Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4sqlem7 | GIF version |
Description: Lemma for 4sq (not yet proved here) . (Contributed by Mario Carneiro, 15-Jul-2014.) |
Ref | Expression |
---|---|
4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
Ref | Expression |
---|---|
4sqlem7 | ⊢ (𝜑 → (𝐵↑2) ≤ (((𝑀↑2) / 2) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sqlem5.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | 4sqlem5.3 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
3 | 4sqlem5.4 | . . . . . . 7 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
4 | 1, 2, 3 | 4sqlem5 12334 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
5 | 4 | simpld 111 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
6 | 5 | zred 9334 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
7 | 2 | nnrpd 9651 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℝ+) |
8 | 7 | rphalfcld 9666 | . . . . 5 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ+) |
9 | 8 | rpred 9653 | . . . 4 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ) |
10 | 1, 2, 3 | 4sqlem6 12335 | . . . . 5 ⊢ (𝜑 → (-(𝑀 / 2) ≤ 𝐵 ∧ 𝐵 < (𝑀 / 2))) |
11 | 10 | simprd 113 | . . . 4 ⊢ (𝜑 → 𝐵 < (𝑀 / 2)) |
12 | 6, 9, 11 | ltled 8038 | . . 3 ⊢ (𝜑 → 𝐵 ≤ (𝑀 / 2)) |
13 | 10 | simpld 111 | . . . 4 ⊢ (𝜑 → -(𝑀 / 2) ≤ 𝐵) |
14 | 9, 6, 13 | lenegcon1d 8446 | . . 3 ⊢ (𝜑 → -𝐵 ≤ (𝑀 / 2)) |
15 | 8 | rpge0d 9657 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝑀 / 2)) |
16 | lenegsq 11059 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ (𝑀 / 2) ∈ ℝ ∧ 0 ≤ (𝑀 / 2)) → ((𝐵 ≤ (𝑀 / 2) ∧ -𝐵 ≤ (𝑀 / 2)) ↔ (𝐵↑2) ≤ ((𝑀 / 2)↑2))) | |
17 | 6, 9, 15, 16 | syl3anc 1233 | . . 3 ⊢ (𝜑 → ((𝐵 ≤ (𝑀 / 2) ∧ -𝐵 ≤ (𝑀 / 2)) ↔ (𝐵↑2) ≤ ((𝑀 / 2)↑2))) |
18 | 12, 14, 17 | mpbi2and 938 | . 2 ⊢ (𝜑 → (𝐵↑2) ≤ ((𝑀 / 2)↑2)) |
19 | 2cnd 8951 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℂ) | |
20 | 19 | sqvald 10606 | . . . 4 ⊢ (𝜑 → (2↑2) = (2 · 2)) |
21 | 20 | oveq2d 5869 | . . 3 ⊢ (𝜑 → ((𝑀↑2) / (2↑2)) = ((𝑀↑2) / (2 · 2))) |
22 | 2 | nncnd 8892 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
23 | 2ap0 8971 | . . . . 5 ⊢ 2 # 0 | |
24 | 23 | a1i 9 | . . . 4 ⊢ (𝜑 → 2 # 0) |
25 | 22, 19, 24 | sqdivapd 10622 | . . 3 ⊢ (𝜑 → ((𝑀 / 2)↑2) = ((𝑀↑2) / (2↑2))) |
26 | 22 | sqcld 10607 | . . . 4 ⊢ (𝜑 → (𝑀↑2) ∈ ℂ) |
27 | 26, 19, 19, 24, 24 | divdivap1d 8739 | . . 3 ⊢ (𝜑 → (((𝑀↑2) / 2) / 2) = ((𝑀↑2) / (2 · 2))) |
28 | 21, 25, 27 | 3eqtr4d 2213 | . 2 ⊢ (𝜑 → ((𝑀 / 2)↑2) = (((𝑀↑2) / 2) / 2)) |
29 | 18, 28 | breqtrd 4015 | 1 ⊢ (𝜑 → (𝐵↑2) ≤ (((𝑀↑2) / 2) / 2)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 (class class class)co 5853 ℝcr 7773 0cc0 7774 + caddc 7777 · cmul 7779 < clt 7954 ≤ cle 7955 − cmin 8090 -cneg 8091 # cap 8500 / cdiv 8589 ℕcn 8878 2c2 8929 ℤcz 9212 mod cmo 10278 ↑cexp 10475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-fl 10226 df-mod 10279 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 |
This theorem is referenced by: 2sqlem8 13753 |
Copyright terms: Public domain | W3C validator |