![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prmdivdiv | GIF version |
Description: The (modular) inverse of the inverse of a number is itself. (Contributed by Mario Carneiro, 24-Jan-2015.) |
Ref | Expression |
---|---|
prmdiv.1 | ⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) |
Ref | Expression |
---|---|
prmdivdiv | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 = ((𝑅↑(𝑃 − 2)) mod 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fz1ssfz0 10120 | . . 3 ⊢ (1...(𝑃 − 1)) ⊆ (0...(𝑃 − 1)) | |
2 | simpr 110 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 ∈ (1...(𝑃 − 1))) | |
3 | 1, 2 | sselid 3155 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 ∈ (0...(𝑃 − 1))) |
4 | simpl 109 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℙ) | |
5 | elfznn 10057 | . . . . . . 7 ⊢ (𝐴 ∈ (1...(𝑃 − 1)) → 𝐴 ∈ ℕ) | |
6 | 5 | adantl 277 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 ∈ ℕ) |
7 | 6 | nnzd 9377 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 ∈ ℤ) |
8 | prmnn 12113 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
9 | fzm1ndvds 11865 | . . . . . 6 ⊢ ((𝑃 ∈ ℕ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ 𝐴) | |
10 | 8, 9 | sylan 283 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ 𝐴) |
11 | prmdiv.1 | . . . . . 6 ⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) | |
12 | 11 | prmdiv 12238 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1))) |
13 | 4, 7, 10, 12 | syl3anc 1238 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1))) |
14 | 13 | simprd 114 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ ((𝐴 · 𝑅) − 1)) |
15 | 6 | nncnd 8936 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 ∈ ℂ) |
16 | 13 | simpld 112 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ (1...(𝑃 − 1))) |
17 | elfznn 10057 | . . . . . . 7 ⊢ (𝑅 ∈ (1...(𝑃 − 1)) → 𝑅 ∈ ℕ) | |
18 | 16, 17 | syl 14 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ ℕ) |
19 | 18 | nncnd 8936 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ ℂ) |
20 | 15, 19 | mulcomd 7982 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → (𝐴 · 𝑅) = (𝑅 · 𝐴)) |
21 | 20 | oveq1d 5893 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → ((𝐴 · 𝑅) − 1) = ((𝑅 · 𝐴) − 1)) |
22 | 14, 21 | breqtrd 4031 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ ((𝑅 · 𝐴) − 1)) |
23 | elfzelz 10028 | . . . 4 ⊢ (𝑅 ∈ (1...(𝑃 − 1)) → 𝑅 ∈ ℤ) | |
24 | 16, 23 | syl 14 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ ℤ) |
25 | fzm1ndvds 11865 | . . . 4 ⊢ ((𝑃 ∈ ℕ ∧ 𝑅 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ 𝑅) | |
26 | 8, 16, 25 | syl2an2r 595 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ 𝑅) |
27 | eqid 2177 | . . . 4 ⊢ ((𝑅↑(𝑃 − 2)) mod 𝑃) = ((𝑅↑(𝑃 − 2)) mod 𝑃) | |
28 | 27 | prmdiveq 12239 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝑅) → ((𝐴 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑅 · 𝐴) − 1)) ↔ 𝐴 = ((𝑅↑(𝑃 − 2)) mod 𝑃))) |
29 | 4, 24, 26, 28 | syl3anc 1238 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → ((𝐴 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑅 · 𝐴) − 1)) ↔ 𝐴 = ((𝑅↑(𝑃 − 2)) mod 𝑃))) |
30 | 3, 22, 29 | mpbi2and 943 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 = ((𝑅↑(𝑃 − 2)) mod 𝑃)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 (class class class)co 5878 0cc0 7814 1c1 7815 · cmul 7819 − cmin 8131 ℕcn 8922 2c2 8973 ℤcz 9256 ...cfz 10011 mod cmo 10325 ↑cexp 10522 ∥ cdvds 11797 ℙcprime 12110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-mulrcl 7913 ax-addcom 7914 ax-mulcom 7915 ax-addass 7916 ax-mulass 7917 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-1rid 7921 ax-0id 7922 ax-rnegex 7923 ax-precex 7924 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-apti 7929 ax-pre-ltadd 7930 ax-pre-mulgt0 7931 ax-pre-mulext 7932 ax-arch 7933 ax-caucvg 7934 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-isom 5227 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-recs 6309 df-irdg 6374 df-frec 6395 df-1o 6420 df-2o 6421 df-oadd 6424 df-er 6538 df-en 6744 df-dom 6745 df-fin 6746 df-sup 6986 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-reap 8535 df-ap 8542 df-div 8633 df-inn 8923 df-2 8981 df-3 8982 df-4 8983 df-n0 9180 df-z 9257 df-uz 9532 df-q 9623 df-rp 9657 df-fz 10012 df-fzo 10146 df-fl 10273 df-mod 10326 df-seqfrec 10449 df-exp 10523 df-ihash 10759 df-cj 10854 df-re 10855 df-im 10856 df-rsqrt 11010 df-abs 11011 df-clim 11290 df-proddc 11562 df-dvds 11798 df-gcd 11947 df-prm 12111 df-phi 12214 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |