ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpbi2and GIF version

Theorem mpbi2and 945
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
Hypotheses
Ref Expression
mpbi2and.1 (𝜑𝜓)
mpbi2and.2 (𝜑𝜒)
mpbi2and.3 (𝜑 → ((𝜓𝜒) ↔ 𝜃))
Assertion
Ref Expression
mpbi2and (𝜑𝜃)

Proof of Theorem mpbi2and
StepHypRef Expression
1 mpbi2and.1 . . 3 (𝜑𝜓)
2 mpbi2and.2 . . 3 (𝜑𝜒)
31, 2jca 306 . 2 (𝜑 → (𝜓𝜒))
4 mpbi2and.3 . 2 (𝜑 → ((𝜓𝜒) ↔ 𝜃))
53, 4mpbid 147 1 (𝜑𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  supisoti  7085  remim  11044  resqrtcl  11213  divalgmod  12111  oddpwdclemxy  12364  divnumden  12391  numdensq  12397  prmdivdiv  12432  4sqlem7  12580  ismgmid2  13084  mnd1  13159  iscmnd  13506  imasring  13698  subrg1  13865  topgele  14351  lmcn2  14602
  Copyright terms: Public domain W3C validator