| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4sqlem7 | GIF version | ||
| Description: Lemma for 4sq 12848. (Contributed by Mario Carneiro, 15-Jul-2014.) |
| Ref | Expression |
|---|---|
| 4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
| Ref | Expression |
|---|---|
| 4sqlem7 | ⊢ (𝜑 → (𝐵↑2) ≤ (((𝑀↑2) / 2) / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sqlem5.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 2 | 4sqlem5.3 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 3 | 4sqlem5.4 | . . . . . . 7 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
| 4 | 1, 2, 3 | 4sqlem5 12820 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
| 5 | 4 | simpld 112 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
| 6 | 5 | zred 9530 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 7 | 2 | nnrpd 9851 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℝ+) |
| 8 | 7 | rphalfcld 9866 | . . . . 5 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ+) |
| 9 | 8 | rpred 9853 | . . . 4 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ) |
| 10 | 1, 2, 3 | 4sqlem6 12821 | . . . . 5 ⊢ (𝜑 → (-(𝑀 / 2) ≤ 𝐵 ∧ 𝐵 < (𝑀 / 2))) |
| 11 | 10 | simprd 114 | . . . 4 ⊢ (𝜑 → 𝐵 < (𝑀 / 2)) |
| 12 | 6, 9, 11 | ltled 8226 | . . 3 ⊢ (𝜑 → 𝐵 ≤ (𝑀 / 2)) |
| 13 | 10 | simpld 112 | . . . 4 ⊢ (𝜑 → -(𝑀 / 2) ≤ 𝐵) |
| 14 | 9, 6, 13 | lenegcon1d 8635 | . . 3 ⊢ (𝜑 → -𝐵 ≤ (𝑀 / 2)) |
| 15 | 8 | rpge0d 9857 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝑀 / 2)) |
| 16 | lenegsq 11521 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ (𝑀 / 2) ∈ ℝ ∧ 0 ≤ (𝑀 / 2)) → ((𝐵 ≤ (𝑀 / 2) ∧ -𝐵 ≤ (𝑀 / 2)) ↔ (𝐵↑2) ≤ ((𝑀 / 2)↑2))) | |
| 17 | 6, 9, 15, 16 | syl3anc 1250 | . . 3 ⊢ (𝜑 → ((𝐵 ≤ (𝑀 / 2) ∧ -𝐵 ≤ (𝑀 / 2)) ↔ (𝐵↑2) ≤ ((𝑀 / 2)↑2))) |
| 18 | 12, 14, 17 | mpbi2and 946 | . 2 ⊢ (𝜑 → (𝐵↑2) ≤ ((𝑀 / 2)↑2)) |
| 19 | 2cnd 9144 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℂ) | |
| 20 | 19 | sqvald 10852 | . . . 4 ⊢ (𝜑 → (2↑2) = (2 · 2)) |
| 21 | 20 | oveq2d 5983 | . . 3 ⊢ (𝜑 → ((𝑀↑2) / (2↑2)) = ((𝑀↑2) / (2 · 2))) |
| 22 | 2 | nncnd 9085 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 23 | 2ap0 9164 | . . . . 5 ⊢ 2 # 0 | |
| 24 | 23 | a1i 9 | . . . 4 ⊢ (𝜑 → 2 # 0) |
| 25 | 22, 19, 24 | sqdivapd 10868 | . . 3 ⊢ (𝜑 → ((𝑀 / 2)↑2) = ((𝑀↑2) / (2↑2))) |
| 26 | 22 | sqcld 10853 | . . . 4 ⊢ (𝜑 → (𝑀↑2) ∈ ℂ) |
| 27 | 26, 19, 19, 24, 24 | divdivap1d 8930 | . . 3 ⊢ (𝜑 → (((𝑀↑2) / 2) / 2) = ((𝑀↑2) / (2 · 2))) |
| 28 | 21, 25, 27 | 3eqtr4d 2250 | . 2 ⊢ (𝜑 → ((𝑀 / 2)↑2) = (((𝑀↑2) / 2) / 2)) |
| 29 | 18, 28 | breqtrd 4085 | 1 ⊢ (𝜑 → (𝐵↑2) ≤ (((𝑀↑2) / 2) / 2)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 class class class wbr 4059 (class class class)co 5967 ℝcr 7959 0cc0 7960 + caddc 7963 · cmul 7965 < clt 8142 ≤ cle 8143 − cmin 8278 -cneg 8279 # cap 8689 / cdiv 8780 ℕcn 9071 2c2 9122 ℤcz 9407 mod cmo 10504 ↑cexp 10720 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fl 10450 df-mod 10505 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 |
| This theorem is referenced by: 4sqlem15 12843 4sqlem16 12844 2sqlem8 15715 |
| Copyright terms: Public domain | W3C validator |