| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4sqlem7 | GIF version | ||
| Description: Lemma for 4sq 12704. (Contributed by Mario Carneiro, 15-Jul-2014.) |
| Ref | Expression |
|---|---|
| 4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
| Ref | Expression |
|---|---|
| 4sqlem7 | ⊢ (𝜑 → (𝐵↑2) ≤ (((𝑀↑2) / 2) / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sqlem5.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
| 2 | 4sqlem5.3 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 3 | 4sqlem5.4 | . . . . . . 7 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
| 4 | 1, 2, 3 | 4sqlem5 12676 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
| 5 | 4 | simpld 112 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
| 6 | 5 | zred 9494 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 7 | 2 | nnrpd 9815 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℝ+) |
| 8 | 7 | rphalfcld 9830 | . . . . 5 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ+) |
| 9 | 8 | rpred 9817 | . . . 4 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ) |
| 10 | 1, 2, 3 | 4sqlem6 12677 | . . . . 5 ⊢ (𝜑 → (-(𝑀 / 2) ≤ 𝐵 ∧ 𝐵 < (𝑀 / 2))) |
| 11 | 10 | simprd 114 | . . . 4 ⊢ (𝜑 → 𝐵 < (𝑀 / 2)) |
| 12 | 6, 9, 11 | ltled 8190 | . . 3 ⊢ (𝜑 → 𝐵 ≤ (𝑀 / 2)) |
| 13 | 10 | simpld 112 | . . . 4 ⊢ (𝜑 → -(𝑀 / 2) ≤ 𝐵) |
| 14 | 9, 6, 13 | lenegcon1d 8599 | . . 3 ⊢ (𝜑 → -𝐵 ≤ (𝑀 / 2)) |
| 15 | 8 | rpge0d 9821 | . . . 4 ⊢ (𝜑 → 0 ≤ (𝑀 / 2)) |
| 16 | lenegsq 11377 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ (𝑀 / 2) ∈ ℝ ∧ 0 ≤ (𝑀 / 2)) → ((𝐵 ≤ (𝑀 / 2) ∧ -𝐵 ≤ (𝑀 / 2)) ↔ (𝐵↑2) ≤ ((𝑀 / 2)↑2))) | |
| 17 | 6, 9, 15, 16 | syl3anc 1249 | . . 3 ⊢ (𝜑 → ((𝐵 ≤ (𝑀 / 2) ∧ -𝐵 ≤ (𝑀 / 2)) ↔ (𝐵↑2) ≤ ((𝑀 / 2)↑2))) |
| 18 | 12, 14, 17 | mpbi2and 945 | . 2 ⊢ (𝜑 → (𝐵↑2) ≤ ((𝑀 / 2)↑2)) |
| 19 | 2cnd 9108 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℂ) | |
| 20 | 19 | sqvald 10813 | . . . 4 ⊢ (𝜑 → (2↑2) = (2 · 2)) |
| 21 | 20 | oveq2d 5959 | . . 3 ⊢ (𝜑 → ((𝑀↑2) / (2↑2)) = ((𝑀↑2) / (2 · 2))) |
| 22 | 2 | nncnd 9049 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 23 | 2ap0 9128 | . . . . 5 ⊢ 2 # 0 | |
| 24 | 23 | a1i 9 | . . . 4 ⊢ (𝜑 → 2 # 0) |
| 25 | 22, 19, 24 | sqdivapd 10829 | . . 3 ⊢ (𝜑 → ((𝑀 / 2)↑2) = ((𝑀↑2) / (2↑2))) |
| 26 | 22 | sqcld 10814 | . . . 4 ⊢ (𝜑 → (𝑀↑2) ∈ ℂ) |
| 27 | 26, 19, 19, 24, 24 | divdivap1d 8894 | . . 3 ⊢ (𝜑 → (((𝑀↑2) / 2) / 2) = ((𝑀↑2) / (2 · 2))) |
| 28 | 21, 25, 27 | 3eqtr4d 2247 | . 2 ⊢ (𝜑 → ((𝑀 / 2)↑2) = (((𝑀↑2) / 2) / 2)) |
| 29 | 18, 28 | breqtrd 4069 | 1 ⊢ (𝜑 → (𝐵↑2) ≤ (((𝑀↑2) / 2) / 2)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 (class class class)co 5943 ℝcr 7923 0cc0 7924 + caddc 7927 · cmul 7929 < clt 8106 ≤ cle 8107 − cmin 8242 -cneg 8243 # cap 8653 / cdiv 8744 ℕcn 9035 2c2 9086 ℤcz 9371 mod cmo 10465 ↑cexp 10681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-fl 10411 df-mod 10466 df-seqfrec 10591 df-exp 10682 df-cj 11124 df-re 11125 df-im 11126 df-rsqrt 11280 df-abs 11281 |
| This theorem is referenced by: 4sqlem15 12699 4sqlem16 12700 2sqlem8 15571 |
| Copyright terms: Public domain | W3C validator |