ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpbi2and GIF version

Theorem mpbi2and 945
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
Hypotheses
Ref Expression
mpbi2and.1 (𝜑𝜓)
mpbi2and.2 (𝜑𝜒)
mpbi2and.3 (𝜑 → ((𝜓𝜒) ↔ 𝜃))
Assertion
Ref Expression
mpbi2and (𝜑𝜃)

Proof of Theorem mpbi2and
StepHypRef Expression
1 mpbi2and.1 . . 3 (𝜑𝜓)
2 mpbi2and.2 . . 3 (𝜑𝜒)
31, 2jca 306 . 2 (𝜑 → (𝜓𝜒))
4 mpbi2and.3 . 2 (𝜑 → ((𝜓𝜒) ↔ 𝜃))
53, 4mpbid 147 1 (𝜑𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  supisoti  7076  remim  11025  resqrtcl  11194  divalgmod  12092  oddpwdclemxy  12337  divnumden  12364  numdensq  12370  prmdivdiv  12405  4sqlem7  12553  ismgmid2  13023  mnd1  13087  iscmnd  13428  imasring  13620  subrg1  13787  topgele  14265  lmcn2  14516
  Copyright terms: Public domain W3C validator