| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbi2and | Unicode version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpbi2and.1 |
|
| mpbi2and.2 |
|
| mpbi2and.3 |
|
| Ref | Expression |
|---|---|
| mpbi2and |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbi2and.1 |
. . 3
| |
| 2 | mpbi2and.2 |
. . 3
| |
| 3 | 1, 2 | jca 306 |
. 2
|
| 4 | mpbi2and.3 |
. 2
| |
| 5 | 3, 4 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: supisoti 7094 remim 11090 resqrtcl 11259 divalgmod 12157 oddpwdclemxy 12410 divnumden 12437 numdensq 12443 prmdivdiv 12478 4sqlem7 12626 ismgmid2 13130 mnd1 13205 iscmnd 13552 imasring 13744 subrg1 13911 topgele 14419 lmcn2 14670 |
| Copyright terms: Public domain | W3C validator |