ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmcn2 GIF version

Theorem lmcn2 14217
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014.)
Hypotheses
Ref Expression
txlm.z 𝑍 = (ℤ𝑀)
txlm.m (𝜑𝑀 ∈ ℤ)
txlm.j (𝜑𝐽 ∈ (TopOn‘𝑋))
txlm.k (𝜑𝐾 ∈ (TopOn‘𝑌))
txlm.f (𝜑𝐹:𝑍𝑋)
txlm.g (𝜑𝐺:𝑍𝑌)
lmcn2.fl (𝜑𝐹(⇝𝑡𝐽)𝑅)
lmcn2.gl (𝜑𝐺(⇝𝑡𝐾)𝑆)
lmcn2.o (𝜑𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
lmcn2.h 𝐻 = (𝑛𝑍 ↦ ((𝐹𝑛)𝑂(𝐺𝑛)))
Assertion
Ref Expression
lmcn2 (𝜑𝐻(⇝𝑡𝑁)(𝑅𝑂𝑆))
Distinct variable groups:   𝑛,𝐹   𝑛,𝑂   𝜑,𝑛   𝑛,𝐺   𝑛,𝐽   𝑛,𝐾   𝑛,𝑋   𝑛,𝑌   𝑛,𝑍
Allowed substitution hints:   𝑅(𝑛)   𝑆(𝑛)   𝐻(𝑛)   𝑀(𝑛)   𝑁(𝑛)

Proof of Theorem lmcn2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 txlm.f . . . . . . 7 (𝜑𝐹:𝑍𝑋)
21ffvelcdmda 5668 . . . . . 6 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ 𝑋)
3 txlm.g . . . . . . 7 (𝜑𝐺:𝑍𝑌)
43ffvelcdmda 5668 . . . . . 6 ((𝜑𝑛𝑍) → (𝐺𝑛) ∈ 𝑌)
52, 4opelxpd 4674 . . . . 5 ((𝜑𝑛𝑍) → ⟨(𝐹𝑛), (𝐺𝑛)⟩ ∈ (𝑋 × 𝑌))
6 eqidd 2190 . . . . 5 (𝜑 → (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) = (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩))
7 txlm.j . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
8 txlm.k . . . . . . . 8 (𝜑𝐾 ∈ (TopOn‘𝑌))
9 txtopon 14199 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
107, 8, 9syl2anc 411 . . . . . . 7 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
11 lmcn2.o . . . . . . . . 9 (𝜑𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
12 cntop2 14139 . . . . . . . . 9 (𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁) → 𝑁 ∈ Top)
1311, 12syl 14 . . . . . . . 8 (𝜑𝑁 ∈ Top)
14 toptopon2 13956 . . . . . . . 8 (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘ 𝑁))
1513, 14sylib 122 . . . . . . 7 (𝜑𝑁 ∈ (TopOn‘ 𝑁))
16 cnf2 14142 . . . . . . 7 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑁 ∈ (TopOn‘ 𝑁) ∧ 𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) → 𝑂:(𝑋 × 𝑌)⟶ 𝑁)
1710, 15, 11, 16syl3anc 1249 . . . . . 6 (𝜑𝑂:(𝑋 × 𝑌)⟶ 𝑁)
1817feqmptd 5586 . . . . 5 (𝜑𝑂 = (𝑥 ∈ (𝑋 × 𝑌) ↦ (𝑂𝑥)))
19 fveq2 5531 . . . . . 6 (𝑥 = ⟨(𝐹𝑛), (𝐺𝑛)⟩ → (𝑂𝑥) = (𝑂‘⟨(𝐹𝑛), (𝐺𝑛)⟩))
20 df-ov 5895 . . . . . 6 ((𝐹𝑛)𝑂(𝐺𝑛)) = (𝑂‘⟨(𝐹𝑛), (𝐺𝑛)⟩)
2119, 20eqtr4di 2240 . . . . 5 (𝑥 = ⟨(𝐹𝑛), (𝐺𝑛)⟩ → (𝑂𝑥) = ((𝐹𝑛)𝑂(𝐺𝑛)))
225, 6, 18, 21fmptco 5699 . . . 4 (𝜑 → (𝑂 ∘ (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)) = (𝑛𝑍 ↦ ((𝐹𝑛)𝑂(𝐺𝑛))))
23 lmcn2.h . . . 4 𝐻 = (𝑛𝑍 ↦ ((𝐹𝑛)𝑂(𝐺𝑛)))
2422, 23eqtr4di 2240 . . 3 (𝜑 → (𝑂 ∘ (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)) = 𝐻)
25 lmcn2.fl . . . . 5 (𝜑𝐹(⇝𝑡𝐽)𝑅)
26 lmcn2.gl . . . . 5 (𝜑𝐺(⇝𝑡𝐾)𝑆)
27 txlm.z . . . . . 6 𝑍 = (ℤ𝑀)
28 txlm.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
29 eqid 2189 . . . . . 6 (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) = (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)
3027, 28, 7, 8, 1, 3, 29txlm 14216 . . . . 5 (𝜑 → ((𝐹(⇝𝑡𝐽)𝑅𝐺(⇝𝑡𝐾)𝑆) ↔ (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)(⇝𝑡‘(𝐽 ×t 𝐾))⟨𝑅, 𝑆⟩))
3125, 26, 30mpbi2and 945 . . . 4 (𝜑 → (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)(⇝𝑡‘(𝐽 ×t 𝐾))⟨𝑅, 𝑆⟩)
3231, 11lmcn 14188 . . 3 (𝜑 → (𝑂 ∘ (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩))(⇝𝑡𝑁)(𝑂‘⟨𝑅, 𝑆⟩))
3324, 32eqbrtrrd 4042 . 2 (𝜑𝐻(⇝𝑡𝑁)(𝑂‘⟨𝑅, 𝑆⟩))
34 df-ov 5895 . 2 (𝑅𝑂𝑆) = (𝑂‘⟨𝑅, 𝑆⟩)
3533, 34breqtrrdi 4060 1 (𝜑𝐻(⇝𝑡𝑁)(𝑅𝑂𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  cop 3610   cuni 3824   class class class wbr 4018  cmpt 4079   × cxp 4639  ccom 4645  wf 5228  cfv 5232  (class class class)co 5892  cz 9278  cuz 9553  Topctop 13934  TopOnctopon 13947   Cn ccn 14122  𝑡clm 14124   ×t ctx 14189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7927  ax-resscn 7928  ax-1cn 7929  ax-1re 7930  ax-icn 7931  ax-addcl 7932  ax-addrcl 7933  ax-mulcl 7934  ax-addcom 7936  ax-addass 7938  ax-distr 7940  ax-i2m1 7941  ax-0lt1 7942  ax-0id 7944  ax-rnegex 7945  ax-cnre 7947  ax-pre-ltirr 7948  ax-pre-ltwlin 7949  ax-pre-lttrn 7950  ax-pre-apti 7951  ax-pre-ltadd 7952
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-f1 5237  df-fo 5238  df-f1o 5239  df-fv 5240  df-riota 5848  df-ov 5895  df-oprab 5896  df-mpo 5897  df-1st 6160  df-2nd 6161  df-map 6671  df-pm 6672  df-pnf 8019  df-mnf 8020  df-xr 8021  df-ltxr 8022  df-le 8023  df-sub 8155  df-neg 8156  df-inn 8945  df-n0 9202  df-z 9279  df-uz 9554  df-topgen 12758  df-top 13935  df-topon 13948  df-bases 13980  df-cn 14125  df-cnp 14126  df-lm 14127  df-tx 14190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator