![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqsstri | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
eqsstr.1 | ⊢ 𝐴 = 𝐵 |
eqsstr.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
eqsstri | ⊢ 𝐴 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstr.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
2 | eqsstr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | sseq1i 3205 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
4 | 1, 3 | mpbir 146 | 1 ⊢ 𝐴 ⊆ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: eqsstrri 3212 ssrab2 3264 ssrab3 3265 rabssab 3267 difdifdirss 3531 ifssun 3571 opabss 4093 brab2ga 4734 relopabi 4787 dmopabss 4874 resss 4966 relres 4970 exse2 5039 rnin 5075 rnxpss 5097 cnvcnvss 5120 dmmptss 5162 cocnvss 5191 fnres 5370 resasplitss 5433 fabexg 5441 f0 5444 ffvresb 5721 isoini2 5862 dmoprabss 6000 elmpocl 6113 tposssxp 6302 dftpos4 6316 smores 6345 smores2 6347 iordsmo 6350 swoer 6615 swoord1 6616 swoord2 6617 ecss 6630 ecopovsym 6685 ecopovtrn 6686 ecopover 6687 ecopovsymg 6688 ecopovtrng 6689 ecopoverg 6690 opabfi 6992 sbthlem7 7022 caserel 7146 ctssdccl 7170 pw1on 7286 pinn 7369 niex 7372 ltrelpi 7384 dmaddpi 7385 dmmulpi 7386 enqex 7420 ltrelnq 7425 enq0ex 7499 ltrelpr 7565 enrex 7797 ltrelsr 7798 ltrelre 7893 axaddf 7928 axmulf 7929 ltrelxr 8080 lerelxr 8082 nn0ssre 9244 nn0ssz 9335 rpre 9726 fz1ssfz0 10183 cau3 11259 fsum3cvg3 11539 isumshft 11633 explecnv 11648 clim2prod 11682 ntrivcvgap 11691 dvdszrcl 11935 dvdsflip 11993 infssuzcldc 12088 phimullem 12363 eulerthlemfi 12366 eulerthlemrprm 12367 eulerthlema 12368 eulerthlemh 12369 eulerthlemth 12370 4sqlem1 12526 4sqlem19 12547 ctiunctlemuom 12593 structcnvcnv 12634 fvsetsid 12652 strleun 12722 dmtopon 14191 lmfval 14360 lmbrf 14383 cnconst2 14401 txuni2 14424 xmeter 14604 ivthinclemex 14796 dvrecap 14862 lgsquadlem1 15191 2sqlem7 15208 |
Copyright terms: Public domain | W3C validator |