ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpbi2and Unicode version

Theorem mpbi2and 945
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
Hypotheses
Ref Expression
mpbi2and.1  |-  ( ph  ->  ps )
mpbi2and.2  |-  ( ph  ->  ch )
mpbi2and.3  |-  ( ph  ->  ( ( ps  /\  ch )  <->  th ) )
Assertion
Ref Expression
mpbi2and  |-  ( ph  ->  th )

Proof of Theorem mpbi2and
StepHypRef Expression
1 mpbi2and.1 . . 3  |-  ( ph  ->  ps )
2 mpbi2and.2 . . 3  |-  ( ph  ->  ch )
31, 2jca 306 . 2  |-  ( ph  ->  ( ps  /\  ch ) )
4 mpbi2and.3 . 2  |-  ( ph  ->  ( ( ps  /\  ch )  <->  th ) )
53, 4mpbid 147 1  |-  ( ph  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  supisoti  7034  remim  10896  resqrtcl  11065  divalgmod  11959  oddpwdclemxy  12196  divnumden  12223  numdensq  12229  prmdivdiv  12264  4sqlem7  12411  ismgmid2  12849  mnd1  12900  iscmnd  13230  imasring  13407  subrg1  13571  topgele  13966  lmcn2  14217
  Copyright terms: Public domain W3C validator