ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moanimv GIF version

Theorem moanimv 2153
Description: Introduction of a conjunct into at-most-one quantifier. (Contributed by NM, 23-Mar-1995.)
Assertion
Ref Expression
moanimv (∃*𝑥(𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem moanimv
StepHypRef Expression
1 nfv 1574 . 2 𝑥𝜑
21moanim 2152 1 (∃*𝑥(𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  ∃*wmo 2078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081
This theorem is referenced by:  mosubt  2980  2reuswapdc  3007  2rmorex  3009  mosubopt  4784  funmo  5333  funcnv  5382  fncnv  5387  isarep2  5408  fnres  5440  fnopabg  5447  fvopab3ig  5710  opabex  5867  fnoprabg  6111  ovidi  6129  ovig  6132  oprabexd  6278  oprabex  6279  th3qcor  6794  dvfgg  15370
  Copyright terms: Public domain W3C validator