| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prmdivdiv | GIF version | ||
| Description: The (modular) inverse of the inverse of a number is itself. (Contributed by Mario Carneiro, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| prmdiv.1 | ⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) |
| Ref | Expression |
|---|---|
| prmdivdiv | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 = ((𝑅↑(𝑃 − 2)) mod 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fz1ssfz0 10246 | . . 3 ⊢ (1...(𝑃 − 1)) ⊆ (0...(𝑃 − 1)) | |
| 2 | simpr 110 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 ∈ (1...(𝑃 − 1))) | |
| 3 | 1, 2 | sselid 3192 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 ∈ (0...(𝑃 − 1))) |
| 4 | simpl 109 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℙ) | |
| 5 | elfznn 10183 | . . . . . . 7 ⊢ (𝐴 ∈ (1...(𝑃 − 1)) → 𝐴 ∈ ℕ) | |
| 6 | 5 | adantl 277 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 ∈ ℕ) |
| 7 | 6 | nnzd 9501 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 ∈ ℤ) |
| 8 | prmnn 12476 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 9 | fzm1ndvds 12211 | . . . . . 6 ⊢ ((𝑃 ∈ ℕ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ 𝐴) | |
| 10 | 8, 9 | sylan 283 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ 𝐴) |
| 11 | prmdiv.1 | . . . . . 6 ⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) | |
| 12 | 11 | prmdiv 12601 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1))) |
| 13 | 4, 7, 10, 12 | syl3anc 1250 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1))) |
| 14 | 13 | simprd 114 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ ((𝐴 · 𝑅) − 1)) |
| 15 | 6 | nncnd 9057 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 ∈ ℂ) |
| 16 | 13 | simpld 112 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ (1...(𝑃 − 1))) |
| 17 | elfznn 10183 | . . . . . . 7 ⊢ (𝑅 ∈ (1...(𝑃 − 1)) → 𝑅 ∈ ℕ) | |
| 18 | 16, 17 | syl 14 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ ℕ) |
| 19 | 18 | nncnd 9057 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ ℂ) |
| 20 | 15, 19 | mulcomd 8101 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → (𝐴 · 𝑅) = (𝑅 · 𝐴)) |
| 21 | 20 | oveq1d 5966 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → ((𝐴 · 𝑅) − 1) = ((𝑅 · 𝐴) − 1)) |
| 22 | 14, 21 | breqtrd 4073 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ ((𝑅 · 𝐴) − 1)) |
| 23 | elfzelz 10154 | . . . 4 ⊢ (𝑅 ∈ (1...(𝑃 − 1)) → 𝑅 ∈ ℤ) | |
| 24 | 16, 23 | syl 14 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ ℤ) |
| 25 | fzm1ndvds 12211 | . . . 4 ⊢ ((𝑃 ∈ ℕ ∧ 𝑅 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ 𝑅) | |
| 26 | 8, 16, 25 | syl2an2r 595 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ 𝑅) |
| 27 | eqid 2206 | . . . 4 ⊢ ((𝑅↑(𝑃 − 2)) mod 𝑃) = ((𝑅↑(𝑃 − 2)) mod 𝑃) | |
| 28 | 27 | prmdiveq 12602 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝑅) → ((𝐴 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑅 · 𝐴) − 1)) ↔ 𝐴 = ((𝑅↑(𝑃 − 2)) mod 𝑃))) |
| 29 | 4, 24, 26, 28 | syl3anc 1250 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → ((𝐴 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑅 · 𝐴) − 1)) ↔ 𝐴 = ((𝑅↑(𝑃 − 2)) mod 𝑃))) |
| 30 | 3, 22, 29 | mpbi2and 946 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 = ((𝑅↑(𝑃 − 2)) mod 𝑃)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 class class class wbr 4047 (class class class)co 5951 0cc0 7932 1c1 7933 · cmul 7937 − cmin 8250 ℕcn 9043 2c2 9094 ℤcz 9379 ...cfz 10137 mod cmo 10474 ↑cexp 10690 ∥ cdvds 12142 ℙcprime 12473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-frec 6484 df-1o 6509 df-2o 6510 df-oadd 6513 df-er 6627 df-en 6835 df-dom 6836 df-fin 6837 df-sup 7093 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-fz 10138 df-fzo 10272 df-fl 10420 df-mod 10475 df-seqfrec 10600 df-exp 10691 df-ihash 10928 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-clim 11634 df-proddc 11906 df-dvds 12143 df-gcd 12319 df-prm 12474 df-phi 12577 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |