ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divalgmod GIF version

Theorem divalgmod 12111
Description: The result of the mod operator satisfies the requirements for the remainder 𝑅 in the division algorithm for a positive divisor (compare divalg2 12110 and divalgb 12109). This demonstration theorem justifies the use of mod to yield an explicit remainder from this point forward. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by AV, 21-Aug-2021.)
Assertion
Ref Expression
divalgmod ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 ∈ ℕ0 ∧ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅)))))

Proof of Theorem divalgmod
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 zq 9719 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℚ)
21adantr 276 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 ∈ ℚ)
3 nnq 9726 . . . . . . . 8 (𝐷 ∈ ℕ → 𝐷 ∈ ℚ)
43adantl 277 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℚ)
5 simpr 110 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℕ)
65nngt0d 9053 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 0 < 𝐷)
72, 4, 6modqcld 10439 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℚ)
8 snidg 3652 . . . . . 6 ((𝑁 mod 𝐷) ∈ ℚ → (𝑁 mod 𝐷) ∈ {(𝑁 mod 𝐷)})
97, 8syl 14 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ {(𝑁 mod 𝐷)})
10 eleq1 2259 . . . . 5 (𝑅 = (𝑁 mod 𝐷) → (𝑅 ∈ {(𝑁 mod 𝐷)} ↔ (𝑁 mod 𝐷) ∈ {(𝑁 mod 𝐷)}))
119, 10syl5ibrcom 157 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) → 𝑅 ∈ {(𝑁 mod 𝐷)}))
12 elsni 3641 . . . 4 (𝑅 ∈ {(𝑁 mod 𝐷)} → 𝑅 = (𝑁 mod 𝐷))
1311, 12impbid1 142 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ 𝑅 ∈ {(𝑁 mod 𝐷)}))
14 modqlt 10444 . . . . . . . . 9 ((𝑁 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 0 < 𝐷) → (𝑁 mod 𝐷) < 𝐷)
152, 4, 6, 14syl3anc 1249 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) < 𝐷)
16 znq 9717 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 / 𝐷) ∈ ℚ)
1716flqcld 10386 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (⌊‘(𝑁 / 𝐷)) ∈ ℤ)
18 nnz 9364 . . . . . . . . . 10 (𝐷 ∈ ℕ → 𝐷 ∈ ℤ)
1918adantl 277 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℤ)
20 zmodcl 10455 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℕ0)
2120nn0zd 9465 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℤ)
22 zsubcl 9386 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑁 mod 𝐷) ∈ ℤ) → (𝑁 − (𝑁 mod 𝐷)) ∈ ℤ)
2321, 22syldan 282 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 − (𝑁 mod 𝐷)) ∈ ℤ)
24 nncn 9017 . . . . . . . . . . . 12 (𝐷 ∈ ℕ → 𝐷 ∈ ℂ)
2524adantl 277 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∈ ℂ)
2617zcnd 9468 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (⌊‘(𝑁 / 𝐷)) ∈ ℂ)
2725, 26mulcomd 8067 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) = ((⌊‘(𝑁 / 𝐷)) · 𝐷))
28 modqval 10435 . . . . . . . . . . . 12 ((𝑁 ∈ ℚ ∧ 𝐷 ∈ ℚ ∧ 0 < 𝐷) → (𝑁 mod 𝐷) = (𝑁 − (𝐷 · (⌊‘(𝑁 / 𝐷)))))
292, 4, 6, 28syl3anc 1249 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) = (𝑁 − (𝐷 · (⌊‘(𝑁 / 𝐷)))))
3020nn0cnd 9323 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) ∈ ℂ)
31 zmulcl 9398 . . . . . . . . . . . . . 14 ((𝐷 ∈ ℤ ∧ (⌊‘(𝑁 / 𝐷)) ∈ ℤ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) ∈ ℤ)
3218, 17, 31syl2an2 594 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) ∈ ℤ)
3332zcnd 9468 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) ∈ ℂ)
34 zcn 9350 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3534adantr 276 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝑁 ∈ ℂ)
3630, 33, 35subexsub 8417 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝑁 mod 𝐷) = (𝑁 − (𝐷 · (⌊‘(𝑁 / 𝐷)))) ↔ (𝐷 · (⌊‘(𝑁 / 𝐷))) = (𝑁 − (𝑁 mod 𝐷))))
3729, 36mpbid 147 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷 · (⌊‘(𝑁 / 𝐷))) = (𝑁 − (𝑁 mod 𝐷)))
3827, 37eqtr3d 2231 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((⌊‘(𝑁 / 𝐷)) · 𝐷) = (𝑁 − (𝑁 mod 𝐷)))
39 dvds0lem 11985 . . . . . . . . 9 ((((⌊‘(𝑁 / 𝐷)) ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ (𝑁 − (𝑁 mod 𝐷)) ∈ ℤ) ∧ ((⌊‘(𝑁 / 𝐷)) · 𝐷) = (𝑁 − (𝑁 mod 𝐷))) → 𝐷 ∥ (𝑁 − (𝑁 mod 𝐷)))
4017, 19, 23, 38, 39syl31anc 1252 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → 𝐷 ∥ (𝑁 − (𝑁 mod 𝐷)))
41 divalg2 12110 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)))
42 breq1 4037 . . . . . . . . . . 11 (𝑧 = (𝑁 mod 𝐷) → (𝑧 < 𝐷 ↔ (𝑁 mod 𝐷) < 𝐷))
43 oveq2 5933 . . . . . . . . . . . 12 (𝑧 = (𝑁 mod 𝐷) → (𝑁𝑧) = (𝑁 − (𝑁 mod 𝐷)))
4443breq2d 4046 . . . . . . . . . . 11 (𝑧 = (𝑁 mod 𝐷) → (𝐷 ∥ (𝑁𝑧) ↔ 𝐷 ∥ (𝑁 − (𝑁 mod 𝐷))))
4542, 44anbi12d 473 . . . . . . . . . 10 (𝑧 = (𝑁 mod 𝐷) → ((𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)) ↔ ((𝑁 mod 𝐷) < 𝐷𝐷 ∥ (𝑁 − (𝑁 mod 𝐷)))))
4645riota2 5903 . . . . . . . . 9 (((𝑁 mod 𝐷) ∈ ℕ0 ∧ ∃!𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))) → (((𝑁 mod 𝐷) < 𝐷𝐷 ∥ (𝑁 − (𝑁 mod 𝐷))) ↔ (𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))) = (𝑁 mod 𝐷)))
4720, 41, 46syl2anc 411 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (((𝑁 mod 𝐷) < 𝐷𝐷 ∥ (𝑁 − (𝑁 mod 𝐷))) ↔ (𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))) = (𝑁 mod 𝐷)))
4815, 40, 47mpbi2and 945 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))) = (𝑁 mod 𝐷))
4948eqcomd 2202 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑁 mod 𝐷) = (𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))))
5049sneqd 3636 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → {(𝑁 mod 𝐷)} = {(𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)))})
51 snriota 5910 . . . . . 6 (∃!𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)) → {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))} = {(𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)))})
5241, 51syl 14 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))} = {(𝑧 ∈ ℕ0 (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)))})
5350, 52eqtr4d 2232 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → {(𝑁 mod 𝐷)} = {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))})
5453eleq2d 2266 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 ∈ {(𝑁 mod 𝐷)} ↔ 𝑅 ∈ {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))}))
5513, 54bitrd 188 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ 𝑅 ∈ {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))}))
56 breq1 4037 . . . 4 (𝑧 = 𝑅 → (𝑧 < 𝐷𝑅 < 𝐷))
57 oveq2 5933 . . . . 5 (𝑧 = 𝑅 → (𝑁𝑧) = (𝑁𝑅))
5857breq2d 4046 . . . 4 (𝑧 = 𝑅 → (𝐷 ∥ (𝑁𝑧) ↔ 𝐷 ∥ (𝑁𝑅)))
5956, 58anbi12d 473 . . 3 (𝑧 = 𝑅 → ((𝑧 < 𝐷𝐷 ∥ (𝑁𝑧)) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
6059elrab 2920 . 2 (𝑅 ∈ {𝑧 ∈ ℕ0 ∣ (𝑧 < 𝐷𝐷 ∥ (𝑁𝑧))} ↔ (𝑅 ∈ ℕ0 ∧ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
6155, 60bitrdi 196 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 ∈ ℕ0 ∧ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  ∃!wreu 2477  {crab 2479  {csn 3623   class class class wbr 4034  cfv 5259  crio 5879  (class class class)co 5925  cc 7896  0cc0 7898   · cmul 7903   < clt 8080  cmin 8216   / cdiv 8718  cn 9009  0cn0 9268  cz 9345  cq 9712  cfl 10377   mod cmo 10433  cdvds 11971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-dvds 11972
This theorem is referenced by:  divalgmodcl  12112
  Copyright terms: Public domain W3C validator