Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > moanimv | GIF version |
Description: Introduction of a conjunct into at-most-one quantifier. (Contributed by NM, 23-Mar-1995.) |
Ref | Expression |
---|---|
moanimv | ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1508 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | moanim 2080 | 1 ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∃*wmo 2007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 |
This theorem is referenced by: mosubt 2889 2reuswapdc 2916 2rmorex 2918 mosubopt 4648 funmo 5182 funcnv 5228 fncnv 5233 isarep2 5254 fnres 5283 fnopabg 5290 fvopab3ig 5539 opabex 5688 fnoprabg 5916 ovidi 5933 ovig 5936 oprabexd 6069 oprabex 6070 th3qcor 6577 dvfgg 13017 |
Copyright terms: Public domain | W3C validator |