Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ismgmid2 | GIF version |
Description: Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
ismgmid.b | ⊢ 𝐵 = (Base‘𝐺) |
ismgmid.o | ⊢ 0 = (0g‘𝐺) |
ismgmid.p | ⊢ + = (+g‘𝐺) |
ismgmid2.u | ⊢ (𝜑 → 𝑈 ∈ 𝐵) |
ismgmid2.l | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑈 + 𝑥) = 𝑥) |
ismgmid2.r | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 𝑈) = 𝑥) |
Ref | Expression |
---|---|
ismgmid2 | ⊢ (𝜑 → 𝑈 = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismgmid2.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐵) | |
2 | ismgmid2.l | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑈 + 𝑥) = 𝑥) | |
3 | ismgmid2.r | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 𝑈) = 𝑥) | |
4 | 2, 3 | jca 304 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) |
5 | 4 | ralrimiva 2543 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) |
6 | ismgmid.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
7 | ismgmid.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
8 | ismgmid.p | . . . 4 ⊢ + = (+g‘𝐺) | |
9 | oveq1 5860 | . . . . . . . 8 ⊢ (𝑒 = 𝑈 → (𝑒 + 𝑥) = (𝑈 + 𝑥)) | |
10 | 9 | eqeq1d 2179 | . . . . . . 7 ⊢ (𝑒 = 𝑈 → ((𝑒 + 𝑥) = 𝑥 ↔ (𝑈 + 𝑥) = 𝑥)) |
11 | 10 | ovanraleqv 5877 | . . . . . 6 ⊢ (𝑒 = 𝑈 → (∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥))) |
12 | 11 | rspcev 2834 | . . . . 5 ⊢ ((𝑈 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) → ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) |
13 | 1, 5, 12 | syl2anc 409 | . . . 4 ⊢ (𝜑 → ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) |
14 | 6, 7, 8, 13 | ismgmid 12631 | . . 3 ⊢ (𝜑 → ((𝑈 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ 0 = 𝑈)) |
15 | 1, 5, 14 | mpbi2and 938 | . 2 ⊢ (𝜑 → 0 = 𝑈) |
16 | 15 | eqcomd 2176 | 1 ⊢ (𝜑 → 𝑈 = 0 ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 ‘cfv 5198 (class class class)co 5853 Basecbs 12416 +gcplusg 12480 0gc0g 12596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-riota 5809 df-ov 5856 df-inn 8879 df-ndx 12419 df-slot 12420 df-base 12422 df-0g 12598 |
This theorem is referenced by: lidrididd 12636 grpidd 12637 |
Copyright terms: Public domain | W3C validator |