![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbi2and | GIF version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
mpbi2and.1 | ⊢ (𝜑 → 𝜓) |
mpbi2and.2 | ⊢ (𝜑 → 𝜒) |
mpbi2and.3 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ 𝜃)) |
Ref | Expression |
---|---|
mpbi2and | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbi2and.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | mpbi2and.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 302 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
4 | mpbi2and.3 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ 𝜃)) | |
5 | 3, 4 | mpbid 146 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: supisoti 6849 remim 10525 resqrtcl 10693 divalgmod 11472 oddpwdclemxy 11692 divnumden 11719 numdensq 11725 topgele 12039 lmcn2 12291 |
Copyright terms: Public domain | W3C validator |