| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbi2and | GIF version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpbi2and.1 | ⊢ (𝜑 → 𝜓) |
| mpbi2and.2 | ⊢ (𝜑 → 𝜒) |
| mpbi2and.3 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| mpbi2and | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbi2and.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | mpbi2and.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 4 | mpbi2and.3 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ 𝜃)) | |
| 5 | 3, 4 | mpbid 147 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: supisoti 7085 remim 11044 resqrtcl 11213 divalgmod 12111 oddpwdclemxy 12364 divnumden 12391 numdensq 12397 prmdivdiv 12432 4sqlem7 12580 ismgmid2 13084 mnd1 13159 iscmnd 13506 imasring 13698 subrg1 13865 topgele 14351 lmcn2 14602 |
| Copyright terms: Public domain | W3C validator |