| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbi2and | Unicode version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpbi2and.1 |
|
| mpbi2and.2 |
|
| mpbi2and.3 |
|
| Ref | Expression |
|---|---|
| mpbi2and |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbi2and.1 |
. . 3
| |
| 2 | mpbi2and.2 |
. . 3
| |
| 3 | 1, 2 | jca 306 |
. 2
|
| 4 | mpbi2and.3 |
. 2
| |
| 5 | 3, 4 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: supisoti 7173 remim 11366 resqrtcl 11535 divalgmod 12433 oddpwdclemxy 12686 divnumden 12713 numdensq 12719 prmdivdiv 12754 4sqlem7 12902 ismgmid2 13408 mnd1 13483 iscmnd 13830 imasring 14022 subrg1 14189 topgele 14697 lmcn2 14948 |
| Copyright terms: Public domain | W3C validator |