| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iscmnd | GIF version | ||
| Description: Properties that determine a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| iscmnd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
| iscmnd.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
| iscmnd.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| iscmnd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| Ref | Expression |
|---|---|
| iscmnd | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmnd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
| 2 | iscmnd.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
| 3 | 2 | 3expib 1230 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 4 | 3 | ralrimivv 2611 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 5 | iscmnd.b | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
| 6 | iscmnd.p | . . . . . . . 8 ⊢ (𝜑 → + = (+g‘𝐺)) | |
| 7 | 6 | oveqd 6017 | . . . . . . 7 ⊢ (𝜑 → (𝑥 + 𝑦) = (𝑥(+g‘𝐺)𝑦)) |
| 8 | 6 | oveqd 6017 | . . . . . . 7 ⊢ (𝜑 → (𝑦 + 𝑥) = (𝑦(+g‘𝐺)𝑥)) |
| 9 | 7, 8 | eqeq12d 2244 | . . . . . 6 ⊢ (𝜑 → ((𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 10 | 5, 9 | raleqbidv 2744 | . . . . 5 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 11 | 5, 10 | raleqbidv 2744 | . . . 4 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 12 | 11 | anbi2d 464 | . . 3 ⊢ (𝜑 → ((𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)) ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)))) |
| 13 | 1, 4, 12 | mpbi2and 949 | . 2 ⊢ (𝜑 → (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 14 | eqid 2229 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 15 | eqid 2229 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 16 | 14, 15 | iscmn 13825 | . 2 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 17 | 13, 16 | sylibr 134 | 1 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ‘cfv 5317 (class class class)co 6000 Basecbs 13027 +gcplusg 13105 Mndcmnd 13444 CMndccmn 13816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-cmn 13818 |
| This theorem is referenced by: isabld 13831 subcmnd 13865 iscrngd 14000 |
| Copyright terms: Public domain | W3C validator |