ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numdensq GIF version

Theorem numdensq 11062
Description: Squaring a rational squares its canonical components. (Contributed by Stefan O'Rear, 15-Sep-2014.)
Assertion
Ref Expression
numdensq (𝐴 ∈ ℚ → ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2)))

Proof of Theorem numdensq
StepHypRef Expression
1 qnumdencoprm 11053 . . . 4 (𝐴 ∈ ℚ → ((numer‘𝐴) gcd (denom‘𝐴)) = 1)
21oveq1d 5628 . . 3 (𝐴 ∈ ℚ → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (1↑2))
3 qnumcl 11048 . . . 4 (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ)
4 qdencl 11049 . . . . 5 (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ)
54nnzd 8800 . . . 4 (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℤ)
6 zgcdsq 11061 . . . 4 (((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℤ) → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)))
73, 5, 6syl2anc 403 . . 3 (𝐴 ∈ ℚ → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)))
8 sq1 9947 . . . 4 (1↑2) = 1
98a1i 9 . . 3 (𝐴 ∈ ℚ → (1↑2) = 1)
102, 7, 93eqtr3d 2125 . 2 (𝐴 ∈ ℚ → (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1)
11 qeqnumdivden 11054 . . . 4 (𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴)))
1211oveq1d 5628 . . 3 (𝐴 ∈ ℚ → (𝐴↑2) = (((numer‘𝐴) / (denom‘𝐴))↑2))
133zcnd 8802 . . . 4 (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℂ)
144nncnd 8371 . . . 4 (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℂ)
154nnap0d 8402 . . . 4 (𝐴 ∈ ℚ → (denom‘𝐴) # 0)
1613, 14, 15sqdivapd 9996 . . 3 (𝐴 ∈ ℚ → (((numer‘𝐴) / (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2)))
1712, 16eqtrd 2117 . 2 (𝐴 ∈ ℚ → (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2)))
18 qsqcl 9925 . . 3 (𝐴 ∈ ℚ → (𝐴↑2) ∈ ℚ)
19 zsqcl 9924 . . . 4 ((numer‘𝐴) ∈ ℤ → ((numer‘𝐴)↑2) ∈ ℤ)
203, 19syl 14 . . 3 (𝐴 ∈ ℚ → ((numer‘𝐴)↑2) ∈ ℤ)
214nnsqcld 10004 . . 3 (𝐴 ∈ ℚ → ((denom‘𝐴)↑2) ∈ ℕ)
22 qnumdenbi 11052 . . 3 (((𝐴↑2) ∈ ℚ ∧ ((numer‘𝐴)↑2) ∈ ℤ ∧ ((denom‘𝐴)↑2) ∈ ℕ) → (((((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1 ∧ (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) ↔ ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2))))
2318, 20, 21, 22syl3anc 1172 . 2 (𝐴 ∈ ℚ → (((((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1 ∧ (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) ↔ ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2))))
2410, 17, 23mpbi2and 887 1 (𝐴 ∈ ℚ → ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1287  wcel 1436  cfv 4981  (class class class)co 5613  1c1 7295   / cdiv 8078  cn 8357  2c2 8407  cz 8683  cq 9036  cexp 9853   gcd cgcd 10820  numercnumer 11041  denomcdenom 11042
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3929  ax-sep 3932  ax-nul 3940  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-iinf 4376  ax-cnex 7380  ax-resscn 7381  ax-1cn 7382  ax-1re 7383  ax-icn 7384  ax-addcl 7385  ax-addrcl 7386  ax-mulcl 7387  ax-mulrcl 7388  ax-addcom 7389  ax-mulcom 7390  ax-addass 7391  ax-mulass 7392  ax-distr 7393  ax-i2m1 7394  ax-0lt1 7395  ax-1rid 7396  ax-0id 7397  ax-rnegex 7398  ax-precex 7399  ax-cnre 7400  ax-pre-ltirr 7401  ax-pre-ltwlin 7402  ax-pre-lttrn 7403  ax-pre-apti 7404  ax-pre-ltadd 7405  ax-pre-mulgt0 7406  ax-pre-mulext 7407  ax-arch 7408  ax-caucvg 7409
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-if 3380  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-tr 3912  df-id 4094  df-po 4097  df-iso 4098  df-iord 4167  df-on 4169  df-ilim 4170  df-suc 4172  df-iom 4379  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-f1 4986  df-fo 4987  df-f1o 4988  df-fv 4989  df-riota 5569  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-1st 5868  df-2nd 5869  df-recs 6024  df-frec 6110  df-sup 6623  df-pnf 7468  df-mnf 7469  df-xr 7470  df-ltxr 7471  df-le 7472  df-sub 7599  df-neg 7600  df-reap 7993  df-ap 8000  df-div 8079  df-inn 8358  df-2 8416  df-3 8417  df-4 8418  df-n0 8607  df-z 8684  df-uz 8952  df-q 9037  df-rp 9067  df-fz 9357  df-fzo 9482  df-fl 9605  df-mod 9658  df-iseq 9780  df-iexp 9854  df-cj 10172  df-re 10173  df-im 10174  df-rsqrt 10327  df-abs 10328  df-dvds 10679  df-gcd 10821  df-numer 11043  df-denom 11044
This theorem is referenced by:  numsq  11063  densq  11064
  Copyright terms: Public domain W3C validator