| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmcn2 | GIF version | ||
| Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014.) |
| Ref | Expression |
|---|---|
| txlm.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| txlm.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| txlm.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| txlm.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| txlm.f | ⊢ (𝜑 → 𝐹:𝑍⟶𝑋) |
| txlm.g | ⊢ (𝜑 → 𝐺:𝑍⟶𝑌) |
| lmcn2.fl | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑅) |
| lmcn2.gl | ⊢ (𝜑 → 𝐺(⇝𝑡‘𝐾)𝑆) |
| lmcn2.o | ⊢ (𝜑 → 𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) |
| lmcn2.h | ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)𝑂(𝐺‘𝑛))) |
| Ref | Expression |
|---|---|
| lmcn2 | ⊢ (𝜑 → 𝐻(⇝𝑡‘𝑁)(𝑅𝑂𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txlm.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑍⟶𝑋) | |
| 2 | 1 | ffvelcdmda 5722 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ 𝑋) |
| 3 | txlm.g | . . . . . . 7 ⊢ (𝜑 → 𝐺:𝑍⟶𝑌) | |
| 4 | 3 | ffvelcdmda 5722 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐺‘𝑛) ∈ 𝑌) |
| 5 | 2, 4 | opelxpd 4712 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 ∈ (𝑋 × 𝑌)) |
| 6 | eqidd 2207 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) = (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) | |
| 7 | txlm.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 8 | txlm.k | . . . . . . . 8 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 9 | txtopon 14778 | . . . . . . . 8 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) | |
| 10 | 7, 8, 9 | syl2anc 411 | . . . . . . 7 ⊢ (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 11 | lmcn2.o | . . . . . . . . 9 ⊢ (𝜑 → 𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) | |
| 12 | cntop2 14718 | . . . . . . . . 9 ⊢ (𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁) → 𝑁 ∈ Top) | |
| 13 | 11, 12 | syl 14 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ Top) |
| 14 | toptopon2 14535 | . . . . . . . 8 ⊢ (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘∪ 𝑁)) | |
| 15 | 13, 14 | sylib 122 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ (TopOn‘∪ 𝑁)) |
| 16 | cnf2 14721 | . . . . . . 7 ⊢ (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑁 ∈ (TopOn‘∪ 𝑁) ∧ 𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) → 𝑂:(𝑋 × 𝑌)⟶∪ 𝑁) | |
| 17 | 10, 15, 11, 16 | syl3anc 1250 | . . . . . 6 ⊢ (𝜑 → 𝑂:(𝑋 × 𝑌)⟶∪ 𝑁) |
| 18 | 17 | feqmptd 5639 | . . . . 5 ⊢ (𝜑 → 𝑂 = (𝑥 ∈ (𝑋 × 𝑌) ↦ (𝑂‘𝑥))) |
| 19 | fveq2 5583 | . . . . . 6 ⊢ (𝑥 = 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 → (𝑂‘𝑥) = (𝑂‘〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) | |
| 20 | df-ov 5954 | . . . . . 6 ⊢ ((𝐹‘𝑛)𝑂(𝐺‘𝑛)) = (𝑂‘〈(𝐹‘𝑛), (𝐺‘𝑛)〉) | |
| 21 | 19, 20 | eqtr4di 2257 | . . . . 5 ⊢ (𝑥 = 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 → (𝑂‘𝑥) = ((𝐹‘𝑛)𝑂(𝐺‘𝑛))) |
| 22 | 5, 6, 18, 21 | fmptco 5753 | . . . 4 ⊢ (𝜑 → (𝑂 ∘ (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) = (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)𝑂(𝐺‘𝑛)))) |
| 23 | lmcn2.h | . . . 4 ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)𝑂(𝐺‘𝑛))) | |
| 24 | 22, 23 | eqtr4di 2257 | . . 3 ⊢ (𝜑 → (𝑂 ∘ (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)) = 𝐻) |
| 25 | lmcn2.fl | . . . . 5 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑅) | |
| 26 | lmcn2.gl | . . . . 5 ⊢ (𝜑 → 𝐺(⇝𝑡‘𝐾)𝑆) | |
| 27 | txlm.z | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 28 | txlm.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 29 | eqid 2206 | . . . . . 6 ⊢ (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) = (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) | |
| 30 | 27, 28, 7, 8, 1, 3, 29 | txlm 14795 | . . . . 5 ⊢ (𝜑 → ((𝐹(⇝𝑡‘𝐽)𝑅 ∧ 𝐺(⇝𝑡‘𝐾)𝑆) ↔ (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)(⇝𝑡‘(𝐽 ×t 𝐾))〈𝑅, 𝑆〉)) |
| 31 | 25, 26, 30 | mpbi2and 946 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉)(⇝𝑡‘(𝐽 ×t 𝐾))〈𝑅, 𝑆〉) |
| 32 | 31, 11 | lmcn 14767 | . . 3 ⊢ (𝜑 → (𝑂 ∘ (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉))(⇝𝑡‘𝑁)(𝑂‘〈𝑅, 𝑆〉)) |
| 33 | 24, 32 | eqbrtrrd 4071 | . 2 ⊢ (𝜑 → 𝐻(⇝𝑡‘𝑁)(𝑂‘〈𝑅, 𝑆〉)) |
| 34 | df-ov 5954 | . 2 ⊢ (𝑅𝑂𝑆) = (𝑂‘〈𝑅, 𝑆〉) | |
| 35 | 33, 34 | breqtrrdi 4089 | 1 ⊢ (𝜑 → 𝐻(⇝𝑡‘𝑁)(𝑅𝑂𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 〈cop 3637 ∪ cuni 3852 class class class wbr 4047 ↦ cmpt 4109 × cxp 4677 ∘ ccom 4683 ⟶wf 5272 ‘cfv 5276 (class class class)co 5951 ℤcz 9379 ℤ≥cuz 9655 Topctop 14513 TopOnctopon 14526 Cn ccn 14701 ⇝𝑡clm 14703 ×t ctx 14768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-map 6744 df-pm 6745 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-n0 9303 df-z 9380 df-uz 9656 df-topgen 13136 df-top 14514 df-topon 14527 df-bases 14559 df-cn 14704 df-cnp 14705 df-lm 14706 df-tx 14769 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |