ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpbi2and Unicode version

Theorem mpbi2and 949
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
Hypotheses
Ref Expression
mpbi2and.1  |-  ( ph  ->  ps )
mpbi2and.2  |-  ( ph  ->  ch )
mpbi2and.3  |-  ( ph  ->  ( ( ps  /\  ch )  <->  th ) )
Assertion
Ref Expression
mpbi2and  |-  ( ph  ->  th )

Proof of Theorem mpbi2and
StepHypRef Expression
1 mpbi2and.1 . . 3  |-  ( ph  ->  ps )
2 mpbi2and.2 . . 3  |-  ( ph  ->  ch )
31, 2jca 306 . 2  |-  ( ph  ->  ( ps  /\  ch ) )
4 mpbi2and.3 . 2  |-  ( ph  ->  ( ( ps  /\  ch )  <->  th ) )
53, 4mpbid 147 1  |-  ( ph  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  supisoti  7173  remim  11366  resqrtcl  11535  divalgmod  12433  oddpwdclemxy  12686  divnumden  12713  numdensq  12719  prmdivdiv  12754  4sqlem7  12902  ismgmid2  13408  mnd1  13483  iscmnd  13830  imasring  14022  subrg1  14189  topgele  14697  lmcn2  14948
  Copyright terms: Public domain W3C validator