![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbi2and | Unicode version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
mpbi2and.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
mpbi2and.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
mpbi2and.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpbi2and |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbi2and.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | mpbi2and.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | jca 306 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | mpbi2and.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | mpbid 147 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: supisoti 7034 remim 10896 resqrtcl 11065 divalgmod 11959 oddpwdclemxy 12196 divnumden 12223 numdensq 12229 prmdivdiv 12264 4sqlem7 12411 ismgmid2 12849 mnd1 12900 iscmnd 13230 imasring 13407 subrg1 13571 topgele 13966 lmcn2 14217 |
Copyright terms: Public domain | W3C validator |