ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismgmid2 GIF version

Theorem ismgmid2 12804
Description: Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
ismgmid.b 𝐵 = (Base‘𝐺)
ismgmid.o 0 = (0g𝐺)
ismgmid.p + = (+g𝐺)
ismgmid2.u (𝜑𝑈𝐵)
ismgmid2.l ((𝜑𝑥𝐵) → (𝑈 + 𝑥) = 𝑥)
ismgmid2.r ((𝜑𝑥𝐵) → (𝑥 + 𝑈) = 𝑥)
Assertion
Ref Expression
ismgmid2 (𝜑𝑈 = 0 )
Distinct variable groups:   𝑥, +   𝑥, 0   𝑥,𝐵   𝑥,𝐺   𝑥,𝑈   𝜑,𝑥

Proof of Theorem ismgmid2
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 ismgmid2.u . . 3 (𝜑𝑈𝐵)
2 ismgmid2.l . . . . 5 ((𝜑𝑥𝐵) → (𝑈 + 𝑥) = 𝑥)
3 ismgmid2.r . . . . 5 ((𝜑𝑥𝐵) → (𝑥 + 𝑈) = 𝑥)
42, 3jca 306 . . . 4 ((𝜑𝑥𝐵) → ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥))
54ralrimiva 2550 . . 3 (𝜑 → ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥))
6 ismgmid.b . . . 4 𝐵 = (Base‘𝐺)
7 ismgmid.o . . . 4 0 = (0g𝐺)
8 ismgmid.p . . . 4 + = (+g𝐺)
9 oveq1 5884 . . . . . . . 8 (𝑒 = 𝑈 → (𝑒 + 𝑥) = (𝑈 + 𝑥))
109eqeq1d 2186 . . . . . . 7 (𝑒 = 𝑈 → ((𝑒 + 𝑥) = 𝑥 ↔ (𝑈 + 𝑥) = 𝑥))
1110ovanraleqv 5901 . . . . . 6 (𝑒 = 𝑈 → (∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)))
1211rspcev 2843 . . . . 5 ((𝑈𝐵 ∧ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
131, 5, 12syl2anc 411 . . . 4 (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
146, 7, 8, 13ismgmid 12801 . . 3 (𝜑 → ((𝑈𝐵 ∧ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ 0 = 𝑈))
151, 5, 14mpbi2and 943 . 2 (𝜑0 = 𝑈)
1615eqcomd 2183 1 (𝜑𝑈 = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wral 2455  wrex 2456  cfv 5218  (class class class)co 5877  Basecbs 12464  +gcplusg 12538  0gc0g 12710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-riota 5833  df-ov 5880  df-inn 8922  df-ndx 12467  df-slot 12468  df-base 12470  df-0g 12712
This theorem is referenced by:  lidrididd  12806  grpidd  12807  mhmid  12984  ringidss  13217
  Copyright terms: Public domain W3C validator