![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4sqlem7 | GIF version |
Description: Lemma for 4sq 12548. (Contributed by Mario Carneiro, 15-Jul-2014.) |
Ref | Expression |
---|---|
4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
Ref | Expression |
---|---|
4sqlem7 | ⊢ (𝜑 → (𝐵↑2) ≤ (((𝑀↑2) / 2) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sqlem5.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
2 | 4sqlem5.3 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
3 | 4sqlem5.4 | . . . . . . 7 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
4 | 1, 2, 3 | 4sqlem5 12520 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
5 | 4 | simpld 112 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
6 | 5 | zred 9439 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
7 | 2 | nnrpd 9760 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℝ+) |
8 | 7 | rphalfcld 9775 | . . . . 5 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ+) |
9 | 8 | rpred 9762 | . . . 4 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ) |
10 | 1, 2, 3 | 4sqlem6 12521 | . . . . 5 ⊢ (𝜑 → (-(𝑀 / 2) ≤ 𝐵 ∧ 𝐵 < (𝑀 / 2))) |
11 | 10 | simprd 114 | . . . 4 ⊢ (𝜑 → 𝐵 < (𝑀 / 2)) |
12 | 6, 9, 11 | ltled 8138 | . . 3 ⊢ (𝜑 → 𝐵 ≤ (𝑀 / 2)) |
13 | 10 | simpld 112 | . . . 4 ⊢ (𝜑 → -(𝑀 / 2) ≤ 𝐵) |
14 | 9, 6, 13 | lenegcon1d 8546 | . . 3 ⊢ (𝜑 → -𝐵 ≤ (𝑀 / 2)) |
15 | 8 | rpge0d 9766 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝑀 / 2)) |
16 | lenegsq 11239 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ (𝑀 / 2) ∈ ℝ ∧ 0 ≤ (𝑀 / 2)) → ((𝐵 ≤ (𝑀 / 2) ∧ -𝐵 ≤ (𝑀 / 2)) ↔ (𝐵↑2) ≤ ((𝑀 / 2)↑2))) | |
17 | 6, 9, 15, 16 | syl3anc 1249 | . . 3 ⊢ (𝜑 → ((𝐵 ≤ (𝑀 / 2) ∧ -𝐵 ≤ (𝑀 / 2)) ↔ (𝐵↑2) ≤ ((𝑀 / 2)↑2))) |
18 | 12, 14, 17 | mpbi2and 945 | . 2 ⊢ (𝜑 → (𝐵↑2) ≤ ((𝑀 / 2)↑2)) |
19 | 2cnd 9055 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℂ) | |
20 | 19 | sqvald 10741 | . . . 4 ⊢ (𝜑 → (2↑2) = (2 · 2)) |
21 | 20 | oveq2d 5934 | . . 3 ⊢ (𝜑 → ((𝑀↑2) / (2↑2)) = ((𝑀↑2) / (2 · 2))) |
22 | 2 | nncnd 8996 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
23 | 2ap0 9075 | . . . . 5 ⊢ 2 # 0 | |
24 | 23 | a1i 9 | . . . 4 ⊢ (𝜑 → 2 # 0) |
25 | 22, 19, 24 | sqdivapd 10757 | . . 3 ⊢ (𝜑 → ((𝑀 / 2)↑2) = ((𝑀↑2) / (2↑2))) |
26 | 22 | sqcld 10742 | . . . 4 ⊢ (𝜑 → (𝑀↑2) ∈ ℂ) |
27 | 26, 19, 19, 24, 24 | divdivap1d 8841 | . . 3 ⊢ (𝜑 → (((𝑀↑2) / 2) / 2) = ((𝑀↑2) / (2 · 2))) |
28 | 21, 25, 27 | 3eqtr4d 2236 | . 2 ⊢ (𝜑 → ((𝑀 / 2)↑2) = (((𝑀↑2) / 2) / 2)) |
29 | 18, 28 | breqtrd 4055 | 1 ⊢ (𝜑 → (𝐵↑2) ≤ (((𝑀↑2) / 2) / 2)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 (class class class)co 5918 ℝcr 7871 0cc0 7872 + caddc 7875 · cmul 7877 < clt 8054 ≤ cle 8055 − cmin 8190 -cneg 8191 # cap 8600 / cdiv 8691 ℕcn 8982 2c2 9033 ℤcz 9317 mod cmo 10393 ↑cexp 10609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-fl 10339 df-mod 10394 df-seqfrec 10519 df-exp 10610 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 |
This theorem is referenced by: 4sqlem15 12543 4sqlem16 12544 2sqlem8 15210 |
Copyright terms: Public domain | W3C validator |