| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > moanimv | GIF version | ||
| Description: Introduction of a conjunct into at-most-one quantifier. (Contributed by NM, 23-Mar-1995.) |
| Ref | Expression |
|---|---|
| moanimv | ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | moanim 2119 | 1 ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃*wmo 2046 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 |
| This theorem is referenced by: mosubt 2941 2reuswapdc 2968 2rmorex 2970 mosubopt 4728 funmo 5273 funcnv 5319 fncnv 5324 isarep2 5345 fnres 5374 fnopabg 5381 fvopab3ig 5635 opabex 5786 fnoprabg 6023 ovidi 6041 ovig 6044 oprabexd 6184 oprabex 6185 th3qcor 6698 dvfgg 14924 |
| Copyright terms: Public domain | W3C validator |