| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstri | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.) |
| Ref | Expression |
|---|---|
| eqsstr.1 | ⊢ 𝐴 = 𝐵 |
| eqsstr.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| eqsstri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstr.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
| 2 | eqsstr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 2 | sseq1i 3218 | . 2 ⊢ (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: eqsstrri 3225 ssrab2 3277 ssrab3 3278 rabssab 3280 difdifdirss 3544 ifssun 3584 opabss 4107 brab2ga 4749 relopabi 4802 dmopabss 4889 resss 4982 relres 4986 exse2 5055 rnin 5091 rnxpss 5113 cnvcnvss 5136 dmmptss 5178 cocnvss 5207 fnres 5391 resasplitss 5454 fabexg 5462 f0 5465 ffvresb 5742 isoini2 5887 dmoprabss 6026 elmpocl 6140 tposssxp 6334 dftpos4 6348 smores 6377 smores2 6379 iordsmo 6382 swoer 6647 swoord1 6648 swoord2 6649 ecss 6662 ecopovsym 6717 ecopovtrn 6718 ecopover 6719 ecopovsymg 6720 ecopovtrng 6721 ecopoverg 6722 opabfi 7034 sbthlem7 7064 caserel 7188 ctssdccl 7212 pw1on 7337 pinn 7421 niex 7424 ltrelpi 7436 dmaddpi 7437 dmmulpi 7438 enqex 7472 ltrelnq 7477 enq0ex 7551 ltrelpr 7617 enrex 7849 ltrelsr 7850 ltrelre 7945 axaddf 7980 axmulf 7981 ltrelxr 8132 lerelxr 8134 nn0ssre 9298 nn0ssz 9389 rpre 9781 fz1ssfz0 10238 infssuzcldc 10376 cau3 11368 fsum3cvg3 11649 isumshft 11743 explecnv 11758 clim2prod 11792 ntrivcvgap 11801 dvdszrcl 12045 dvdsflip 12104 phimullem 12489 eulerthlemfi 12492 eulerthlemrprm 12493 eulerthlema 12494 eulerthlemh 12495 eulerthlemth 12496 4sqlem1 12653 4sqlem19 12674 ctiunctlemuom 12749 structcnvcnv 12790 fvsetsid 12808 strleun 12878 dmtopon 14437 lmfval 14606 lmbrf 14629 cnconst2 14647 txuni2 14670 xmeter 14850 ivthinclemex 15056 dvidsslem 15107 dvconstss 15112 dvrecap 15127 lgsquadlemofi 15495 lgsquadlem1 15496 lgsquadlem2 15497 2sqlem7 15540 |
| Copyright terms: Public domain | W3C validator |