Proof of Theorem oddpwdclemxy
Step | Hyp | Ref
| Expression |
1 | | 2nn 9039 |
. . . . . 6
⊢ 2 ∈
ℕ |
2 | 1 | a1i 9 |
. . . . 5
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 2 ∈ ℕ) |
3 | | simplll 528 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑋 ∈ ℕ) |
4 | 3 | nnzd 9333 |
. . . . . . . 8
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑋 ∈ ℤ) |
5 | | simplr 525 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑌 ∈
ℕ0) |
6 | 2, 5 | nnexpcld 10631 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) ∈ ℕ) |
7 | 6 | nnzd 9333 |
. . . . . . . 8
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) ∈ ℤ) |
8 | | simpr 109 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝐴 = ((2↑𝑌) · 𝑋)) |
9 | 6, 3 | nnmulcld 8927 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ((2↑𝑌) · 𝑋) ∈ ℕ) |
10 | 8, 9 | eqeltrd 2247 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝐴 ∈ ℕ) |
11 | 10 | nnzd 9333 |
. . . . . . . 8
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝐴 ∈ ℤ) |
12 | 6 | nncnd 8892 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) ∈ ℂ) |
13 | 3 | nncnd 8892 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑋 ∈ ℂ) |
14 | 12, 13 | mulcomd 7941 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ((2↑𝑌) · 𝑋) = (𝑋 · (2↑𝑌))) |
15 | 8, 14 | eqtr2d 2204 |
. . . . . . . 8
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝑋 · (2↑𝑌)) = 𝐴) |
16 | | dvds0lem 11763 |
. . . . . . . 8
⊢ (((𝑋 ∈ ℤ ∧
(2↑𝑌) ∈ ℤ
∧ 𝐴 ∈ ℤ)
∧ (𝑋 ·
(2↑𝑌)) = 𝐴) → (2↑𝑌) ∥ 𝐴) |
17 | 4, 7, 11, 15, 16 | syl31anc 1236 |
. . . . . . 7
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) ∥ 𝐴) |
18 | | simpllr 529 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ¬ 2 ∥ 𝑋) |
19 | 8 | breq2d 4001 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (((2↑𝑌) · 2) ∥ 𝐴 ↔ ((2↑𝑌) · 2) ∥ ((2↑𝑌) · 𝑋))) |
20 | 2 | nnzd 9333 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 2 ∈ ℤ) |
21 | 6 | nnne0d 8923 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) ≠ 0) |
22 | | dvdscmulr 11782 |
. . . . . . . . . . 11
⊢ ((2
∈ ℤ ∧ 𝑋
∈ ℤ ∧ ((2↑𝑌) ∈ ℤ ∧ (2↑𝑌) ≠ 0)) →
(((2↑𝑌) · 2)
∥ ((2↑𝑌)
· 𝑋) ↔ 2
∥ 𝑋)) |
23 | 20, 4, 7, 21, 22 | syl112anc 1237 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (((2↑𝑌) · 2) ∥ ((2↑𝑌) · 𝑋) ↔ 2 ∥ 𝑋)) |
24 | 19, 23 | bitrd 187 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (((2↑𝑌) · 2) ∥ 𝐴 ↔ 2 ∥ 𝑋)) |
25 | 18, 24 | mtbird 668 |
. . . . . . . 8
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ¬ ((2↑𝑌) · 2) ∥ 𝐴) |
26 | 2 | nncnd 8892 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 2 ∈ ℂ) |
27 | 26, 5 | expp1d 10610 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑(𝑌 + 1)) = ((2↑𝑌) · 2)) |
28 | 27 | breq1d 3999 |
. . . . . . . 8
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ((2↑(𝑌 + 1)) ∥ 𝐴 ↔ ((2↑𝑌) · 2) ∥ 𝐴)) |
29 | 25, 28 | mtbird 668 |
. . . . . . 7
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ¬ (2↑(𝑌 + 1)) ∥ 𝐴) |
30 | | pw2dvdseu 12122 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ →
∃!𝑧 ∈
ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) |
31 | 10, 30 | syl 14 |
. . . . . . . 8
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) |
32 | | oveq2 5861 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑌 → (2↑𝑧) = (2↑𝑌)) |
33 | 32 | breq1d 3999 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑌 → ((2↑𝑧) ∥ 𝐴 ↔ (2↑𝑌) ∥ 𝐴)) |
34 | | oveq1 5860 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑌 → (𝑧 + 1) = (𝑌 + 1)) |
35 | 34 | oveq2d 5869 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑌 → (2↑(𝑧 + 1)) = (2↑(𝑌 + 1))) |
36 | 35 | breq1d 3999 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑌 → ((2↑(𝑧 + 1)) ∥ 𝐴 ↔ (2↑(𝑌 + 1)) ∥ 𝐴)) |
37 | 36 | notbid 662 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑌 → (¬ (2↑(𝑧 + 1)) ∥ 𝐴 ↔ ¬ (2↑(𝑌 + 1)) ∥ 𝐴)) |
38 | 33, 37 | anbi12d 470 |
. . . . . . . . 9
⊢ (𝑧 = 𝑌 → (((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴) ↔ ((2↑𝑌) ∥ 𝐴 ∧ ¬ (2↑(𝑌 + 1)) ∥ 𝐴))) |
39 | 38 | riota2 5831 |
. . . . . . . 8
⊢ ((𝑌 ∈ ℕ0
∧ ∃!𝑧 ∈
ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) → (((2↑𝑌) ∥ 𝐴 ∧ ¬ (2↑(𝑌 + 1)) ∥ 𝐴) ↔ (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) = 𝑌)) |
40 | 5, 31, 39 | syl2anc 409 |
. . . . . . 7
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (((2↑𝑌) ∥ 𝐴 ∧ ¬ (2↑(𝑌 + 1)) ∥ 𝐴) ↔ (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) = 𝑌)) |
41 | 17, 29, 40 | mpbi2and 938 |
. . . . . 6
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) = 𝑌) |
42 | 41, 5 | eqeltrd 2247 |
. . . . 5
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) ∈
ℕ0) |
43 | 2, 42 | nnexpcld 10631 |
. . . 4
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℕ) |
44 | 43 | nncnd 8892 |
. . 3
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℂ) |
45 | 43 | nnap0d 8924 |
. . 3
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) # 0) |
46 | 41 | eqcomd 2176 |
. . . . . 6
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) |
47 | 46 | oveq2d 5869 |
. . . . 5
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) = (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) |
48 | 47 | oveq1d 5868 |
. . . 4
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ((2↑𝑌) · 𝑋) = ((2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · 𝑋)) |
49 | 8, 48 | eqtr2d 2204 |
. . 3
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ((2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · 𝑋) = 𝐴) |
50 | 44, 13, 45, 49 | mvllmulapd 8759 |
. 2
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) |
51 | 50, 46 | jca 304 |
1
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2
∥ 𝑋) ∧ 𝑌 ∈ ℕ0)
∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) |