ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnd1 GIF version

Theorem mnd1 13157
Description: The (smallest) structure representing a trivial monoid consists of one element. (Contributed by AV, 28-Apr-2019.) (Proof shortened by AV, 11-Feb-2020.)
Hypothesis
Ref Expression
mnd1.m 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
Assertion
Ref Expression
mnd1 (𝐼𝑉𝑀 ∈ Mnd)

Proof of Theorem mnd1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnd1.m . . . 4 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
21sgrp1 13113 . . 3 (𝐼𝑉𝑀 ∈ Smgrp)
3 df-ov 5928 . . . . . 6 (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩)
4 opexg 4262 . . . . . . . 8 ((𝐼𝑉𝐼𝑉) → ⟨𝐼, 𝐼⟩ ∈ V)
54anidms 397 . . . . . . 7 (𝐼𝑉 → ⟨𝐼, 𝐼⟩ ∈ V)
6 fvsng 5761 . . . . . . 7 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
75, 6mpancom 422 . . . . . 6 (𝐼𝑉 → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
83, 7eqtrid 2241 . . . . 5 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)
9 oveq2 5933 . . . . . . . 8 (𝑦 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
10 id 19 . . . . . . . 8 (𝑦 = 𝐼𝑦 = 𝐼)
119, 10eqeq12d 2211 . . . . . . 7 (𝑦 = 𝐼 → ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼))
12 oveq1 5932 . . . . . . . 8 (𝑦 = 𝐼 → (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
1312, 10eqeq12d 2211 . . . . . . 7 (𝑦 = 𝐼 → ((𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦 ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼))
1411, 13anbi12d 473 . . . . . 6 (𝑦 = 𝐼 → (((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦) ↔ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼 ∧ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)))
1514ralsng 3663 . . . . 5 (𝐼𝑉 → (∀𝑦 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦) ↔ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼 ∧ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)))
168, 8, 15mpbir2and 946 . . . 4 (𝐼𝑉 → ∀𝑦 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦))
17 oveq1 5932 . . . . . . 7 (𝑥 = 𝐼 → (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦))
1817eqeq1d 2205 . . . . . 6 (𝑥 = 𝐼 → ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦))
1918ovanraleqv 5949 . . . . 5 (𝑥 = 𝐼 → (∀𝑦 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦) ↔ ∀𝑦 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦)))
2019rexsng 3664 . . . 4 (𝐼𝑉 → (∃𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦) ↔ ∀𝑦 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦)))
2116, 20mpbird 167 . . 3 (𝐼𝑉 → ∃𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦))
22 snexg 4218 . . . . . 6 (𝐼𝑉 → {𝐼} ∈ V)
23 opexg 4262 . . . . . . . 8 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V)
245, 23mpancom 422 . . . . . . 7 (𝐼𝑉 → ⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V)
25 snexg 4218 . . . . . . 7 (⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V)
2624, 25syl 14 . . . . . 6 (𝐼𝑉 → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V)
271grpbaseg 12829 . . . . . 6 (({𝐼} ∈ V ∧ {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V) → {𝐼} = (Base‘𝑀))
2822, 26, 27syl2anc 411 . . . . 5 (𝐼𝑉 → {𝐼} = (Base‘𝑀))
291grpplusgg 12830 . . . . . . . . . 10 (({𝐼} ∈ V ∧ {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V) → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
3022, 26, 29syl2anc 411 . . . . . . . . 9 (𝐼𝑉 → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
3130oveqd 5942 . . . . . . . 8 (𝐼𝑉 → (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝑥(+g𝑀)𝑦))
3231eqeq1d 2205 . . . . . . 7 (𝐼𝑉 → ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ↔ (𝑥(+g𝑀)𝑦) = 𝑦))
3330oveqd 5942 . . . . . . . 8 (𝐼𝑉 → (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = (𝑦(+g𝑀)𝑥))
3433eqeq1d 2205 . . . . . . 7 (𝐼𝑉 → ((𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦 ↔ (𝑦(+g𝑀)𝑥) = 𝑦))
3532, 34anbi12d 473 . . . . . 6 (𝐼𝑉 → (((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦) ↔ ((𝑥(+g𝑀)𝑦) = 𝑦 ∧ (𝑦(+g𝑀)𝑥) = 𝑦)))
3628, 35raleqbidv 2709 . . . . 5 (𝐼𝑉 → (∀𝑦 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦) = 𝑦 ∧ (𝑦(+g𝑀)𝑥) = 𝑦)))
3728, 36rexeqbidv 2710 . . . 4 (𝐼𝑉 → (∃𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦) ↔ ∃𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦) = 𝑦 ∧ (𝑦(+g𝑀)𝑥) = 𝑦)))
3837anbi2d 464 . . 3 (𝐼𝑉 → ((𝑀 ∈ Smgrp ∧ ∃𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦)) ↔ (𝑀 ∈ Smgrp ∧ ∃𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦) = 𝑦 ∧ (𝑦(+g𝑀)𝑥) = 𝑦))))
392, 21, 38mpbi2and 945 . 2 (𝐼𝑉 → (𝑀 ∈ Smgrp ∧ ∃𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦) = 𝑦 ∧ (𝑦(+g𝑀)𝑥) = 𝑦)))
40 eqid 2196 . . 3 (Base‘𝑀) = (Base‘𝑀)
41 eqid 2196 . . 3 (+g𝑀) = (+g𝑀)
4240, 41ismnddef 13120 . 2 (𝑀 ∈ Mnd ↔ (𝑀 ∈ Smgrp ∧ ∃𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦) = 𝑦 ∧ (𝑦(+g𝑀)𝑥) = 𝑦)))
4339, 42sylibr 134 1 (𝐼𝑉𝑀 ∈ Mnd)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  wrex 2476  Vcvv 2763  {csn 3623  {cpr 3624  cop 3626  cfv 5259  (class class class)co 5925  ndxcnx 12700  Basecbs 12703  +gcplusg 12780  Smgrpcsgrp 13103  Mndcmnd 13118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mgm 13058  df-sgrp 13104  df-mnd 13119
This theorem is referenced by:  grp1  13308  ring1  13691
  Copyright terms: Public domain W3C validator