Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddpwdclemxy GIF version

Theorem oddpwdclemxy 11917
 Description: Lemma for oddpwdc 11922. Another way of stating that decomposing a natural number into a power of two and an odd number is unique. (Contributed by Jim Kingdon, 16-Nov-2021.)
Assertion
Ref Expression
oddpwdclemxy ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝑋 = (𝐴 / (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑌
Allowed substitution hint:   𝑋(𝑧)

Proof of Theorem oddpwdclemxy
StepHypRef Expression
1 2nn 8932 . . . . . 6 2 ∈ ℕ
21a1i 9 . . . . 5 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 2 ∈ ℕ)
3 simplll 523 . . . . . . . . 9 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑋 ∈ ℕ)
43nnzd 9223 . . . . . . . 8 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑋 ∈ ℤ)
5 simplr 520 . . . . . . . . . 10 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑌 ∈ ℕ0)
62, 5nnexpcld 10504 . . . . . . . . 9 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) ∈ ℕ)
76nnzd 9223 . . . . . . . 8 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) ∈ ℤ)
8 simpr 109 . . . . . . . . . 10 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝐴 = ((2↑𝑌) · 𝑋))
96, 3nnmulcld 8820 . . . . . . . . . 10 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ((2↑𝑌) · 𝑋) ∈ ℕ)
108, 9eqeltrd 2217 . . . . . . . . 9 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝐴 ∈ ℕ)
1110nnzd 9223 . . . . . . . 8 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝐴 ∈ ℤ)
126nncnd 8785 . . . . . . . . . 10 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) ∈ ℂ)
133nncnd 8785 . . . . . . . . . 10 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑋 ∈ ℂ)
1412, 13mulcomd 7838 . . . . . . . . 9 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ((2↑𝑌) · 𝑋) = (𝑋 · (2↑𝑌)))
158, 14eqtr2d 2174 . . . . . . . 8 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝑋 · (2↑𝑌)) = 𝐴)
16 dvds0lem 11573 . . . . . . . 8 (((𝑋 ∈ ℤ ∧ (2↑𝑌) ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝑋 · (2↑𝑌)) = 𝐴) → (2↑𝑌) ∥ 𝐴)
174, 7, 11, 15, 16syl31anc 1220 . . . . . . 7 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) ∥ 𝐴)
18 simpllr 524 . . . . . . . . 9 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ¬ 2 ∥ 𝑋)
198breq2d 3950 . . . . . . . . . 10 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (((2↑𝑌) · 2) ∥ 𝐴 ↔ ((2↑𝑌) · 2) ∥ ((2↑𝑌) · 𝑋)))
202nnzd 9223 . . . . . . . . . . 11 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 2 ∈ ℤ)
216nnne0d 8816 . . . . . . . . . . 11 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) ≠ 0)
22 dvdscmulr 11592 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ ((2↑𝑌) ∈ ℤ ∧ (2↑𝑌) ≠ 0)) → (((2↑𝑌) · 2) ∥ ((2↑𝑌) · 𝑋) ↔ 2 ∥ 𝑋))
2320, 4, 7, 21, 22syl112anc 1221 . . . . . . . . . 10 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (((2↑𝑌) · 2) ∥ ((2↑𝑌) · 𝑋) ↔ 2 ∥ 𝑋))
2419, 23bitrd 187 . . . . . . . . 9 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (((2↑𝑌) · 2) ∥ 𝐴 ↔ 2 ∥ 𝑋))
2518, 24mtbird 663 . . . . . . . 8 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ¬ ((2↑𝑌) · 2) ∥ 𝐴)
262nncnd 8785 . . . . . . . . . 10 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 2 ∈ ℂ)
2726, 5expp1d 10483 . . . . . . . . 9 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑(𝑌 + 1)) = ((2↑𝑌) · 2))
2827breq1d 3948 . . . . . . . 8 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ((2↑(𝑌 + 1)) ∥ 𝐴 ↔ ((2↑𝑌) · 2) ∥ 𝐴))
2925, 28mtbird 663 . . . . . . 7 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ¬ (2↑(𝑌 + 1)) ∥ 𝐴)
30 pw2dvdseu 11916 . . . . . . . . 9 (𝐴 ∈ ℕ → ∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))
3110, 30syl 14 . . . . . . . 8 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))
32 oveq2 5793 . . . . . . . . . . 11 (𝑧 = 𝑌 → (2↑𝑧) = (2↑𝑌))
3332breq1d 3948 . . . . . . . . . 10 (𝑧 = 𝑌 → ((2↑𝑧) ∥ 𝐴 ↔ (2↑𝑌) ∥ 𝐴))
34 oveq1 5792 . . . . . . . . . . . . 13 (𝑧 = 𝑌 → (𝑧 + 1) = (𝑌 + 1))
3534oveq2d 5801 . . . . . . . . . . . 12 (𝑧 = 𝑌 → (2↑(𝑧 + 1)) = (2↑(𝑌 + 1)))
3635breq1d 3948 . . . . . . . . . . 11 (𝑧 = 𝑌 → ((2↑(𝑧 + 1)) ∥ 𝐴 ↔ (2↑(𝑌 + 1)) ∥ 𝐴))
3736notbid 657 . . . . . . . . . 10 (𝑧 = 𝑌 → (¬ (2↑(𝑧 + 1)) ∥ 𝐴 ↔ ¬ (2↑(𝑌 + 1)) ∥ 𝐴))
3833, 37anbi12d 465 . . . . . . . . 9 (𝑧 = 𝑌 → (((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴) ↔ ((2↑𝑌) ∥ 𝐴 ∧ ¬ (2↑(𝑌 + 1)) ∥ 𝐴)))
3938riota2 5763 . . . . . . . 8 ((𝑌 ∈ ℕ0 ∧ ∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) → (((2↑𝑌) ∥ 𝐴 ∧ ¬ (2↑(𝑌 + 1)) ∥ 𝐴) ↔ (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) = 𝑌))
405, 31, 39syl2anc 409 . . . . . . 7 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (((2↑𝑌) ∥ 𝐴 ∧ ¬ (2↑(𝑌 + 1)) ∥ 𝐴) ↔ (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) = 𝑌))
4117, 29, 40mpbi2and 928 . . . . . 6 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) = 𝑌)
4241, 5eqeltrd 2217 . . . . 5 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) ∈ ℕ0)
432, 42nnexpcld 10504 . . . 4 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℕ)
4443nncnd 8785 . . 3 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℂ)
4543nnap0d 8817 . . 3 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) # 0)
4641eqcomd 2146 . . . . . 6 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑌 = (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))
4746oveq2d 5801 . . . . 5 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) = (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))
4847oveq1d 5800 . . . 4 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ((2↑𝑌) · 𝑋) = ((2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · 𝑋))
498, 48eqtr2d 2174 . . 3 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ((2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · 𝑋) = 𝐴)
5044, 13, 45, 49mvllmulapd 8652 . 2 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑋 = (𝐴 / (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))))
5150, 46jca 304 1 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝑋 = (𝐴 / (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 1481   ≠ wne 2309  ∃!wreu 2419   class class class wbr 3938  ℩crio 5740  (class class class)co 5785  0cc0 7671  1c1 7672   + caddc 7674   · cmul 7676   / cdiv 8483  ℕcn 8771  2c2 8822  ℕ0cn0 9028  ℤcz 9105  ↑cexp 10350   ∥ cdvds 11563 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4052  ax-sep 4055  ax-nul 4063  ax-pow 4107  ax-pr 4141  ax-un 4365  ax-setind 4462  ax-iinf 4512  ax-cnex 7762  ax-resscn 7763  ax-1cn 7764  ax-1re 7765  ax-icn 7766  ax-addcl 7767  ax-addrcl 7768  ax-mulcl 7769  ax-mulrcl 7770  ax-addcom 7771  ax-mulcom 7772  ax-addass 7773  ax-mulass 7774  ax-distr 7775  ax-i2m1 7776  ax-0lt1 7777  ax-1rid 7778  ax-0id 7779  ax-rnegex 7780  ax-precex 7781  ax-cnre 7782  ax-pre-ltirr 7783  ax-pre-ltwlin 7784  ax-pre-lttrn 7785  ax-pre-apti 7786  ax-pre-ltadd 7787  ax-pre-mulgt0 7788  ax-pre-mulext 7789  ax-arch 7790 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2692  df-sbc 2915  df-csb 3009  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-nul 3370  df-if 3481  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-int 3781  df-iun 3824  df-br 3939  df-opab 3999  df-mpt 4000  df-tr 4036  df-id 4225  df-po 4228  df-iso 4229  df-iord 4298  df-on 4300  df-ilim 4301  df-suc 4303  df-iom 4515  df-xp 4556  df-rel 4557  df-cnv 4558  df-co 4559  df-dm 4560  df-rn 4561  df-res 4562  df-ima 4563  df-iota 5099  df-fun 5136  df-fn 5137  df-f 5138  df-f1 5139  df-fo 5140  df-f1o 5141  df-fv 5142  df-riota 5741  df-ov 5788  df-oprab 5789  df-mpo 5790  df-1st 6049  df-2nd 6050  df-recs 6213  df-frec 6299  df-pnf 7853  df-mnf 7854  df-xr 7855  df-ltxr 7856  df-le 7857  df-sub 7986  df-neg 7987  df-reap 8388  df-ap 8395  df-div 8484  df-inn 8772  df-2 8830  df-n0 9029  df-z 9106  df-uz 9378  df-q 9466  df-rp 9498  df-fz 9849  df-fl 10101  df-mod 10154  df-seqfrec 10277  df-exp 10351  df-dvds 11564 This theorem is referenced by:  oddpwdclemdc  11921
 Copyright terms: Public domain W3C validator