ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismgmid2 GIF version

Theorem ismgmid2 13023
Description: Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
ismgmid.b 𝐵 = (Base‘𝐺)
ismgmid.o 0 = (0g𝐺)
ismgmid.p + = (+g𝐺)
ismgmid2.u (𝜑𝑈𝐵)
ismgmid2.l ((𝜑𝑥𝐵) → (𝑈 + 𝑥) = 𝑥)
ismgmid2.r ((𝜑𝑥𝐵) → (𝑥 + 𝑈) = 𝑥)
Assertion
Ref Expression
ismgmid2 (𝜑𝑈 = 0 )
Distinct variable groups:   𝑥, +   𝑥, 0   𝑥,𝐵   𝑥,𝐺   𝑥,𝑈   𝜑,𝑥

Proof of Theorem ismgmid2
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 ismgmid2.u . . 3 (𝜑𝑈𝐵)
2 ismgmid2.l . . . . 5 ((𝜑𝑥𝐵) → (𝑈 + 𝑥) = 𝑥)
3 ismgmid2.r . . . . 5 ((𝜑𝑥𝐵) → (𝑥 + 𝑈) = 𝑥)
42, 3jca 306 . . . 4 ((𝜑𝑥𝐵) → ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥))
54ralrimiva 2570 . . 3 (𝜑 → ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥))
6 ismgmid.b . . . 4 𝐵 = (Base‘𝐺)
7 ismgmid.o . . . 4 0 = (0g𝐺)
8 ismgmid.p . . . 4 + = (+g𝐺)
9 oveq1 5929 . . . . . . . 8 (𝑒 = 𝑈 → (𝑒 + 𝑥) = (𝑈 + 𝑥))
109eqeq1d 2205 . . . . . . 7 (𝑒 = 𝑈 → ((𝑒 + 𝑥) = 𝑥 ↔ (𝑈 + 𝑥) = 𝑥))
1110ovanraleqv 5946 . . . . . 6 (𝑒 = 𝑈 → (∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)))
1211rspcev 2868 . . . . 5 ((𝑈𝐵 ∧ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
131, 5, 12syl2anc 411 . . . 4 (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
146, 7, 8, 13ismgmid 13020 . . 3 (𝜑 → ((𝑈𝐵 ∧ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ 0 = 𝑈))
151, 5, 14mpbi2and 945 . 2 (𝜑0 = 𝑈)
1615eqcomd 2202 1 (𝜑𝑈 = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  wrex 2476  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  0gc0g 12927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8991  df-ndx 12681  df-slot 12682  df-base 12684  df-0g 12929
This theorem is referenced by:  lidrididd  13025  grpidd  13026  mhmid  13245  ringidss  13585
  Copyright terms: Public domain W3C validator