| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbi2and | GIF version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpbi2and.1 | ⊢ (𝜑 → 𝜓) |
| mpbi2and.2 | ⊢ (𝜑 → 𝜒) |
| mpbi2and.3 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| mpbi2and | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbi2and.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | mpbi2and.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 4 | mpbi2and.3 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ 𝜃)) | |
| 5 | 3, 4 | mpbid 147 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: supisoti 7145 remim 11337 resqrtcl 11506 divalgmod 12404 oddpwdclemxy 12657 divnumden 12684 numdensq 12690 prmdivdiv 12725 4sqlem7 12873 ismgmid2 13379 mnd1 13454 iscmnd 13801 imasring 13993 subrg1 14160 topgele 14668 lmcn2 14919 |
| Copyright terms: Public domain | W3C validator |