ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddpwdclemxy GIF version

Theorem oddpwdclemxy 11686
Description: Lemma for oddpwdc 11691. Another way of stating that decomposing a natural number into a power of two and an odd number is unique. (Contributed by Jim Kingdon, 16-Nov-2021.)
Assertion
Ref Expression
oddpwdclemxy ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝑋 = (𝐴 / (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝑌
Allowed substitution hint:   𝑋(𝑧)

Proof of Theorem oddpwdclemxy
StepHypRef Expression
1 2nn 8779 . . . . . 6 2 ∈ ℕ
21a1i 9 . . . . 5 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 2 ∈ ℕ)
3 simplll 505 . . . . . . . . 9 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑋 ∈ ℕ)
43nnzd 9070 . . . . . . . 8 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑋 ∈ ℤ)
5 simplr 502 . . . . . . . . . 10 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑌 ∈ ℕ0)
62, 5nnexpcld 10333 . . . . . . . . 9 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) ∈ ℕ)
76nnzd 9070 . . . . . . . 8 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) ∈ ℤ)
8 simpr 109 . . . . . . . . . 10 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝐴 = ((2↑𝑌) · 𝑋))
96, 3nnmulcld 8673 . . . . . . . . . 10 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ((2↑𝑌) · 𝑋) ∈ ℕ)
108, 9eqeltrd 2189 . . . . . . . . 9 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝐴 ∈ ℕ)
1110nnzd 9070 . . . . . . . 8 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝐴 ∈ ℤ)
126nncnd 8638 . . . . . . . . . 10 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) ∈ ℂ)
133nncnd 8638 . . . . . . . . . 10 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑋 ∈ ℂ)
1412, 13mulcomd 7705 . . . . . . . . 9 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ((2↑𝑌) · 𝑋) = (𝑋 · (2↑𝑌)))
158, 14eqtr2d 2146 . . . . . . . 8 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝑋 · (2↑𝑌)) = 𝐴)
16 dvds0lem 11345 . . . . . . . 8 (((𝑋 ∈ ℤ ∧ (2↑𝑌) ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝑋 · (2↑𝑌)) = 𝐴) → (2↑𝑌) ∥ 𝐴)
174, 7, 11, 15, 16syl31anc 1200 . . . . . . 7 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) ∥ 𝐴)
18 simpllr 506 . . . . . . . . 9 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ¬ 2 ∥ 𝑋)
198breq2d 3905 . . . . . . . . . 10 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (((2↑𝑌) · 2) ∥ 𝐴 ↔ ((2↑𝑌) · 2) ∥ ((2↑𝑌) · 𝑋)))
202nnzd 9070 . . . . . . . . . . 11 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 2 ∈ ℤ)
216nnne0d 8669 . . . . . . . . . . 11 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) ≠ 0)
22 dvdscmulr 11364 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ ((2↑𝑌) ∈ ℤ ∧ (2↑𝑌) ≠ 0)) → (((2↑𝑌) · 2) ∥ ((2↑𝑌) · 𝑋) ↔ 2 ∥ 𝑋))
2320, 4, 7, 21, 22syl112anc 1201 . . . . . . . . . 10 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (((2↑𝑌) · 2) ∥ ((2↑𝑌) · 𝑋) ↔ 2 ∥ 𝑋))
2419, 23bitrd 187 . . . . . . . . 9 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (((2↑𝑌) · 2) ∥ 𝐴 ↔ 2 ∥ 𝑋))
2518, 24mtbird 645 . . . . . . . 8 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ¬ ((2↑𝑌) · 2) ∥ 𝐴)
262nncnd 8638 . . . . . . . . . 10 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 2 ∈ ℂ)
2726, 5expp1d 10312 . . . . . . . . 9 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑(𝑌 + 1)) = ((2↑𝑌) · 2))
2827breq1d 3903 . . . . . . . 8 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ((2↑(𝑌 + 1)) ∥ 𝐴 ↔ ((2↑𝑌) · 2) ∥ 𝐴))
2925, 28mtbird 645 . . . . . . 7 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ¬ (2↑(𝑌 + 1)) ∥ 𝐴)
30 pw2dvdseu 11685 . . . . . . . . 9 (𝐴 ∈ ℕ → ∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))
3110, 30syl 14 . . . . . . . 8 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))
32 oveq2 5734 . . . . . . . . . . 11 (𝑧 = 𝑌 → (2↑𝑧) = (2↑𝑌))
3332breq1d 3903 . . . . . . . . . 10 (𝑧 = 𝑌 → ((2↑𝑧) ∥ 𝐴 ↔ (2↑𝑌) ∥ 𝐴))
34 oveq1 5733 . . . . . . . . . . . . 13 (𝑧 = 𝑌 → (𝑧 + 1) = (𝑌 + 1))
3534oveq2d 5742 . . . . . . . . . . . 12 (𝑧 = 𝑌 → (2↑(𝑧 + 1)) = (2↑(𝑌 + 1)))
3635breq1d 3903 . . . . . . . . . . 11 (𝑧 = 𝑌 → ((2↑(𝑧 + 1)) ∥ 𝐴 ↔ (2↑(𝑌 + 1)) ∥ 𝐴))
3736notbid 639 . . . . . . . . . 10 (𝑧 = 𝑌 → (¬ (2↑(𝑧 + 1)) ∥ 𝐴 ↔ ¬ (2↑(𝑌 + 1)) ∥ 𝐴))
3833, 37anbi12d 462 . . . . . . . . 9 (𝑧 = 𝑌 → (((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴) ↔ ((2↑𝑌) ∥ 𝐴 ∧ ¬ (2↑(𝑌 + 1)) ∥ 𝐴)))
3938riota2 5704 . . . . . . . 8 ((𝑌 ∈ ℕ0 ∧ ∃!𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) → (((2↑𝑌) ∥ 𝐴 ∧ ¬ (2↑(𝑌 + 1)) ∥ 𝐴) ↔ (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) = 𝑌))
405, 31, 39syl2anc 406 . . . . . . 7 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (((2↑𝑌) ∥ 𝐴 ∧ ¬ (2↑(𝑌 + 1)) ∥ 𝐴) ↔ (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) = 𝑌))
4117, 29, 40mpbi2and 908 . . . . . 6 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) = 𝑌)
4241, 5eqeltrd 2189 . . . . 5 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) ∈ ℕ0)
432, 42nnexpcld 10333 . . . 4 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℕ)
4443nncnd 8638 . . 3 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℂ)
4543nnap0d 8670 . . 3 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) # 0)
4641eqcomd 2118 . . . . . 6 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑌 = (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))
4746oveq2d 5742 . . . . 5 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (2↑𝑌) = (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))
4847oveq1d 5741 . . . 4 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ((2↑𝑌) · 𝑋) = ((2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · 𝑋))
498, 48eqtr2d 2146 . . 3 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → ((2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · 𝑋) = 𝐴)
5044, 13, 45, 49mvllmulapd 8505 . 2 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → 𝑋 = (𝐴 / (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))))
5150, 46jca 302 1 ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝑋 = (𝐴 / (2↑(𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1312  wcel 1461  wne 2280  ∃!wreu 2390   class class class wbr 3893  crio 5681  (class class class)co 5726  0cc0 7541  1c1 7542   + caddc 7544   · cmul 7546   / cdiv 8339  cn 8624  2c2 8675  0cn0 8875  cz 8952  cexp 10179  cdvds 11335
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-mulrcl 7638  ax-addcom 7639  ax-mulcom 7640  ax-addass 7641  ax-mulass 7642  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-1rid 7646  ax-0id 7647  ax-rnegex 7648  ax-precex 7649  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-apti 7654  ax-pre-ltadd 7655  ax-pre-mulgt0 7656  ax-pre-mulext 7657  ax-arch 7658
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rmo 2396  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-if 3439  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-id 4173  df-po 4176  df-iso 4177  df-iord 4246  df-on 4248  df-ilim 4249  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-recs 6154  df-frec 6240  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-reap 8249  df-ap 8256  df-div 8340  df-inn 8625  df-2 8683  df-n0 8876  df-z 8953  df-uz 9223  df-q 9308  df-rp 9338  df-fz 9678  df-fl 9930  df-mod 9983  df-seqfrec 10106  df-exp 10180  df-dvds 11336
This theorem is referenced by:  oddpwdclemdc  11690
  Copyright terms: Public domain W3C validator