 dmopabss 4879 resss 4971 relres 4975 exse2 5044 rnin 5080 rnxpss 5102 cnvcnvss 5125 dmmptss 5167 cocnvss 5196 fnres 5377 resasplitss 5440 fabexg 5448 f0 5451 ffvresb 5728 isoini2 5869 dmoprabss 6008 elmpocl 6122 tposssxp 6316 dftpos4 6330 smores 6359 smores2 6361 iordsmo 6364 swoer 6629 swoord1 6630 swoord2 6631 ecss 6644 ecopovsym 6699 ecopovtrn 6700 ecopover 6701 ecopovsymg 6702 ecopovtrng 6703 ecopoverg 6704 opabfi 7008 sbthlem7 7038 caserel 7162 ctssdccl 7186 pw1on 7311 pinn 7395 niex 7398 ltrelpi 7410 dmaddpi 7411 dmmulpi 7412 enqex 7446 ltrelnq 7451 enq0ex 7525 ltrelpr 7591 enrex 7823 ltrelsr 7824 ltrelre 7919 axaddf 7954 axmulf 7955 ltrelxr 8106 lerelxr 8108 nn0ssre 9272 nn0ssz 9363 rpre 9754 fz1ssfz0 10211 infssuzcldc 10344 cau3 11299 fsum3cvg3 11580 isumshft 11674 explecnv 11689 clim2prod 11723 ntrivcvgap 11732 dvdszrcl 11976 dvdsflip 12035 phimullem 12420 eulerthlemfi 12423 eulerthlemrprm 12424 eulerthlema 12425 eulerthlemh 12426 eulerthlemth 12427 4sqlem1 12584 4sqlem19 12605 ctiunctlemuom 12680 structcnvcnv 12721 fvsetsid 12739 strleun 12809 dmtopon 14367 lmfval 14536 lmbrf 14559 cnconst2 14577 txuni2 14600 xmeter 14780 ivthinclemex 14986 dvidsslem 15037 dvconstss 15042 dvrecap 15057 lgsquadlemofi 15425 lgsquadlem1 15426 lgsquadlem2 15427 2sqlem7 15470 |
| Copyright terms: Public domain | W3C validator |