ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmcn2 GIF version

Theorem lmcn2 14459
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014.)
Hypotheses
Ref Expression
txlm.z 𝑍 = (ℤ𝑀)
txlm.m (𝜑𝑀 ∈ ℤ)
txlm.j (𝜑𝐽 ∈ (TopOn‘𝑋))
txlm.k (𝜑𝐾 ∈ (TopOn‘𝑌))
txlm.f (𝜑𝐹:𝑍𝑋)
txlm.g (𝜑𝐺:𝑍𝑌)
lmcn2.fl (𝜑𝐹(⇝𝑡𝐽)𝑅)
lmcn2.gl (𝜑𝐺(⇝𝑡𝐾)𝑆)
lmcn2.o (𝜑𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
lmcn2.h 𝐻 = (𝑛𝑍 ↦ ((𝐹𝑛)𝑂(𝐺𝑛)))
Assertion
Ref Expression
lmcn2 (𝜑𝐻(⇝𝑡𝑁)(𝑅𝑂𝑆))
Distinct variable groups:   𝑛,𝐹   𝑛,𝑂   𝜑,𝑛   𝑛,𝐺   𝑛,𝐽   𝑛,𝐾   𝑛,𝑋   𝑛,𝑌   𝑛,𝑍
Allowed substitution hints:   𝑅(𝑛)   𝑆(𝑛)   𝐻(𝑛)   𝑀(𝑛)   𝑁(𝑛)

Proof of Theorem lmcn2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 txlm.f . . . . . . 7 (𝜑𝐹:𝑍𝑋)
21ffvelcdmda 5694 . . . . . 6 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ 𝑋)
3 txlm.g . . . . . . 7 (𝜑𝐺:𝑍𝑌)
43ffvelcdmda 5694 . . . . . 6 ((𝜑𝑛𝑍) → (𝐺𝑛) ∈ 𝑌)
52, 4opelxpd 4693 . . . . 5 ((𝜑𝑛𝑍) → ⟨(𝐹𝑛), (𝐺𝑛)⟩ ∈ (𝑋 × 𝑌))
6 eqidd 2194 . . . . 5 (𝜑 → (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) = (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩))
7 txlm.j . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
8 txlm.k . . . . . . . 8 (𝜑𝐾 ∈ (TopOn‘𝑌))
9 txtopon 14441 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
107, 8, 9syl2anc 411 . . . . . . 7 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
11 lmcn2.o . . . . . . . . 9 (𝜑𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁))
12 cntop2 14381 . . . . . . . . 9 (𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁) → 𝑁 ∈ Top)
1311, 12syl 14 . . . . . . . 8 (𝜑𝑁 ∈ Top)
14 toptopon2 14198 . . . . . . . 8 (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘ 𝑁))
1513, 14sylib 122 . . . . . . 7 (𝜑𝑁 ∈ (TopOn‘ 𝑁))
16 cnf2 14384 . . . . . . 7 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑁 ∈ (TopOn‘ 𝑁) ∧ 𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) → 𝑂:(𝑋 × 𝑌)⟶ 𝑁)
1710, 15, 11, 16syl3anc 1249 . . . . . 6 (𝜑𝑂:(𝑋 × 𝑌)⟶ 𝑁)
1817feqmptd 5611 . . . . 5 (𝜑𝑂 = (𝑥 ∈ (𝑋 × 𝑌) ↦ (𝑂𝑥)))
19 fveq2 5555 . . . . . 6 (𝑥 = ⟨(𝐹𝑛), (𝐺𝑛)⟩ → (𝑂𝑥) = (𝑂‘⟨(𝐹𝑛), (𝐺𝑛)⟩))
20 df-ov 5922 . . . . . 6 ((𝐹𝑛)𝑂(𝐺𝑛)) = (𝑂‘⟨(𝐹𝑛), (𝐺𝑛)⟩)
2119, 20eqtr4di 2244 . . . . 5 (𝑥 = ⟨(𝐹𝑛), (𝐺𝑛)⟩ → (𝑂𝑥) = ((𝐹𝑛)𝑂(𝐺𝑛)))
225, 6, 18, 21fmptco 5725 . . . 4 (𝜑 → (𝑂 ∘ (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)) = (𝑛𝑍 ↦ ((𝐹𝑛)𝑂(𝐺𝑛))))
23 lmcn2.h . . . 4 𝐻 = (𝑛𝑍 ↦ ((𝐹𝑛)𝑂(𝐺𝑛)))
2422, 23eqtr4di 2244 . . 3 (𝜑 → (𝑂 ∘ (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)) = 𝐻)
25 lmcn2.fl . . . . 5 (𝜑𝐹(⇝𝑡𝐽)𝑅)
26 lmcn2.gl . . . . 5 (𝜑𝐺(⇝𝑡𝐾)𝑆)
27 txlm.z . . . . . 6 𝑍 = (ℤ𝑀)
28 txlm.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
29 eqid 2193 . . . . . 6 (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩) = (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)
3027, 28, 7, 8, 1, 3, 29txlm 14458 . . . . 5 (𝜑 → ((𝐹(⇝𝑡𝐽)𝑅𝐺(⇝𝑡𝐾)𝑆) ↔ (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)(⇝𝑡‘(𝐽 ×t 𝐾))⟨𝑅, 𝑆⟩))
3125, 26, 30mpbi2and 945 . . . 4 (𝜑 → (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)(⇝𝑡‘(𝐽 ×t 𝐾))⟨𝑅, 𝑆⟩)
3231, 11lmcn 14430 . . 3 (𝜑 → (𝑂 ∘ (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩))(⇝𝑡𝑁)(𝑂‘⟨𝑅, 𝑆⟩))
3324, 32eqbrtrrd 4054 . 2 (𝜑𝐻(⇝𝑡𝑁)(𝑂‘⟨𝑅, 𝑆⟩))
34 df-ov 5922 . 2 (𝑅𝑂𝑆) = (𝑂‘⟨𝑅, 𝑆⟩)
3533, 34breqtrrdi 4072 1 (𝜑𝐻(⇝𝑡𝑁)(𝑅𝑂𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  cop 3622   cuni 3836   class class class wbr 4030  cmpt 4091   × cxp 4658  ccom 4664  wf 5251  cfv 5255  (class class class)co 5919  cz 9320  cuz 9595  Topctop 14176  TopOnctopon 14189   Cn ccn 14364  𝑡clm 14366   ×t ctx 14431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-pm 6707  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-topgen 12874  df-top 14177  df-topon 14190  df-bases 14222  df-cn 14367  df-cnp 14368  df-lm 14369  df-tx 14432
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator