Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsstri | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.) |
Ref | Expression |
---|---|
eqsstr.1 | ⊢ 𝐴 = 𝐵 |
eqsstr.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
eqsstri | ⊢ 𝐴 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstr.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
2 | eqsstr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | sseq1i 3179 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
4 | 1, 3 | mpbir 146 | 1 ⊢ 𝐴 ⊆ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ⊆ wss 3127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-in 3133 df-ss 3140 |
This theorem is referenced by: eqsstrri 3186 ssrab2 3238 ssrab3 3239 rabssab 3241 difdifdirss 3505 ifssun 3546 opabss 4062 brab2ga 4695 relopabi 4746 dmopabss 4832 resss 4924 relres 4928 exse2 4995 rnin 5030 rnxpss 5052 cnvcnvss 5075 dmmptss 5117 cocnvss 5146 fnres 5324 resasplitss 5387 fabexg 5395 f0 5398 ffvresb 5671 isoini2 5810 dmoprabss 5947 elmpocl 6059 tposssxp 6240 dftpos4 6254 smores 6283 smores2 6285 iordsmo 6288 swoer 6553 swoord1 6554 swoord2 6555 ecss 6566 ecopovsym 6621 ecopovtrn 6622 ecopover 6623 ecopovsymg 6624 ecopovtrng 6625 ecopoverg 6626 sbthlem7 6952 caserel 7076 ctssdccl 7100 pw1on 7215 pinn 7283 niex 7286 ltrelpi 7298 dmaddpi 7299 dmmulpi 7300 enqex 7334 ltrelnq 7339 enq0ex 7413 ltrelpr 7479 enrex 7711 ltrelsr 7712 ltrelre 7807 axaddf 7842 axmulf 7843 ltrelxr 7992 lerelxr 7994 nn0ssre 9151 nn0ssz 9242 rpre 9629 fz1ssfz0 10085 cau3 11090 fsum3cvg3 11370 isumshft 11464 explecnv 11479 clim2prod 11513 ntrivcvgap 11522 dvdszrcl 11765 dvdsflip 11822 infssuzcldc 11917 phimullem 12190 eulerthlemfi 12193 eulerthlemrprm 12194 eulerthlema 12195 eulerthlemh 12196 eulerthlemth 12197 4sqlem1 12351 ctiunctlemuom 12402 structcnvcnv 12443 fvsetsid 12461 strleun 12518 dmtopon 13090 lmfval 13261 lmbrf 13284 cnconst2 13302 txuni2 13325 xmeter 13505 ivthinclemex 13689 dvrecap 13746 2sqlem7 14026 |
Copyright terms: Public domain | W3C validator |