ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  remim GIF version

Theorem remim 10753
Description: Value of the conjugate of a complex number. The value is the real part minus i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
remim (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))

Proof of Theorem remim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cjval 10738 . 2 (𝐴 ∈ ℂ → (∗‘𝐴) = (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
2 replim 10752 . . . . . 6 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
32oveq1d 5836 . . . . 5 (𝐴 ∈ ℂ → (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
4 recl 10746 . . . . . . 7 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
54recnd 7900 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
6 ax-icn 7821 . . . . . . 7 i ∈ ℂ
7 imcl 10747 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
87recnd 7900 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
9 mulcl 7853 . . . . . . 7 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
106, 8, 9sylancr 411 . . . . . 6 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
115, 10, 5ppncand 8220 . . . . 5 (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = ((ℜ‘𝐴) + (ℜ‘𝐴)))
123, 11eqtrd 2190 . . . 4 (𝐴 ∈ ℂ → (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = ((ℜ‘𝐴) + (ℜ‘𝐴)))
134, 4readdcld 7901 . . . 4 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + (ℜ‘𝐴)) ∈ ℝ)
1412, 13eqeltrd 2234 . . 3 (𝐴 ∈ ℂ → (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ)
155, 10, 10pnncand 8219 . . . . . . 7 (𝐴 ∈ ℂ → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐴))))
162oveq1d 5836 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
176a1i 9 . . . . . . . 8 (𝐴 ∈ ℂ → i ∈ ℂ)
1817, 8, 8adddid 7896 . . . . . . 7 (𝐴 ∈ ℂ → (i · ((ℑ‘𝐴) + (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐴))))
1915, 16, 183eqtr4d 2200 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) = (i · ((ℑ‘𝐴) + (ℑ‘𝐴))))
2019oveq2d 5837 . . . . 5 (𝐴 ∈ ℂ → (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) = (i · (i · ((ℑ‘𝐴) + (ℑ‘𝐴)))))
217, 7readdcld 7901 . . . . . . 7 (𝐴 ∈ ℂ → ((ℑ‘𝐴) + (ℑ‘𝐴)) ∈ ℝ)
2221recnd 7900 . . . . . 6 (𝐴 ∈ ℂ → ((ℑ‘𝐴) + (ℑ‘𝐴)) ∈ ℂ)
23 mulass 7857 . . . . . . 7 ((i ∈ ℂ ∧ i ∈ ℂ ∧ ((ℑ‘𝐴) + (ℑ‘𝐴)) ∈ ℂ) → ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))) = (i · (i · ((ℑ‘𝐴) + (ℑ‘𝐴)))))
246, 6, 23mp3an12 1309 . . . . . 6 (((ℑ‘𝐴) + (ℑ‘𝐴)) ∈ ℂ → ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))) = (i · (i · ((ℑ‘𝐴) + (ℑ‘𝐴)))))
2522, 24syl 14 . . . . 5 (𝐴 ∈ ℂ → ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))) = (i · (i · ((ℑ‘𝐴) + (ℑ‘𝐴)))))
2620, 25eqtr4d 2193 . . . 4 (𝐴 ∈ ℂ → (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) = ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))))
27 ixi 8452 . . . . . 6 (i · i) = -1
28 neg1rr 8933 . . . . . 6 -1 ∈ ℝ
2927, 28eqeltri 2230 . . . . 5 (i · i) ∈ ℝ
30 remulcl 7854 . . . . 5 (((i · i) ∈ ℝ ∧ ((ℑ‘𝐴) + (ℑ‘𝐴)) ∈ ℝ) → ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))) ∈ ℝ)
3129, 21, 30sylancr 411 . . . 4 (𝐴 ∈ ℂ → ((i · i) · ((ℑ‘𝐴) + (ℑ‘𝐴))) ∈ ℝ)
3226, 31eqeltrd 2234 . . 3 (𝐴 ∈ ℂ → (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ)
335, 10subcld 8180 . . . 4 (𝐴 ∈ ℂ → ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) ∈ ℂ)
34 cju 8826 . . . 4 (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
35 oveq2 5829 . . . . . . 7 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → (𝐴 + 𝑥) = (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
3635eleq1d 2226 . . . . . 6 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → ((𝐴 + 𝑥) ∈ ℝ ↔ (𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ))
37 oveq2 5829 . . . . . . . 8 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → (𝐴𝑥) = (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
3837oveq2d 5837 . . . . . . 7 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → (i · (𝐴𝑥)) = (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))))
3938eleq1d 2226 . . . . . 6 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → ((i · (𝐴𝑥)) ∈ ℝ ↔ (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ))
4036, 39anbi12d 465 . . . . 5 (𝑥 = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))) → (((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ ((𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ ∧ (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ)))
4140riota2 5799 . . . 4 ((((ℜ‘𝐴) − (i · (ℑ‘𝐴))) ∈ ℂ ∧ ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) → (((𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ ∧ (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ) ↔ (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
4233, 34, 41syl2anc 409 . . 3 (𝐴 ∈ ℂ → (((𝐴 + ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) ∈ ℝ ∧ (i · (𝐴 − ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))) ∈ ℝ) ↔ (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))))
4314, 32, 42mpbi2and 928 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
441, 43eqtrd 2190 1 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1335  wcel 2128  ∃!wreu 2437  cfv 5169  crio 5776  (class class class)co 5821  cc 7724  cr 7725  1c1 7727  ici 7728   + caddc 7729   · cmul 7731  cmin 8040  -cneg 8041  ccj 10732  cre 10733  cim 10734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-po 4256  df-iso 4257  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-2 8886  df-cj 10735  df-re 10736  df-im 10737
This theorem is referenced by:  cjreb  10759  recj  10760  remullem  10764  imcj  10768  cjadd  10777  cjneg  10783  imval2  10787  cji  10795  remimd  10835
  Copyright terms: Public domain W3C validator