| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mpbi2and | Unicode version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) | 
| Ref | Expression | 
|---|---|
| mpbi2and.1 | 
 | 
| mpbi2and.2 | 
 | 
| mpbi2and.3 | 
 | 
| Ref | Expression | 
|---|---|
| mpbi2and | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpbi2and.1 | 
. . 3
 | |
| 2 | mpbi2and.2 | 
. . 3
 | |
| 3 | 1, 2 | jca 306 | 
. 2
 | 
| 4 | mpbi2and.3 | 
. 2
 | |
| 5 | 3, 4 | mpbid 147 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: supisoti 7076 remim 11025 resqrtcl 11194 divalgmod 12092 oddpwdclemxy 12337 divnumden 12364 numdensq 12370 prmdivdiv 12405 4sqlem7 12553 ismgmid2 13023 mnd1 13087 iscmnd 13428 imasring 13620 subrg1 13787 topgele 14265 lmcn2 14516 | 
| Copyright terms: Public domain | W3C validator |