Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > moanimv | GIF version |
Description: Introduction of a conjunct into at-most-one quantifier. (Contributed by NM, 23-Mar-1995.) |
Ref | Expression |
---|---|
moanimv | ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | moanim 2093 | 1 ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∃*wmo 2020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 |
This theorem is referenced by: mosubt 2907 2reuswapdc 2934 2rmorex 2936 mosubopt 4676 funmo 5213 funcnv 5259 fncnv 5264 isarep2 5285 fnres 5314 fnopabg 5321 fvopab3ig 5570 opabex 5720 fnoprabg 5954 ovidi 5971 ovig 5974 oprabexd 6106 oprabex 6107 th3qcor 6617 dvfgg 13451 |
Copyright terms: Public domain | W3C validator |