ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moanimv GIF version

Theorem moanimv 2130
Description: Introduction of a conjunct into at-most-one quantifier. (Contributed by NM, 23-Mar-1995.)
Assertion
Ref Expression
moanimv (∃*𝑥(𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem moanimv
StepHypRef Expression
1 nfv 1552 . 2 𝑥𝜑
21moanim 2129 1 (∃*𝑥(𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  ∃*wmo 2056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059
This theorem is referenced by:  mosubt  2952  2reuswapdc  2979  2rmorex  2981  mosubopt  4745  funmo  5292  funcnv  5341  fncnv  5346  isarep2  5367  fnres  5399  fnopabg  5406  fvopab3ig  5663  opabex  5818  fnoprabg  6056  ovidi  6074  ovig  6077  oprabexd  6222  oprabex  6223  th3qcor  6736  dvfgg  15210
  Copyright terms: Public domain W3C validator