| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > moanimv | GIF version | ||
| Description: Introduction of a conjunct into at-most-one quantifier. (Contributed by NM, 23-Mar-1995.) |
| Ref | Expression |
|---|---|
| moanimv | ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | moanim 2129 | 1 ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃*wmo 2056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 |
| This theorem is referenced by: mosubt 2952 2reuswapdc 2979 2rmorex 2981 mosubopt 4745 funmo 5292 funcnv 5341 fncnv 5346 isarep2 5367 fnres 5399 fnopabg 5406 fvopab3ig 5663 opabex 5818 fnoprabg 6056 ovidi 6074 ovig 6077 oprabexd 6222 oprabex 6223 th3qcor 6736 dvfgg 15210 |
| Copyright terms: Public domain | W3C validator |