| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbi2and | GIF version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpbi2and.1 | ⊢ (𝜑 → 𝜓) |
| mpbi2and.2 | ⊢ (𝜑 → 𝜒) |
| mpbi2and.3 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| mpbi2and | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbi2and.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | mpbi2and.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 4 | mpbi2and.3 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ 𝜃)) | |
| 5 | 3, 4 | mpbid 147 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: supisoti 7185 remim 11379 resqrtcl 11548 divalgmod 12446 oddpwdclemxy 12699 divnumden 12726 numdensq 12732 prmdivdiv 12767 4sqlem7 12915 ismgmid2 13421 mnd1 13496 iscmnd 13843 imasring 14035 subrg1 14203 topgele 14711 lmcn2 14962 |
| Copyright terms: Public domain | W3C validator |