ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divnumden GIF version

Theorem divnumden 11056
Description: Calculate the reduced form of a quotient using gcd. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
divnumden ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵))))

Proof of Theorem divnumden
StepHypRef Expression
1 simpl 107 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
2 nnz 8702 . . . . 5 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
32adantl 271 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
4 nnne0 8385 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
54neneqd 2272 . . . . . . 7 (𝐵 ∈ ℕ → ¬ 𝐵 = 0)
65adantl 271 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ¬ 𝐵 = 0)
76intnand 876 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
8 gcdn0cl 10836 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
91, 3, 7, 8syl21anc 1171 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ)
10 gcddvds 10837 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
112, 10sylan2 280 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
12 gcddiv 10890 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))
131, 3, 9, 11, 12syl31anc 1175 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))
149nncnd 8371 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℂ)
159nnap0d 8402 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) # 0)
1614, 15dividapd 8192 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = 1)
1713, 16eqtr3d 2119 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
18 zcn 8688 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
1918adantr 270 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
20 nncn 8365 . . . 4 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
2120adantl 271 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
22 simpr 108 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℕ)
2322nnap0d 8402 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 # 0)
24 divcanap7 8127 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) # 0)) → ((𝐴 / (𝐴 gcd 𝐵)) / (𝐵 / (𝐴 gcd 𝐵))) = (𝐴 / 𝐵))
2524eqcomd 2090 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) # 0)) → (𝐴 / 𝐵) = ((𝐴 / (𝐴 gcd 𝐵)) / (𝐵 / (𝐴 gcd 𝐵))))
2619, 21, 23, 14, 15, 25syl122anc 1181 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) = ((𝐴 / (𝐴 gcd 𝐵)) / (𝐵 / (𝐴 gcd 𝐵))))
27 znq 9041 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
2811simpld 110 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐴)
29 gcdcl 10840 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
3029nn0zd 8799 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ)
312, 30sylan2 280 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℤ)
329nnne0d 8401 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ≠ 0)
33 dvdsval2 10681 . . . . 5 (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ))
3431, 32, 1, 33syl3anc 1172 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ))
3528, 34mpbid 145 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ)
3611simprd 112 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐵)
37 nndivdvds 10684 . . . . 5 ((𝐵 ∈ ℕ ∧ (𝐴 gcd 𝐵) ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ))
3822, 9, 37syl2anc 403 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ))
3936, 38mpbid 145 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ)
40 qnumdenbi 11052 . . 3 (((𝐴 / 𝐵) ∈ ℚ ∧ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ) → ((((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1 ∧ (𝐴 / 𝐵) = ((𝐴 / (𝐴 gcd 𝐵)) / (𝐵 / (𝐴 gcd 𝐵)))) ↔ ((numer‘(𝐴 / 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵)))))
4127, 35, 39, 40syl3anc 1172 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1 ∧ (𝐴 / 𝐵) = ((𝐴 / (𝐴 gcd 𝐵)) / (𝐵 / (𝐴 gcd 𝐵)))) ↔ ((numer‘(𝐴 / 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵)))))
4217, 26, 41mpbi2and 887 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  w3a 922   = wceq 1287  wcel 1436  wne 2251   class class class wbr 3820  cfv 4981  (class class class)co 5613  cc 7292  0cc0 7294  1c1 7295   # cap 7999   / cdiv 8078  cn 8357  cz 8683  cq 9036  cdvds 10678   gcd cgcd 10820  numercnumer 11041  denomcdenom 11042
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3929  ax-sep 3932  ax-nul 3940  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-iinf 4376  ax-cnex 7380  ax-resscn 7381  ax-1cn 7382  ax-1re 7383  ax-icn 7384  ax-addcl 7385  ax-addrcl 7386  ax-mulcl 7387  ax-mulrcl 7388  ax-addcom 7389  ax-mulcom 7390  ax-addass 7391  ax-mulass 7392  ax-distr 7393  ax-i2m1 7394  ax-0lt1 7395  ax-1rid 7396  ax-0id 7397  ax-rnegex 7398  ax-precex 7399  ax-cnre 7400  ax-pre-ltirr 7401  ax-pre-ltwlin 7402  ax-pre-lttrn 7403  ax-pre-apti 7404  ax-pre-ltadd 7405  ax-pre-mulgt0 7406  ax-pre-mulext 7407  ax-arch 7408  ax-caucvg 7409
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-if 3380  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-tr 3912  df-id 4094  df-po 4097  df-iso 4098  df-iord 4167  df-on 4169  df-ilim 4170  df-suc 4172  df-iom 4379  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-f1 4986  df-fo 4987  df-f1o 4988  df-fv 4989  df-riota 5569  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-1st 5868  df-2nd 5869  df-recs 6024  df-frec 6110  df-sup 6623  df-pnf 7468  df-mnf 7469  df-xr 7470  df-ltxr 7471  df-le 7472  df-sub 7599  df-neg 7600  df-reap 7993  df-ap 8000  df-div 8079  df-inn 8358  df-2 8416  df-3 8417  df-4 8418  df-n0 8607  df-z 8684  df-uz 8952  df-q 9037  df-rp 9067  df-fz 9357  df-fzo 9482  df-fl 9605  df-mod 9658  df-iseq 9780  df-iexp 9854  df-cj 10172  df-re 10173  df-im 10174  df-rsqrt 10327  df-abs 10328  df-dvds 10679  df-gcd 10821  df-numer 11043  df-denom 11044
This theorem is referenced by:  divdenle  11057
  Copyright terms: Public domain W3C validator