![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbi2and | Unicode version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
mpbi2and.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
mpbi2and.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
mpbi2and.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpbi2and |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbi2and.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | mpbi2and.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | jca 306 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | mpbi2and.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | mpbid 147 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: supisoti 7011 remim 10871 resqrtcl 11040 divalgmod 11934 oddpwdclemxy 12171 divnumden 12198 numdensq 12204 prmdivdiv 12239 4sqlem7 12384 ismgmid2 12804 mnd1 12852 iscmnd 13106 subrg1 13357 topgele 13614 lmcn2 13865 |
Copyright terms: Public domain | W3C validator |