![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbi2and | GIF version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
mpbi2and.1 | ⊢ (𝜑 → 𝜓) |
mpbi2and.2 | ⊢ (𝜑 → 𝜒) |
mpbi2and.3 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ 𝜃)) |
Ref | Expression |
---|---|
mpbi2and | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbi2and.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | mpbi2and.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
4 | mpbi2and.3 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ 𝜃)) | |
5 | 3, 4 | mpbid 147 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: supisoti 7069 remim 11004 resqrtcl 11173 divalgmod 12068 oddpwdclemxy 12307 divnumden 12334 numdensq 12340 prmdivdiv 12375 4sqlem7 12522 ismgmid2 12963 mnd1 13027 iscmnd 13368 imasring 13560 subrg1 13727 topgele 14197 lmcn2 14448 |
Copyright terms: Public domain | W3C validator |