Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prmdivdiv | GIF version |
Description: The (modular) inverse of the inverse of a number is itself. (Contributed by Mario Carneiro, 24-Jan-2015.) |
Ref | Expression |
---|---|
prmdiv.1 | ⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) |
Ref | Expression |
---|---|
prmdivdiv | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 = ((𝑅↑(𝑃 − 2)) mod 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fz1ssfz0 10020 | . . 3 ⊢ (1...(𝑃 − 1)) ⊆ (0...(𝑃 − 1)) | |
2 | simpr 109 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 ∈ (1...(𝑃 − 1))) | |
3 | 1, 2 | sseldi 3126 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 ∈ (0...(𝑃 − 1))) |
4 | simpl 108 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℙ) | |
5 | elfznn 9957 | . . . . . . 7 ⊢ (𝐴 ∈ (1...(𝑃 − 1)) → 𝐴 ∈ ℕ) | |
6 | 5 | adantl 275 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 ∈ ℕ) |
7 | 6 | nnzd 9286 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 ∈ ℤ) |
8 | prmnn 11991 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
9 | fzm1ndvds 11752 | . . . . . 6 ⊢ ((𝑃 ∈ ℕ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ 𝐴) | |
10 | 8, 9 | sylan 281 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ 𝐴) |
11 | prmdiv.1 | . . . . . 6 ⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) | |
12 | 11 | prmdiv 12114 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1))) |
13 | 4, 7, 10, 12 | syl3anc 1220 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1))) |
14 | 13 | simprd 113 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ ((𝐴 · 𝑅) − 1)) |
15 | 6 | nncnd 8848 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 ∈ ℂ) |
16 | 13 | simpld 111 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ (1...(𝑃 − 1))) |
17 | elfznn 9957 | . . . . . . 7 ⊢ (𝑅 ∈ (1...(𝑃 − 1)) → 𝑅 ∈ ℕ) | |
18 | 16, 17 | syl 14 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ ℕ) |
19 | 18 | nncnd 8848 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ ℂ) |
20 | 15, 19 | mulcomd 7900 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → (𝐴 · 𝑅) = (𝑅 · 𝐴)) |
21 | 20 | oveq1d 5840 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → ((𝐴 · 𝑅) − 1) = ((𝑅 · 𝐴) − 1)) |
22 | 14, 21 | breqtrd 3991 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ ((𝑅 · 𝐴) − 1)) |
23 | elfzelz 9929 | . . . 4 ⊢ (𝑅 ∈ (1...(𝑃 − 1)) → 𝑅 ∈ ℤ) | |
24 | 16, 23 | syl 14 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ ℤ) |
25 | fzm1ndvds 11752 | . . . 4 ⊢ ((𝑃 ∈ ℕ ∧ 𝑅 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ 𝑅) | |
26 | 8, 16, 25 | syl2an2r 585 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ 𝑅) |
27 | eqid 2157 | . . . 4 ⊢ ((𝑅↑(𝑃 − 2)) mod 𝑃) = ((𝑅↑(𝑃 − 2)) mod 𝑃) | |
28 | 27 | prmdiveq 12115 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝑅) → ((𝐴 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑅 · 𝐴) − 1)) ↔ 𝐴 = ((𝑅↑(𝑃 − 2)) mod 𝑃))) |
29 | 4, 24, 26, 28 | syl3anc 1220 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → ((𝐴 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑅 · 𝐴) − 1)) ↔ 𝐴 = ((𝑅↑(𝑃 − 2)) mod 𝑃))) |
30 | 3, 22, 29 | mpbi2and 928 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 = ((𝑅↑(𝑃 − 2)) mod 𝑃)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1335 ∈ wcel 2128 class class class wbr 3966 (class class class)co 5825 0cc0 7733 1c1 7734 · cmul 7738 − cmin 8047 ℕcn 8834 2c2 8885 ℤcz 9168 ...cfz 9913 mod cmo 10225 ↑cexp 10422 ∥ cdvds 11687 ℙcprime 11988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4080 ax-sep 4083 ax-nul 4091 ax-pow 4136 ax-pr 4170 ax-un 4394 ax-setind 4497 ax-iinf 4548 ax-cnex 7824 ax-resscn 7825 ax-1cn 7826 ax-1re 7827 ax-icn 7828 ax-addcl 7829 ax-addrcl 7830 ax-mulcl 7831 ax-mulrcl 7832 ax-addcom 7833 ax-mulcom 7834 ax-addass 7835 ax-mulass 7836 ax-distr 7837 ax-i2m1 7838 ax-0lt1 7839 ax-1rid 7840 ax-0id 7841 ax-rnegex 7842 ax-precex 7843 ax-cnre 7844 ax-pre-ltirr 7845 ax-pre-ltwlin 7846 ax-pre-lttrn 7847 ax-pre-apti 7848 ax-pre-ltadd 7849 ax-pre-mulgt0 7850 ax-pre-mulext 7851 ax-arch 7852 ax-caucvg 7853 |
This theorem depends on definitions: df-bi 116 df-stab 817 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3774 df-int 3809 df-iun 3852 df-br 3967 df-opab 4027 df-mpt 4028 df-tr 4064 df-id 4254 df-po 4257 df-iso 4258 df-iord 4327 df-on 4329 df-ilim 4330 df-suc 4332 df-iom 4551 df-xp 4593 df-rel 4594 df-cnv 4595 df-co 4596 df-dm 4597 df-rn 4598 df-res 4599 df-ima 4600 df-iota 5136 df-fun 5173 df-fn 5174 df-f 5175 df-f1 5176 df-fo 5177 df-f1o 5178 df-fv 5179 df-isom 5180 df-riota 5781 df-ov 5828 df-oprab 5829 df-mpo 5830 df-1st 6089 df-2nd 6090 df-recs 6253 df-irdg 6318 df-frec 6339 df-1o 6364 df-2o 6365 df-oadd 6368 df-er 6481 df-en 6687 df-dom 6688 df-fin 6689 df-sup 6929 df-pnf 7915 df-mnf 7916 df-xr 7917 df-ltxr 7918 df-le 7919 df-sub 8049 df-neg 8050 df-reap 8451 df-ap 8458 df-div 8547 df-inn 8835 df-2 8893 df-3 8894 df-4 8895 df-n0 9092 df-z 9169 df-uz 9441 df-q 9530 df-rp 9562 df-fz 9914 df-fzo 10046 df-fl 10173 df-mod 10226 df-seqfrec 10349 df-exp 10423 df-ihash 10654 df-cj 10746 df-re 10747 df-im 10748 df-rsqrt 10902 df-abs 10903 df-clim 11180 df-proddc 11452 df-dvds 11688 df-gcd 11834 df-prm 11989 df-phi 12090 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |