| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > moanimv | GIF version | ||
| Description: Introduction of a conjunct into at-most-one quantifier. (Contributed by NM, 23-Mar-1995.) |
| Ref | Expression |
|---|---|
| moanimv | ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | moanim 2119 | 1 ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃*wmo 2046 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 |
| This theorem is referenced by: mosubt 2941 2reuswapdc 2968 2rmorex 2970 mosubopt 4729 funmo 5274 funcnv 5320 fncnv 5325 isarep2 5346 fnres 5377 fnopabg 5384 fvopab3ig 5638 opabex 5789 fnoprabg 6027 ovidi 6045 ovig 6048 oprabexd 6193 oprabex 6194 th3qcor 6707 dvfgg 15008 |
| Copyright terms: Public domain | W3C validator |