| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbi2and | Unicode version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpbi2and.1 |
|
| mpbi2and.2 |
|
| mpbi2and.3 |
|
| Ref | Expression |
|---|---|
| mpbi2and |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbi2and.1 |
. . 3
| |
| 2 | mpbi2and.2 |
. . 3
| |
| 3 | 1, 2 | jca 306 |
. 2
|
| 4 | mpbi2and.3 |
. 2
| |
| 5 | 3, 4 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: supisoti 7085 remim 11042 resqrtcl 11211 divalgmod 12109 oddpwdclemxy 12362 divnumden 12389 numdensq 12395 prmdivdiv 12430 4sqlem7 12578 ismgmid2 13082 mnd1 13157 iscmnd 13504 imasring 13696 subrg1 13863 topgele 14349 lmcn2 14600 |
| Copyright terms: Public domain | W3C validator |