ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divnumden GIF version

Theorem divnumden 12105
Description: Calculate the reduced form of a quotient using gcd. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
divnumden ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵))))

Proof of Theorem divnumden
StepHypRef Expression
1 simpl 108 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
2 nnz 9201 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
32adantl 275 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
4 nnne0 8876 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
54neneqd 2355 . . . . . . 7 (𝐵 ∈ ℕ → ¬ 𝐵 = 0)
65adantl 275 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ¬ 𝐵 = 0)
76intnand 921 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
8 gcdn0cl 11880 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
91, 3, 7, 8syl21anc 1226 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
10 gcddvds 11881 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
112, 10sylan2 284 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
12 gcddiv 11937 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))
131, 3, 9, 11, 12syl31anc 1230 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))
149nncnd 8862 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℂ)
159nnap0d 8894 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) # 0)
1614, 15dividapd 8673 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = 1)
1713, 16eqtr3d 2199 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
18 zcn 9187 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
1918adantr 274 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
20 nncn 8856 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
2120adantl 275 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
22 simpr 109 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℕ)
2322nnap0d 8894 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 # 0)
24 divcanap7 8608 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) # 0)) → ((𝐴 / (𝐴 gcd 𝐵)) / (𝐵 / (𝐴 gcd 𝐵))) = (𝐴 / 𝐵))
2524eqcomd 2170 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) # 0)) → (𝐴 / 𝐵) = ((𝐴 / (𝐴 gcd 𝐵)) / (𝐵 / (𝐴 gcd 𝐵))))
2619, 21, 23, 14, 15, 25syl122anc 1236 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) = ((𝐴 / (𝐴 gcd 𝐵)) / (𝐵 / (𝐴 gcd 𝐵))))
27 znq 9553 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
2811simpld 111 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐴)
29 gcdcl 11884 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
3029nn0zd 9302 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ)
312, 30sylan2 284 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℤ)
329nnne0d 8893 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ≠ 0)
33 dvdsval2 11716 . . . . 5 (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ))
3431, 32, 1, 33syl3anc 1227 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ))
3528, 34mpbid 146 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ)
3611simprd 113 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐵)
37 nndivdvds 11722 . . . . 5 ((𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ))
3822, 9, 37syl2anc 409 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ))
3936, 38mpbid 146 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ)
40 qnumdenbi 12101 . . 3 (((𝐴 / 𝐵) ∈ ℚ ∧ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ) → ((((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1 ∧ (𝐴 / 𝐵) = ((𝐴 / (𝐴 gcd 𝐵)) / (𝐵 / (𝐴 gcd 𝐵)))) ↔ ((numer‘(𝐴 / 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵)))))
4127, 35, 39, 40syl3anc 1227 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1 ∧ (𝐴 / 𝐵) = ((𝐴 / (𝐴 gcd 𝐵)) / (𝐵 / (𝐴 gcd 𝐵)))) ↔ ((numer‘(𝐴 / 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵)))))
4217, 26, 41mpbi2and 932 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 967   = wceq 1342  wcel 2135  wne 2334   class class class wbr 3976  cfv 5182  (class class class)co 5836  cc 7742  0cc0 7744  1c1 7745   # cap 8470   / cdiv 8559  cn 8848  cz 9182  cq 9548  cdvds 11713   gcd cgcd 11860  numercnumer 12090  denomcdenom 12091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-sup 6940  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-q 9549  df-rp 9581  df-fz 9936  df-fzo 10068  df-fl 10195  df-mod 10248  df-seqfrec 10371  df-exp 10445  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927  df-dvds 11714  df-gcd 11861  df-numer 12092  df-denom 12093
This theorem is referenced by:  divdenle  12106
  Copyright terms: Public domain W3C validator