ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnd1 GIF version

Theorem mnd1 13483
Description: The (smallest) structure representing a trivial monoid consists of one element. (Contributed by AV, 28-Apr-2019.) (Proof shortened by AV, 11-Feb-2020.)
Hypothesis
Ref Expression
mnd1.m 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
Assertion
Ref Expression
mnd1 (𝐼𝑉𝑀 ∈ Mnd)

Proof of Theorem mnd1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnd1.m . . . 4 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
21sgrp1 13439 . . 3 (𝐼𝑉𝑀 ∈ Smgrp)
3 df-ov 6003 . . . . . 6 (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩)
4 opexg 4313 . . . . . . . 8 ((𝐼𝑉𝐼𝑉) → ⟨𝐼, 𝐼⟩ ∈ V)
54anidms 397 . . . . . . 7 (𝐼𝑉 → ⟨𝐼, 𝐼⟩ ∈ V)
6 fvsng 5834 . . . . . . 7 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
75, 6mpancom 422 . . . . . 6 (𝐼𝑉 → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
83, 7eqtrid 2274 . . . . 5 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)
9 oveq2 6008 . . . . . . . 8 (𝑦 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
10 id 19 . . . . . . . 8 (𝑦 = 𝐼𝑦 = 𝐼)
119, 10eqeq12d 2244 . . . . . . 7 (𝑦 = 𝐼 → ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼))
12 oveq1 6007 . . . . . . . 8 (𝑦 = 𝐼 → (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
1312, 10eqeq12d 2244 . . . . . . 7 (𝑦 = 𝐼 → ((𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦 ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼))
1411, 13anbi12d 473 . . . . . 6 (𝑦 = 𝐼 → (((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦) ↔ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼 ∧ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)))
1514ralsng 3706 . . . . 5 (𝐼𝑉 → (∀𝑦 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦) ↔ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼 ∧ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)))
168, 8, 15mpbir2and 950 . . . 4 (𝐼𝑉 → ∀𝑦 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦))
17 oveq1 6007 . . . . . . 7 (𝑥 = 𝐼 → (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦))
1817eqeq1d 2238 . . . . . 6 (𝑥 = 𝐼 → ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦))
1918ovanraleqv 6024 . . . . 5 (𝑥 = 𝐼 → (∀𝑦 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦) ↔ ∀𝑦 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦)))
2019rexsng 3707 . . . 4 (𝐼𝑉 → (∃𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦) ↔ ∀𝑦 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦)))
2116, 20mpbird 167 . . 3 (𝐼𝑉 → ∃𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦))
22 snexg 4267 . . . . . 6 (𝐼𝑉 → {𝐼} ∈ V)
23 opexg 4313 . . . . . . . 8 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V)
245, 23mpancom 422 . . . . . . 7 (𝐼𝑉 → ⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V)
25 snexg 4267 . . . . . . 7 (⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V)
2624, 25syl 14 . . . . . 6 (𝐼𝑉 → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V)
271grpbaseg 13155 . . . . . 6 (({𝐼} ∈ V ∧ {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V) → {𝐼} = (Base‘𝑀))
2822, 26, 27syl2anc 411 . . . . 5 (𝐼𝑉 → {𝐼} = (Base‘𝑀))
291grpplusgg 13156 . . . . . . . . . 10 (({𝐼} ∈ V ∧ {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V) → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
3022, 26, 29syl2anc 411 . . . . . . . . 9 (𝐼𝑉 → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
3130oveqd 6017 . . . . . . . 8 (𝐼𝑉 → (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝑥(+g𝑀)𝑦))
3231eqeq1d 2238 . . . . . . 7 (𝐼𝑉 → ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ↔ (𝑥(+g𝑀)𝑦) = 𝑦))
3330oveqd 6017 . . . . . . . 8 (𝐼𝑉 → (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = (𝑦(+g𝑀)𝑥))
3433eqeq1d 2238 . . . . . . 7 (𝐼𝑉 → ((𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦 ↔ (𝑦(+g𝑀)𝑥) = 𝑦))
3532, 34anbi12d 473 . . . . . 6 (𝐼𝑉 → (((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦) ↔ ((𝑥(+g𝑀)𝑦) = 𝑦 ∧ (𝑦(+g𝑀)𝑥) = 𝑦)))
3628, 35raleqbidv 2744 . . . . 5 (𝐼𝑉 → (∀𝑦 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦) = 𝑦 ∧ (𝑦(+g𝑀)𝑥) = 𝑦)))
3728, 36rexeqbidv 2745 . . . 4 (𝐼𝑉 → (∃𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦) ↔ ∃𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦) = 𝑦 ∧ (𝑦(+g𝑀)𝑥) = 𝑦)))
3837anbi2d 464 . . 3 (𝐼𝑉 → ((𝑀 ∈ Smgrp ∧ ∃𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦)) ↔ (𝑀 ∈ Smgrp ∧ ∃𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦) = 𝑦 ∧ (𝑦(+g𝑀)𝑥) = 𝑦))))
392, 21, 38mpbi2and 949 . 2 (𝐼𝑉 → (𝑀 ∈ Smgrp ∧ ∃𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦) = 𝑦 ∧ (𝑦(+g𝑀)𝑥) = 𝑦)))
40 eqid 2229 . . 3 (Base‘𝑀) = (Base‘𝑀)
41 eqid 2229 . . 3 (+g𝑀) = (+g𝑀)
4240, 41ismnddef 13446 . 2 (𝑀 ∈ Mnd ↔ (𝑀 ∈ Smgrp ∧ ∃𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦) = 𝑦 ∧ (𝑦(+g𝑀)𝑥) = 𝑦)))
4339, 42sylibr 134 1 (𝐼𝑉𝑀 ∈ Mnd)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  wrex 2509  Vcvv 2799  {csn 3666  {cpr 3667  cop 3669  cfv 5317  (class class class)co 6000  ndxcnx 13024  Basecbs 13027  +gcplusg 13105  Smgrpcsgrp 13429  Mndcmnd 13444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-ov 6003  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-mgm 13384  df-sgrp 13430  df-mnd 13445
This theorem is referenced by:  grp1  13634  ring1  14017
  Copyright terms: Public domain W3C validator