ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpbi2and GIF version

Theorem mpbi2and 945
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
Hypotheses
Ref Expression
mpbi2and.1 (𝜑𝜓)
mpbi2and.2 (𝜑𝜒)
mpbi2and.3 (𝜑 → ((𝜓𝜒) ↔ 𝜃))
Assertion
Ref Expression
mpbi2and (𝜑𝜃)

Proof of Theorem mpbi2and
StepHypRef Expression
1 mpbi2and.1 . . 3 (𝜑𝜓)
2 mpbi2and.2 . . 3 (𝜑𝜒)
31, 2jca 306 . 2 (𝜑 → (𝜓𝜒))
4 mpbi2and.3 . 2 (𝜑 → ((𝜓𝜒) ↔ 𝜃))
53, 4mpbid 147 1 (𝜑𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  supisoti  7069  remim  11004  resqrtcl  11173  divalgmod  12068  oddpwdclemxy  12307  divnumden  12334  numdensq  12340  prmdivdiv  12375  4sqlem7  12522  ismgmid2  12963  mnd1  13027  iscmnd  13368  imasring  13560  subrg1  13727  topgele  14197  lmcn2  14448
  Copyright terms: Public domain W3C validator