Step | Hyp | Ref
| Expression |
1 | | supisoti.ti |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) |
2 | 1 | ralrimivva 2552 |
. . . . . 6
⊢ (𝜑 → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) |
3 | | supiso.1 |
. . . . . . 7
⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |
4 | | isoti 6984 |
. . . . . . 7
⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) ↔ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢)))) |
5 | 3, 4 | syl 14 |
. . . . . 6
⊢ (𝜑 → (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)) ↔ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢)))) |
6 | 2, 5 | mpbid 146 |
. . . . 5
⊢ (𝜑 → ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢))) |
7 | 6 | r19.21bi 2558 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐵) → ∀𝑣 ∈ 𝐵 (𝑢 = 𝑣 ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢))) |
8 | 7 | r19.21bi 2558 |
. . 3
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐵) ∧ 𝑣 ∈ 𝐵) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢))) |
9 | 8 | anasss 397 |
. 2
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑆𝑣 ∧ ¬ 𝑣𝑆𝑢))) |
10 | | isof1o 5786 |
. . . 4
⊢ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐹:𝐴–1-1-onto→𝐵) |
11 | | f1of 5442 |
. . . 4
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) |
12 | 3, 10, 11 | 3syl 17 |
. . 3
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
13 | | supisoex.3 |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐶 𝑦𝑅𝑧))) |
14 | 1, 13 | supclti 6975 |
. . 3
⊢ (𝜑 → sup(𝐶, 𝐴, 𝑅) ∈ 𝐴) |
15 | 12, 14 | ffvelrnd 5632 |
. 2
⊢ (𝜑 → (𝐹‘sup(𝐶, 𝐴, 𝑅)) ∈ 𝐵) |
16 | 1, 13 | supubti 6976 |
. . . . . 6
⊢ (𝜑 → (𝑗 ∈ 𝐶 → ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑗)) |
17 | 16 | ralrimiv 2542 |
. . . . 5
⊢ (𝜑 → ∀𝑗 ∈ 𝐶 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑗) |
18 | 1, 13 | suplubti 6977 |
. . . . . . 7
⊢ (𝜑 → ((𝑗 ∈ 𝐴 ∧ 𝑗𝑅sup(𝐶, 𝐴, 𝑅)) → ∃𝑧 ∈ 𝐶 𝑗𝑅𝑧)) |
19 | 18 | expd 256 |
. . . . . 6
⊢ (𝜑 → (𝑗 ∈ 𝐴 → (𝑗𝑅sup(𝐶, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐶 𝑗𝑅𝑧))) |
20 | 19 | ralrimiv 2542 |
. . . . 5
⊢ (𝜑 → ∀𝑗 ∈ 𝐴 (𝑗𝑅sup(𝐶, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐶 𝑗𝑅𝑧)) |
21 | | supiso.2 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
22 | 3, 21 | supisolem 6985 |
. . . . . 6
⊢ ((𝜑 ∧ sup(𝐶, 𝐴, 𝑅) ∈ 𝐴) → ((∀𝑗 ∈ 𝐶 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑗 ∧ ∀𝑗 ∈ 𝐴 (𝑗𝑅sup(𝐶, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐶 𝑗𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ (𝐹‘sup(𝐶, 𝐴, 𝑅))𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆(𝐹‘sup(𝐶, 𝐴, 𝑅)) → ∃𝑘 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑘)))) |
23 | 14, 22 | mpdan 419 |
. . . . 5
⊢ (𝜑 → ((∀𝑗 ∈ 𝐶 ¬ sup(𝐶, 𝐴, 𝑅)𝑅𝑗 ∧ ∀𝑗 ∈ 𝐴 (𝑗𝑅sup(𝐶, 𝐴, 𝑅) → ∃𝑧 ∈ 𝐶 𝑗𝑅𝑧)) ↔ (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ (𝐹‘sup(𝐶, 𝐴, 𝑅))𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆(𝐹‘sup(𝐶, 𝐴, 𝑅)) → ∃𝑘 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑘)))) |
24 | 17, 20, 23 | mpbi2and 938 |
. . . 4
⊢ (𝜑 → (∀𝑤 ∈ (𝐹 “ 𝐶) ¬ (𝐹‘sup(𝐶, 𝐴, 𝑅))𝑆𝑤 ∧ ∀𝑤 ∈ 𝐵 (𝑤𝑆(𝐹‘sup(𝐶, 𝐴, 𝑅)) → ∃𝑘 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑘))) |
25 | 24 | simpld 111 |
. . 3
⊢ (𝜑 → ∀𝑤 ∈ (𝐹 “ 𝐶) ¬ (𝐹‘sup(𝐶, 𝐴, 𝑅))𝑆𝑤) |
26 | 25 | r19.21bi 2558 |
. 2
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐹 “ 𝐶)) → ¬ (𝐹‘sup(𝐶, 𝐴, 𝑅))𝑆𝑤) |
27 | 24 | simprd 113 |
. . . 4
⊢ (𝜑 → ∀𝑤 ∈ 𝐵 (𝑤𝑆(𝐹‘sup(𝐶, 𝐴, 𝑅)) → ∃𝑘 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑘)) |
28 | 27 | r19.21bi 2558 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐵) → (𝑤𝑆(𝐹‘sup(𝐶, 𝐴, 𝑅)) → ∃𝑘 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑘)) |
29 | 28 | impr 377 |
. 2
⊢ ((𝜑 ∧ (𝑤 ∈ 𝐵 ∧ 𝑤𝑆(𝐹‘sup(𝐶, 𝐴, 𝑅)))) → ∃𝑘 ∈ (𝐹 “ 𝐶)𝑤𝑆𝑘) |
30 | 9, 15, 26, 29 | eqsuptid 6974 |
1
⊢ (𝜑 → sup((𝐹 “ 𝐶), 𝐵, 𝑆) = (𝐹‘sup(𝐶, 𝐴, 𝑅))) |