ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moanimv GIF version

Theorem moanimv 2101
Description: Introduction of a conjunct into at-most-one quantifier. (Contributed by NM, 23-Mar-1995.)
Assertion
Ref Expression
moanimv (∃*𝑥(𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem moanimv
StepHypRef Expression
1 nfv 1528 . 2 𝑥𝜑
21moanim 2100 1 (∃*𝑥(𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  ∃*wmo 2027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030
This theorem is referenced by:  mosubt  2914  2reuswapdc  2941  2rmorex  2943  mosubopt  4691  funmo  5231  funcnv  5277  fncnv  5282  isarep2  5303  fnres  5332  fnopabg  5339  fvopab3ig  5590  opabex  5740  fnoprabg  5975  ovidi  5992  ovig  5995  oprabexd  6127  oprabex  6128  th3qcor  6638  dvfgg  14127
  Copyright terms: Public domain W3C validator