| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbi2and | Unicode version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpbi2and.1 |
|
| mpbi2and.2 |
|
| mpbi2and.3 |
|
| Ref | Expression |
|---|---|
| mpbi2and |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbi2and.1 |
. . 3
| |
| 2 | mpbi2and.2 |
. . 3
| |
| 3 | 1, 2 | jca 306 |
. 2
|
| 4 | mpbi2and.3 |
. 2
| |
| 5 | 3, 4 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: supisoti 7111 remim 11113 resqrtcl 11282 divalgmod 12180 oddpwdclemxy 12433 divnumden 12460 numdensq 12466 prmdivdiv 12501 4sqlem7 12649 ismgmid2 13154 mnd1 13229 iscmnd 13576 imasring 13768 subrg1 13935 topgele 14443 lmcn2 14694 |
| Copyright terms: Public domain | W3C validator |