ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrg1 GIF version

Theorem subrg1 13763
Description: A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypotheses
Ref Expression
subrg1.1 𝑆 = (𝑅s 𝐴)
subrg1.2 1 = (1r𝑅)
Assertion
Ref Expression
subrg1 (𝐴 ∈ (SubRing‘𝑅) → 1 = (1r𝑆))

Proof of Theorem subrg1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 subrg1.2 . 2 1 = (1r𝑅)
2 eqid 2196 . . . . 5 (1r𝑅) = (1r𝑅)
32subrg1cl 13761 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝐴)
4 subrg1.1 . . . . 5 𝑆 = (𝑅s 𝐴)
54subrgbas 13762 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
63, 5eleqtrd 2275 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ (Base‘𝑆))
7 eqid 2196 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
87subrgss 13754 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
95, 8eqsstrrd 3220 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅))
109sselda 3183 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑆)) → 𝑥 ∈ (Base‘𝑅))
11 subrgrcl 13758 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
12 eqid 2196 . . . . . . . 8 (.r𝑅) = (.r𝑅)
137, 12, 2ringidmlem 13554 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅)) → (((1r𝑅)(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)(1r𝑅)) = 𝑥))
1411, 13sylan 283 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (((1r𝑅)(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)(1r𝑅)) = 𝑥))
154, 12ressmulrg 12798 . . . . . . . . . . 11 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) → (.r𝑅) = (.r𝑆))
1611, 15mpdan 421 . . . . . . . . . 10 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
1716oveqd 5939 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → ((1r𝑅)(.r𝑅)𝑥) = ((1r𝑅)(.r𝑆)𝑥))
1817eqeq1d 2205 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (((1r𝑅)(.r𝑅)𝑥) = 𝑥 ↔ ((1r𝑅)(.r𝑆)𝑥) = 𝑥))
1916oveqd 5939 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (𝑥(.r𝑅)(1r𝑅)) = (𝑥(.r𝑆)(1r𝑅)))
2019eqeq1d 2205 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → ((𝑥(.r𝑅)(1r𝑅)) = 𝑥 ↔ (𝑥(.r𝑆)(1r𝑅)) = 𝑥))
2118, 20anbi12d 473 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → ((((1r𝑅)(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)(1r𝑅)) = 𝑥) ↔ (((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥)))
2221biimpa 296 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (((1r𝑅)(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)(1r𝑅)) = 𝑥)) → (((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥))
2314, 22syldan 282 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥))
2410, 23syldan 282 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥 ∈ (Base‘𝑆)) → (((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥))
2524ralrimiva 2570 . . 3 (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥 ∈ (Base‘𝑆)(((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥))
264subrgring 13756 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
27 eqid 2196 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
28 eqid 2196 . . . . 5 (.r𝑆) = (.r𝑆)
29 eqid 2196 . . . . 5 (1r𝑆) = (1r𝑆)
3027, 28, 29isringid 13557 . . . 4 (𝑆 ∈ Ring → (((1r𝑅) ∈ (Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑆)(((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥)) ↔ (1r𝑆) = (1r𝑅)))
3126, 30syl 14 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (((1r𝑅) ∈ (Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑆)(((1r𝑅)(.r𝑆)𝑥) = 𝑥 ∧ (𝑥(.r𝑆)(1r𝑅)) = 𝑥)) ↔ (1r𝑆) = (1r𝑅)))
326, 25, 31mpbi2and 945 . 2 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑆) = (1r𝑅))
331, 32eqtr4id 2248 1 (𝐴 ∈ (SubRing‘𝑅) → 1 = (1r𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  cfv 5258  (class class class)co 5922  Basecbs 12654  s cress 12655  .rcmulr 12732  1rcur 13491  Ringcrg 13528  SubRingcsubrg 13749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-addcom 7977  ax-addass 7979  ax-i2m1 7982  ax-0lt1 7983  ax-0id 7985  ax-rnegex 7986  ax-pre-ltirr 7989  ax-pre-lttrn 7991  ax-pre-ltadd 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8061  df-mnf 8062  df-ltxr 8064  df-inn 8988  df-2 9046  df-3 9047  df-ndx 12657  df-slot 12658  df-base 12660  df-sets 12661  df-iress 12662  df-plusg 12744  df-mulr 12745  df-0g 12905  df-mgm 12975  df-sgrp 13021  df-mnd 13034  df-subg 13276  df-mgp 13453  df-ur 13492  df-ring 13530  df-subrg 13751
This theorem is referenced by:  subrguss  13768  subrginv  13769  subrgunit  13771  subrgnzr  13774  subsubrg  13777  sralmod  13982  zring1  14133
  Copyright terms: Public domain W3C validator