ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem7 GIF version

Theorem 4sqlem7 12553
Description: Lemma for 4sq 12579. (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2 (𝜑𝐴 ∈ ℤ)
4sqlem5.3 (𝜑𝑀 ∈ ℕ)
4sqlem5.4 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
Assertion
Ref Expression
4sqlem7 (𝜑 → (𝐵↑2) ≤ (((𝑀↑2) / 2) / 2))

Proof of Theorem 4sqlem7
StepHypRef Expression
1 4sqlem5.2 . . . . . . 7 (𝜑𝐴 ∈ ℤ)
2 4sqlem5.3 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
3 4sqlem5.4 . . . . . . 7 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
41, 2, 34sqlem5 12551 . . . . . 6 (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))
54simpld 112 . . . . 5 (𝜑𝐵 ∈ ℤ)
65zred 9448 . . . 4 (𝜑𝐵 ∈ ℝ)
72nnrpd 9769 . . . . . 6 (𝜑𝑀 ∈ ℝ+)
87rphalfcld 9784 . . . . 5 (𝜑 → (𝑀 / 2) ∈ ℝ+)
98rpred 9771 . . . 4 (𝜑 → (𝑀 / 2) ∈ ℝ)
101, 2, 34sqlem6 12552 . . . . 5 (𝜑 → (-(𝑀 / 2) ≤ 𝐵𝐵 < (𝑀 / 2)))
1110simprd 114 . . . 4 (𝜑𝐵 < (𝑀 / 2))
126, 9, 11ltled 8145 . . 3 (𝜑𝐵 ≤ (𝑀 / 2))
1310simpld 112 . . . 4 (𝜑 → -(𝑀 / 2) ≤ 𝐵)
149, 6, 13lenegcon1d 8554 . . 3 (𝜑 → -𝐵 ≤ (𝑀 / 2))
158rpge0d 9775 . . . 4 (𝜑 → 0 ≤ (𝑀 / 2))
16 lenegsq 11260 . . . 4 ((𝐵 ∈ ℝ ∧ (𝑀 / 2) ∈ ℝ ∧ 0 ≤ (𝑀 / 2)) → ((𝐵 ≤ (𝑀 / 2) ∧ -𝐵 ≤ (𝑀 / 2)) ↔ (𝐵↑2) ≤ ((𝑀 / 2)↑2)))
176, 9, 15, 16syl3anc 1249 . . 3 (𝜑 → ((𝐵 ≤ (𝑀 / 2) ∧ -𝐵 ≤ (𝑀 / 2)) ↔ (𝐵↑2) ≤ ((𝑀 / 2)↑2)))
1812, 14, 17mpbi2and 945 . 2 (𝜑 → (𝐵↑2) ≤ ((𝑀 / 2)↑2))
19 2cnd 9063 . . . . 5 (𝜑 → 2 ∈ ℂ)
2019sqvald 10762 . . . 4 (𝜑 → (2↑2) = (2 · 2))
2120oveq2d 5938 . . 3 (𝜑 → ((𝑀↑2) / (2↑2)) = ((𝑀↑2) / (2 · 2)))
222nncnd 9004 . . . 4 (𝜑𝑀 ∈ ℂ)
23 2ap0 9083 . . . . 5 2 # 0
2423a1i 9 . . . 4 (𝜑 → 2 # 0)
2522, 19, 24sqdivapd 10778 . . 3 (𝜑 → ((𝑀 / 2)↑2) = ((𝑀↑2) / (2↑2)))
2622sqcld 10763 . . . 4 (𝜑 → (𝑀↑2) ∈ ℂ)
2726, 19, 19, 24, 24divdivap1d 8849 . . 3 (𝜑 → (((𝑀↑2) / 2) / 2) = ((𝑀↑2) / (2 · 2)))
2821, 25, 273eqtr4d 2239 . 2 (𝜑 → ((𝑀 / 2)↑2) = (((𝑀↑2) / 2) / 2))
2918, 28breqtrd 4059 1 (𝜑 → (𝐵↑2) ≤ (((𝑀↑2) / 2) / 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167   class class class wbr 4033  (class class class)co 5922  cr 7878  0cc0 7879   + caddc 7882   · cmul 7884   < clt 8061  cle 8062  cmin 8197  -cneg 8198   # cap 8608   / cdiv 8699  cn 8990  2c2 9041  cz 9326   mod cmo 10414  cexp 10630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164
This theorem is referenced by:  4sqlem15  12574  4sqlem16  12575  2sqlem8  15364
  Copyright terms: Public domain W3C validator