Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4sqlem7 | GIF version |
Description: Lemma for 4sq (not yet proved here) . (Contributed by Mario Carneiro, 15-Jul-2014.) |
Ref | Expression |
---|---|
4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
Ref | Expression |
---|---|
4sqlem7 | ⊢ (𝜑 → (𝐵↑2) ≤ (((𝑀↑2) / 2) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sqlem5.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | 4sqlem5.3 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
3 | 4sqlem5.4 | . . . . . . 7 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
4 | 1, 2, 3 | 4sqlem5 12308 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
5 | 4 | simpld 111 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
6 | 5 | zred 9309 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
7 | 2 | nnrpd 9626 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℝ+) |
8 | 7 | rphalfcld 9641 | . . . . 5 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ+) |
9 | 8 | rpred 9628 | . . . 4 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ) |
10 | 1, 2, 3 | 4sqlem6 12309 | . . . . 5 ⊢ (𝜑 → (-(𝑀 / 2) ≤ 𝐵 ∧ 𝐵 < (𝑀 / 2))) |
11 | 10 | simprd 113 | . . . 4 ⊢ (𝜑 → 𝐵 < (𝑀 / 2)) |
12 | 6, 9, 11 | ltled 8013 | . . 3 ⊢ (𝜑 → 𝐵 ≤ (𝑀 / 2)) |
13 | 10 | simpld 111 | . . . 4 ⊢ (𝜑 → -(𝑀 / 2) ≤ 𝐵) |
14 | 9, 6, 13 | lenegcon1d 8421 | . . 3 ⊢ (𝜑 → -𝐵 ≤ (𝑀 / 2)) |
15 | 8 | rpge0d 9632 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝑀 / 2)) |
16 | lenegsq 11033 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ (𝑀 / 2) ∈ ℝ ∧ 0 ≤ (𝑀 / 2)) → ((𝐵 ≤ (𝑀 / 2) ∧ -𝐵 ≤ (𝑀 / 2)) ↔ (𝐵↑2) ≤ ((𝑀 / 2)↑2))) | |
17 | 6, 9, 15, 16 | syl3anc 1228 | . . 3 ⊢ (𝜑 → ((𝐵 ≤ (𝑀 / 2) ∧ -𝐵 ≤ (𝑀 / 2)) ↔ (𝐵↑2) ≤ ((𝑀 / 2)↑2))) |
18 | 12, 14, 17 | mpbi2and 933 | . 2 ⊢ (𝜑 → (𝐵↑2) ≤ ((𝑀 / 2)↑2)) |
19 | 2cnd 8926 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℂ) | |
20 | 19 | sqvald 10581 | . . . 4 ⊢ (𝜑 → (2↑2) = (2 · 2)) |
21 | 20 | oveq2d 5857 | . . 3 ⊢ (𝜑 → ((𝑀↑2) / (2↑2)) = ((𝑀↑2) / (2 · 2))) |
22 | 2 | nncnd 8867 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
23 | 2ap0 8946 | . . . . 5 ⊢ 2 # 0 | |
24 | 23 | a1i 9 | . . . 4 ⊢ (𝜑 → 2 # 0) |
25 | 22, 19, 24 | sqdivapd 10597 | . . 3 ⊢ (𝜑 → ((𝑀 / 2)↑2) = ((𝑀↑2) / (2↑2))) |
26 | 22 | sqcld 10582 | . . . 4 ⊢ (𝜑 → (𝑀↑2) ∈ ℂ) |
27 | 26, 19, 19, 24, 24 | divdivap1d 8714 | . . 3 ⊢ (𝜑 → (((𝑀↑2) / 2) / 2) = ((𝑀↑2) / (2 · 2))) |
28 | 21, 25, 27 | 3eqtr4d 2208 | . 2 ⊢ (𝜑 → ((𝑀 / 2)↑2) = (((𝑀↑2) / 2) / 2)) |
29 | 18, 28 | breqtrd 4007 | 1 ⊢ (𝜑 → (𝐵↑2) ≤ (((𝑀↑2) / 2) / 2)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 class class class wbr 3981 (class class class)co 5841 ℝcr 7748 0cc0 7749 + caddc 7752 · cmul 7754 < clt 7929 ≤ cle 7930 − cmin 8065 -cneg 8066 # cap 8475 / cdiv 8564 ℕcn 8853 2c2 8904 ℤcz 9187 mod cmo 10253 ↑cexp 10450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-nul 4107 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-iinf 4564 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-precex 7859 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 ax-pre-mulgt0 7866 ax-pre-mulext 7867 ax-arch 7868 ax-caucvg 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-if 3520 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-tr 4080 df-id 4270 df-po 4273 df-iso 4274 df-iord 4343 df-on 4345 df-ilim 4346 df-suc 4348 df-iom 4567 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-recs 6269 df-frec 6355 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-reap 8469 df-ap 8476 df-div 8565 df-inn 8854 df-2 8912 df-3 8913 df-4 8914 df-n0 9111 df-z 9188 df-uz 9463 df-q 9554 df-rp 9586 df-fl 10201 df-mod 10254 df-seqfrec 10377 df-exp 10451 df-cj 10780 df-re 10781 df-im 10782 df-rsqrt 10936 df-abs 10937 |
This theorem is referenced by: 2sqlem8 13559 |
Copyright terms: Public domain | W3C validator |