ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnd1 GIF version

Theorem mnd1 12679
Description: The (smallest) structure representing a trivial monoid consists of one element. (Contributed by AV, 28-Apr-2019.) (Proof shortened by AV, 11-Feb-2020.)
Hypothesis
Ref Expression
mnd1.m 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
Assertion
Ref Expression
mnd1 (𝐼𝑉𝑀 ∈ Mnd)

Proof of Theorem mnd1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnd1.m . . . 4 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
21sgrp1 12651 . . 3 (𝐼𝑉𝑀 ∈ Smgrp)
3 df-ov 5856 . . . . . 6 (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩)
4 opexg 4213 . . . . . . . 8 ((𝐼𝑉𝐼𝑉) → ⟨𝐼, 𝐼⟩ ∈ V)
54anidms 395 . . . . . . 7 (𝐼𝑉 → ⟨𝐼, 𝐼⟩ ∈ V)
6 fvsng 5692 . . . . . . 7 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
75, 6mpancom 420 . . . . . 6 (𝐼𝑉 → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
83, 7eqtrid 2215 . . . . 5 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)
9 oveq2 5861 . . . . . . . 8 (𝑦 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
10 id 19 . . . . . . . 8 (𝑦 = 𝐼𝑦 = 𝐼)
119, 10eqeq12d 2185 . . . . . . 7 (𝑦 = 𝐼 → ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼))
12 oveq1 5860 . . . . . . . 8 (𝑦 = 𝐼 → (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
1312, 10eqeq12d 2185 . . . . . . 7 (𝑦 = 𝐼 → ((𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦 ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼))
1411, 13anbi12d 470 . . . . . 6 (𝑦 = 𝐼 → (((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦) ↔ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼 ∧ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)))
1514ralsng 3623 . . . . 5 (𝐼𝑉 → (∀𝑦 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦) ↔ ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼 ∧ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)))
168, 8, 15mpbir2and 939 . . . 4 (𝐼𝑉 → ∀𝑦 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦))
17 oveq1 5860 . . . . . . 7 (𝑥 = 𝐼 → (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦))
1817eqeq1d 2179 . . . . . 6 (𝑥 = 𝐼 → ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦))
1918ovanraleqv 5877 . . . . 5 (𝑥 = 𝐼 → (∀𝑦 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦) ↔ ∀𝑦 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦)))
2019rexsng 3624 . . . 4 (𝐼𝑉 → (∃𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦) ↔ ∀𝑦 ∈ {𝐼} ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑦)))
2116, 20mpbird 166 . . 3 (𝐼𝑉 → ∃𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦))
22 snexg 4170 . . . . . 6 (𝐼𝑉 → {𝐼} ∈ V)
23 opexg 4213 . . . . . . . 8 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V)
245, 23mpancom 420 . . . . . . 7 (𝐼𝑉 → ⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V)
25 snexg 4170 . . . . . . 7 (⟨⟨𝐼, 𝐼⟩, 𝐼⟩ ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V)
2624, 25syl 14 . . . . . 6 (𝐼𝑉 → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V)
271grpbaseg 12526 . . . . . 6 (({𝐼} ∈ V ∧ {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V) → {𝐼} = (Base‘𝑀))
2822, 26, 27syl2anc 409 . . . . 5 (𝐼𝑉 → {𝐼} = (Base‘𝑀))
291grpplusgg 12527 . . . . . . . . . 10 (({𝐼} ∈ V ∧ {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V) → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
3022, 26, 29syl2anc 409 . . . . . . . . 9 (𝐼𝑉 → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
3130oveqd 5870 . . . . . . . 8 (𝐼𝑉 → (𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = (𝑥(+g𝑀)𝑦))
3231eqeq1d 2179 . . . . . . 7 (𝐼𝑉 → ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ↔ (𝑥(+g𝑀)𝑦) = 𝑦))
3330oveqd 5870 . . . . . . . 8 (𝐼𝑉 → (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = (𝑦(+g𝑀)𝑥))
3433eqeq1d 2179 . . . . . . 7 (𝐼𝑉 → ((𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦 ↔ (𝑦(+g𝑀)𝑥) = 𝑦))
3532, 34anbi12d 470 . . . . . 6 (𝐼𝑉 → (((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦) ↔ ((𝑥(+g𝑀)𝑦) = 𝑦 ∧ (𝑦(+g𝑀)𝑥) = 𝑦)))
3628, 35raleqbidv 2677 . . . . 5 (𝐼𝑉 → (∀𝑦 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦) = 𝑦 ∧ (𝑦(+g𝑀)𝑥) = 𝑦)))
3728, 36rexeqbidv 2678 . . . 4 (𝐼𝑉 → (∃𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦) ↔ ∃𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦) = 𝑦 ∧ (𝑦(+g𝑀)𝑥) = 𝑦)))
3837anbi2d 461 . . 3 (𝐼𝑉 → ((𝑀 ∈ Smgrp ∧ ∃𝑥 ∈ {𝐼}∀𝑦 ∈ {𝐼} ((𝑥{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑦) = 𝑦 ∧ (𝑦{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑥) = 𝑦)) ↔ (𝑀 ∈ Smgrp ∧ ∃𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦) = 𝑦 ∧ (𝑦(+g𝑀)𝑥) = 𝑦))))
392, 21, 38mpbi2and 938 . 2 (𝐼𝑉 → (𝑀 ∈ Smgrp ∧ ∃𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦) = 𝑦 ∧ (𝑦(+g𝑀)𝑥) = 𝑦)))
40 eqid 2170 . . 3 (Base‘𝑀) = (Base‘𝑀)
41 eqid 2170 . . 3 (+g𝑀) = (+g𝑀)
4240, 41ismnddef 12654 . 2 (𝑀 ∈ Mnd ↔ (𝑀 ∈ Smgrp ∧ ∃𝑥 ∈ (Base‘𝑀)∀𝑦 ∈ (Base‘𝑀)((𝑥(+g𝑀)𝑦) = 𝑦 ∧ (𝑦(+g𝑀)𝑥) = 𝑦)))
4339, 42sylibr 133 1 (𝐼𝑉𝑀 ∈ Mnd)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448  wrex 2449  Vcvv 2730  {csn 3583  {cpr 3584  cop 3586  cfv 5198  (class class class)co 5853  ndxcnx 12413  Basecbs 12416  +gcplusg 12480  Smgrpcsgrp 12642  Mndcmnd 12652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-pre-ltirr 7886  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-ov 5856  df-pnf 7956  df-mnf 7957  df-ltxr 7959  df-inn 8879  df-2 8937  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-mgm 12610  df-sgrp 12643  df-mnd 12653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator