ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscmnd GIF version

Theorem iscmnd 13368
Description: Properties that determine a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
iscmnd.b (𝜑𝐵 = (Base‘𝐺))
iscmnd.p (𝜑+ = (+g𝐺))
iscmnd.g (𝜑𝐺 ∈ Mnd)
iscmnd.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
Assertion
Ref Expression
iscmnd (𝜑𝐺 ∈ CMnd)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   + (𝑥,𝑦)

Proof of Theorem iscmnd
StepHypRef Expression
1 iscmnd.g . . 3 (𝜑𝐺 ∈ Mnd)
2 iscmnd.c . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
323expib 1208 . . . 4 (𝜑 → ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)))
43ralrimivv 2575 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))
5 iscmnd.b . . . . 5 (𝜑𝐵 = (Base‘𝐺))
6 iscmnd.p . . . . . . . 8 (𝜑+ = (+g𝐺))
76oveqd 5935 . . . . . . 7 (𝜑 → (𝑥 + 𝑦) = (𝑥(+g𝐺)𝑦))
86oveqd 5935 . . . . . . 7 (𝜑 → (𝑦 + 𝑥) = (𝑦(+g𝐺)𝑥))
97, 8eqeq12d 2208 . . . . . 6 (𝜑 → ((𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
105, 9raleqbidv 2706 . . . . 5 (𝜑 → (∀𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
115, 10raleqbidv 2706 . . . 4 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
1211anbi2d 464 . . 3 (𝜑 → ((𝐺 ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)) ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
131, 4, 12mpbi2and 945 . 2 (𝜑 → (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
14 eqid 2193 . . 3 (Base‘𝐺) = (Base‘𝐺)
15 eqid 2193 . . 3 (+g𝐺) = (+g𝐺)
1614, 15iscmn 13363 . 2 (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
1713, 16sylibr 134 1 (𝜑𝐺 ∈ CMnd)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  wral 2472  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  Mndcmnd 12997  CMndccmn 13354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921  df-cmn 13356
This theorem is referenced by:  isabld  13369  subcmnd  13403  iscrngd  13538
  Copyright terms: Public domain W3C validator