![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbi2and | GIF version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
mpbi2and.1 | ⊢ (𝜑 → 𝜓) |
mpbi2and.2 | ⊢ (𝜑 → 𝜒) |
mpbi2and.3 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ 𝜃)) |
Ref | Expression |
---|---|
mpbi2and | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbi2and.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | mpbi2and.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
4 | mpbi2and.3 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ 𝜃)) | |
5 | 3, 4 | mpbid 147 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: supisoti 7071 remim 11007 resqrtcl 11176 divalgmod 12071 oddpwdclemxy 12310 divnumden 12337 numdensq 12343 prmdivdiv 12378 4sqlem7 12525 ismgmid2 12966 mnd1 13030 iscmnd 13371 imasring 13563 subrg1 13730 topgele 14208 lmcn2 14459 |
Copyright terms: Public domain | W3C validator |