| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbi2and | Unicode version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpbi2and.1 |
|
| mpbi2and.2 |
|
| mpbi2and.3 |
|
| Ref | Expression |
|---|---|
| mpbi2and |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbi2and.1 |
. . 3
| |
| 2 | mpbi2and.2 |
. . 3
| |
| 3 | 1, 2 | jca 306 |
. 2
|
| 4 | mpbi2and.3 |
. 2
| |
| 5 | 3, 4 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: supisoti 7127 remim 11246 resqrtcl 11415 divalgmod 12313 oddpwdclemxy 12566 divnumden 12593 numdensq 12599 prmdivdiv 12634 4sqlem7 12782 ismgmid2 13287 mnd1 13362 iscmnd 13709 imasring 13901 subrg1 14068 topgele 14576 lmcn2 14827 |
| Copyright terms: Public domain | W3C validator |