ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrg1 GIF version

Theorem subrg1 13935
Description: A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypotheses
Ref Expression
subrg1.1 𝑆 = (𝑅s 𝐴)
subrg1.2 1 = (1r𝑅)
Assertion
Ref Expression
subrg1 (𝐴 ∈ (SubRing‘𝑅) → 1 = (1r𝑆))

Proof of Theorem subrg1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 subrg1.2 . 2 1 = (1r𝑅)
2 eqid 2204 . . . . 5 (1r𝑅) = (1r𝑅)
32subrg1cl 13933 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝐴)
4 subrg1.1 . . . . 5 𝑆 = (𝑅s 𝐴)
54subrgbas 13934 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
63, 5eleqtrd 2283 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ (Base‘𝑆))
7 eqid 2204 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
87subrgss 13926 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
95, 8eqsstrrd 3229 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅))
109sselda 3192 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑅))
11 subrgrcl 13930 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
12 eqid 2204 . . . . . . . 8 (.r𝑅) = (.r𝑅)
137, 12, 2ringidmlem 13726 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (((1r𝑅)(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)(1r𝑅)) = 𝑥))
1411, 13sylan 283 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (((1r𝑅)(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)(1r𝑅)) = 𝑥))
154, 12ressmulrg 12919 . . . . . . . . . . 11 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) → (.r𝑅) = (.r𝑆))
1611, 15mpdan 421 . . . . . . . . . 10 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
1716oveqd 5960 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → ((1r𝑅)(.r𝑅)𝑥) = ((1r𝑅)(.r𝑆)𝑥))
1817eqeq1d 2213 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (((1r𝑅)(.r𝑅)𝑥) = 𝑥 ↔ ((1r𝑅)(.r𝑆)𝑥) = 𝑥))
1916oveqd 5960 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (𝑥(.r𝑅)(1r𝑅)) = (𝑥(.r𝑆)(1r𝑅)))
2019eqeq1d 2213 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → ((𝑥(.r𝑅)(1r𝑅)) = 𝑥 ↔ (𝑥(.r𝑆)(1r𝑅)) = 𝑥))
2118, 20anbi12d 473 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → ((((1r𝑅)(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)(1r𝑅)) = 𝑥) ↔ (((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥)))
2221biimpa 296 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (((1r𝑅)(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)(1r𝑅)) = 𝑥)) → (((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥))
2314, 22syldan 282 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥))
2410, 23syldan 282 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑆)) → (((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥))
2524ralrimiva 2578 . . 3 (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥 ∈ (Base‘𝑆)(((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥))
264subrgring 13928 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
27 eqid 2204 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
28 eqid 2204 . . . . 5 (.r𝑆) = (.r𝑆)
29 eqid 2204 . . . . 5 (1r𝑆) = (1r𝑆)
3027, 28, 29isringid 13729 . . . 4 (𝑆 ∈ Ring → (((1r𝑅) ∈ (Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑆)(((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥)) ↔ (1r𝑆) = (1r𝑅)))
3126, 30syl 14 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (((1r𝑅) ∈ (Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑆)(((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥)) ↔ (1r𝑆) = (1r𝑅)))
326, 25, 31mpbi2and 945 . 2 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑆) = (1r𝑅))
331, 32eqtr4id 2256 1 (𝐴 ∈ (SubRing‘𝑅) → 1 = (1r𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  wral 2483  cfv 5270  (class class class)co 5943  Basecbs 12774  s cress 12775  .rcmulr 12852  1rcur 13663  Ringcrg 13700  SubRingcsubrg 13921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-iress 12782  df-plusg 12864  df-mulr 12865  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-subg 13448  df-mgp 13625  df-ur 13664  df-ring 13702  df-subrg 13923
This theorem is referenced by:  subrguss  13940  subrginv  13941  subrgunit  13943  subrgnzr  13946  subsubrg  13949  sralmod  14154  zring1  14305
  Copyright terms: Public domain W3C validator