ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddpwdclemxy GIF version

Theorem oddpwdclemxy 12123
Description: Lemma for oddpwdc 12128. Another way of stating that decomposing a natural number into a power of two and an odd number is unique. (Contributed by Jim Kingdon, 16-Nov-2021.)
Assertion
Ref Expression
oddpwdclemxy ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝑋 = (𝐴 / (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑌
Allowed substitution hint:   𝑋(𝑧)

Proof of Theorem oddpwdclemxy
StepHypRef Expression
1 2nn 9039 . . . . . 6 2 ∈ ℕ
21a1i 9 . . . . 5 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 2 ∈ ℕ)
3 simplll 528 . . . . . . . . 9 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑋 ∈ ℕ)
43nnzd 9333 . . . . . . . 8 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑋 ∈ ℤ)
5 simplr 525 . . . . . . . . . 10 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑌 ∈ ℕ0)
62, 5nnexpcld 10631 . . . . . . . . 9 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) ∈ ℕ)
76nnzd 9333 . . . . . . . 8 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) ∈ ℤ)
8 simpr 109 . . . . . . . . . 10 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝐴 = ((2↑𝑌) · 𝑋))
96, 3nnmulcld 8927 . . . . . . . . . 10 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ((2↑𝑌) · 𝑋) ∈ ℕ)
108, 9eqeltrd 2247 . . . . . . . . 9 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝐴 ∈ ℕ)
1110nnzd 9333 . . . . . . . 8 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝐴 ∈ ℤ)
126nncnd 8892 . . . . . . . . . 10 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) ∈ ℂ)
133nncnd 8892 . . . . . . . . . 10 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑋 ∈ ℂ)
1412, 13mulcomd 7941 . . . . . . . . 9 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ((2↑𝑌) · 𝑋) = (𝑋 · (2↑𝑌)))
158, 14eqtr2d 2204 . . . . . . . 8 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝑋 · (2↑𝑌)) = 𝐴)
16 dvds0lem 11763 . . . . . . . 8 (((𝑋 ∈ ℤ ∧ (2↑𝑌) ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝑋 · (2↑𝑌)) = 𝐴) → (2↑𝑌) ∥ 𝐴)
174, 7, 11, 15, 16syl31anc 1236 . . . . . . 7 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) ∥ 𝐴)
18 simpllr 529 . . . . . . . . 9 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ¬ 2 ∥ 𝑋)
198breq2d 4001 . . . . . . . . . 10 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (((2↑𝑌) · 2) ∥ 𝐴 ↔ ((2↑𝑌) · 2) ∥ ((2↑𝑌) · 𝑋)))
202nnzd 9333 . . . . . . . . . . 11 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 2 ∈ ℤ)
216nnne0d 8923 . . . . . . . . . . 11 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) ≠ 0)
22 dvdscmulr 11782 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ ((2↑𝑌) ∈ ℤ ∧ (2↑𝑌) ≠ 0)) → (((2↑𝑌) · 2) ∥ ((2↑𝑌) · 𝑋) ↔ 2 ∥ 𝑋))
2320, 4, 7, 21, 22syl112anc 1237 . . . . . . . . . 10 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (((2↑𝑌) · 2) ∥ ((2↑𝑌) · 𝑋) ↔ 2 ∥ 𝑋))
2419, 23bitrd 187 . . . . . . . . 9 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (((2↑𝑌) · 2) ∥ 𝐴 ↔ 2 ∥ 𝑋))
2518, 24mtbird 668 . . . . . . . 8 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ¬ ((2↑𝑌) · 2) ∥ 𝐴)
262nncnd 8892 . . . . . . . . . 10 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 2 ∈ ℂ)
2726, 5expp1d 10610 . . . . . . . . 9 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑(𝑌 + 1)) = ((2↑𝑌) · 2))
2827breq1d 3999 . . . . . . . 8 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ((2↑(𝑌 + 1)) ∥ 𝐴 ↔ ((2↑𝑌) · 2) ∥ 𝐴))
2925, 28mtbird 668 . . . . . . 7 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ¬ (2↑(𝑌 + 1)) ∥ 𝐴)
30 pw2dvdseu 12122 . . . . . . . . 9 (𝐴 ∈ ℕ → ∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))
3110, 30syl 14 . . . . . . . 8 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))
32 oveq2 5861 . . . . . . . . . . 11 (𝑧 = 𝑌 → (2↑𝑧) = (2↑𝑌))
3332breq1d 3999 . . . . . . . . . 10 (𝑧 = 𝑌 → ((2↑𝑧) ∥ 𝐴 ↔ (2↑𝑌) ∥ 𝐴))
34 oveq1 5860 . . . . . . . . . . . . 13 (𝑧 = 𝑌 → (𝑧 + 1) = (𝑌 + 1))
3534oveq2d 5869 . . . . . . . . . . . 12 (𝑧 = 𝑌 → (2↑(𝑧 + 1)) = (2↑(𝑌 + 1)))
3635breq1d 3999 . . . . . . . . . . 11 (𝑧 = 𝑌 → ((2↑(𝑧 + 1)) ∥ 𝐴 ↔ (2↑(𝑌 + 1)) ∥ 𝐴))
3736notbid 662 . . . . . . . . . 10 (𝑧 = 𝑌 → (¬ (2↑(𝑧 + 1)) ∥ 𝐴 ↔ ¬ (2↑(𝑌 + 1)) ∥ 𝐴))
3833, 37anbi12d 470 . . . . . . . . 9 (𝑧 = 𝑌 → (((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴) ↔ ((2↑𝑌) ∥ 𝐴 ∧ ¬ (2↑(𝑌 + 1)) ∥ 𝐴)))
3938riota2 5831 . . . . . . . 8 ((𝑌 ∈ ℕ0 ∧ ∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) → (((2↑𝑌) ∥ 𝐴 ∧ ¬ (2↑(𝑌 + 1)) ∥ 𝐴) ↔ (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) = 𝑌))
405, 31, 39syl2anc 409 . . . . . . 7 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (((2↑𝑌) ∥ 𝐴 ∧ ¬ (2↑(𝑌 + 1)) ∥ 𝐴) ↔ (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) = 𝑌))
4117, 29, 40mpbi2and 938 . . . . . 6 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) = 𝑌)
4241, 5eqeltrd 2247 . . . . 5 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) ∈ ℕ0)
432, 42nnexpcld 10631 . . . 4 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℕ)
4443nncnd 8892 . . 3 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℂ)
4543nnap0d 8924 . . 3 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) # 0)
4641eqcomd 2176 . . . . . 6 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑌 = (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))
4746oveq2d 5869 . . . . 5 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) = (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))
4847oveq1d 5868 . . . 4 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ((2↑𝑌) · 𝑋) = ((2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · 𝑋))
498, 48eqtr2d 2204 . . 3 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ((2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · 𝑋) = 𝐴)
5044, 13, 45, 49mvllmulapd 8759 . 2 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑋 = (𝐴 / (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))))
5150, 46jca 304 1 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝑋 = (𝐴 / (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wne 2340  ∃!wreu 2450   class class class wbr 3989  crio 5808  (class class class)co 5853  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779   / cdiv 8589  cn 8878  2c2 8929  0cn0 9135  cz 9212  cexp 10475  cdvds 11749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-dvds 11750
This theorem is referenced by:  oddpwdclemdc  12127
  Copyright terms: Public domain W3C validator