ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmcn2 GIF version

Theorem lmcn2 14919
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014.)
Hypotheses
Ref Expression
txlm.z 𝑍 = (ℤ𝑀)
txlm.m (𝜑𝑀 ∈ ℤ)
txlm.j (𝜑𝐽 ∈ (TopOn‘𝑋))
txlm.k (𝜑𝐾 ∈ (TopOn‘𝑌))
txlm.f (𝜑𝐹:𝑍𝑋)
txlm.g (𝜑𝐺:𝑍𝑌)
lmcn2.fl (𝜑𝐹(⇝𝑡𝐽)𝑅)
lmcn2.gl (𝜑𝐺(⇝𝑡𝐾)𝑆)
lmcn2.o (𝜑𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
lmcn2.h 𝐻 = (𝑛𝑍 ↦ ((𝐹𝑛)𝑂(𝐺𝑛)))
Assertion
Ref Expression
lmcn2 (𝜑𝐻(⇝𝑡𝑁)(𝑅𝑂𝑆))
Distinct variable groups:   𝑛,𝐹   𝑛,𝑂   𝜑,𝑛   𝑛,𝐺   𝑛,𝐽   𝑛,𝐾   𝑛,𝑋   𝑛,𝑌   𝑛,𝑍
Allowed substitution hints:   𝑅(𝑛)   𝑆(𝑛)   𝐻(𝑛)   𝑀(𝑛)   𝑁(𝑛)

Proof of Theorem lmcn2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 txlm.f . . . . . . 7 (𝜑𝐹:𝑍𝑋)
21ffvelcdmda 5743 . . . . . 6 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ 𝑋)
3 txlm.g . . . . . . 7 (𝜑𝐺:𝑍𝑌)
43ffvelcdmda 5743 . . . . . 6 ((𝜑𝑛𝑍) → (𝐺𝑛) ∈ 𝑌)
52, 4opelxpd 4729 . . . . 5 ((𝜑𝑛𝑍) → ⟨(𝐹𝑛), (𝐺𝑛)⟩ ∈ (𝑋 × 𝑌))
6 eqidd 2210 . . . . 5 (𝜑 → (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) = (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩))
7 txlm.j . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
8 txlm.k . . . . . . . 8 (𝜑𝐾 ∈ (TopOn‘𝑌))
9 txtopon 14901 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
107, 8, 9syl2anc 411 . . . . . . 7 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
11 lmcn2.o . . . . . . . . 9 (𝜑𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
12 cntop2 14841 . . . . . . . . 9 (𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁) → 𝑁 ∈ Top)
1311, 12syl 14 . . . . . . . 8 (𝜑𝑁 ∈ Top)
14 toptopon2 14658 . . . . . . . 8 (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘ 𝑁))
1513, 14sylib 122 . . . . . . 7 (𝜑𝑁 ∈ (TopOn‘ 𝑁))
16 cnf2 14844 . . . . . . 7 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑁 ∈ (TopOn‘ 𝑁) ∧ 𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) → 𝑂:(𝑋 × 𝑌)⟶ 𝑁)
1710, 15, 11, 16syl3anc 1252 . . . . . 6 (𝜑𝑂:(𝑋 × 𝑌)⟶ 𝑁)
1817feqmptd 5660 . . . . 5 (𝜑𝑂 = (𝑥 ∈ (𝑋 × 𝑌) ↦ (𝑂𝑥)))
19 fveq2 5603 . . . . . 6 (𝑥 = ⟨(𝐹𝑛), (𝐺𝑛)⟩ → (𝑂𝑥) = (𝑂‘⟨(𝐹𝑛), (𝐺𝑛)⟩))
20 df-ov 5977 . . . . . 6 ((𝐹𝑛)𝑂(𝐺𝑛)) = (𝑂‘⟨(𝐹𝑛), (𝐺𝑛)⟩)
2119, 20eqtr4di 2260 . . . . 5 (𝑥 = ⟨(𝐹𝑛), (𝐺𝑛)⟩ → (𝑂𝑥) = ((𝐹𝑛)𝑂(𝐺𝑛)))
225, 6, 18, 21fmptco 5774 . . . 4 (𝜑 → (𝑂 ∘ (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)) = (𝑛𝑍 ↦ ((𝐹𝑛)𝑂(𝐺𝑛))))
23 lmcn2.h . . . 4 𝐻 = (𝑛𝑍 ↦ ((𝐹𝑛)𝑂(𝐺𝑛)))
2422, 23eqtr4di 2260 . . 3 (𝜑 → (𝑂 ∘ (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)) = 𝐻)
25 lmcn2.fl . . . . 5 (𝜑𝐹(⇝𝑡𝐽)𝑅)
26 lmcn2.gl . . . . 5 (𝜑𝐺(⇝𝑡𝐾)𝑆)
27 txlm.z . . . . . 6 𝑍 = (ℤ𝑀)
28 txlm.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
29 eqid 2209 . . . . . 6 (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) = (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)
3027, 28, 7, 8, 1, 3, 29txlm 14918 . . . . 5 (𝜑 → ((𝐹(⇝𝑡𝐽)𝑅𝐺(⇝𝑡𝐾)𝑆) ↔ (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)(⇝𝑡‘(𝐽 ×t 𝐾))⟨𝑅, 𝑆⟩))
3125, 26, 30mpbi2and 948 . . . 4 (𝜑 → (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)(⇝𝑡‘(𝐽 ×t 𝐾))⟨𝑅, 𝑆⟩)
3231, 11lmcn 14890 . . 3 (𝜑 → (𝑂 ∘ (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩))(⇝𝑡𝑁)(𝑂‘⟨𝑅, 𝑆⟩))
3324, 32eqbrtrrd 4086 . 2 (𝜑𝐻(⇝𝑡𝑁)(𝑂‘⟨𝑅, 𝑆⟩))
34 df-ov 5977 . 2 (𝑅𝑂𝑆) = (𝑂‘⟨𝑅, 𝑆⟩)
3533, 34breqtrrdi 4104 1 (𝜑𝐻(⇝𝑡𝑁)(𝑅𝑂𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  cop 3649   cuni 3867   class class class wbr 4062  cmpt 4124   × cxp 4694  ccom 4700  wf 5290  cfv 5294  (class class class)co 5974  cz 9414  cuz 9690  Topctop 14636  TopOnctopon 14649   Cn ccn 14824  𝑡clm 14826   ×t ctx 14891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-map 6767  df-pm 6768  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-n0 9338  df-z 9415  df-uz 9691  df-topgen 13259  df-top 14637  df-topon 14650  df-bases 14682  df-cn 14827  df-cnp 14828  df-lm 14829  df-tx 14892
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator