| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstri | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| eqsstr.1 | ⊢ 𝐴 = 𝐵 |
| eqsstr.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| eqsstri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstr.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
| 2 | eqsstr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | sseq1i 3209 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: eqsstrri 3216 ssrab2 3268 ssrab3 3269 rabssab 3271 difdifdirss 3535 ifssun 3575 opabss 4097 brab2ga 4738 relopabi 4791 dmopabss 4878 resss 4970 relres 4974 exse2 5043 rnin 5079 rnxpss 5101 cnvcnvss 5124 dmmptss 5166 cocnvss 5195 fnres 5374 resasplitss 5437 fabexg 5445 f0 5448 ffvresb 5725 isoini2 5866 dmoprabss 6004 elmpocl 6118 tposssxp 6307 dftpos4 6321 smores 6350 smores2 6352 iordsmo 6355 swoer 6620 swoord1 6621 swoord2 6622 ecss 6635 ecopovsym 6690 ecopovtrn 6691 ecopover 6692 ecopovsymg 6693 ecopovtrng 6694 ecopoverg 6695 opabfi 6999 sbthlem7 7029 caserel 7153 ctssdccl 7177 pw1on 7293 pinn 7376 niex 7379 ltrelpi 7391 dmaddpi 7392 dmmulpi 7393 enqex 7427 ltrelnq 7432 enq0ex 7506 ltrelpr 7572 enrex 7804 ltrelsr 7805 ltrelre 7900 axaddf 7935 axmulf 7936 ltrelxr 8087 lerelxr 8089 nn0ssre 9253 nn0ssz 9344 rpre 9735 fz1ssfz0 10192 infssuzcldc 10325 cau3 11280 fsum3cvg3 11561 isumshft 11655 explecnv 11670 clim2prod 11704 ntrivcvgap 11713 dvdszrcl 11957 dvdsflip 12016 phimullem 12393 eulerthlemfi 12396 eulerthlemrprm 12397 eulerthlema 12398 eulerthlemh 12399 eulerthlemth 12400 4sqlem1 12557 4sqlem19 12578 ctiunctlemuom 12653 structcnvcnv 12694 fvsetsid 12712 strleun 12782 dmtopon 14259 lmfval 14428 lmbrf 14451 cnconst2 14469 txuni2 14492 xmeter 14672 ivthinclemex 14878 dvidsslem 14929 dvconstss 14934 dvrecap 14949 lgsquadlemofi 15317 lgsquadlem1 15318 lgsquadlem2 15319 2sqlem7 15362 |
| Copyright terms: Public domain | W3C validator |