| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > numdensq | GIF version | ||
| Description: Squaring a rational squares its canonical components. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
| Ref | Expression |
|---|---|
| numdensq | ⊢ (𝐴 ∈ ℚ → ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qnumdencoprm 12701 | . . . 4 ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) gcd (denom‘𝐴)) = 1) | |
| 2 | 1 | oveq1d 6009 | . . 3 ⊢ (𝐴 ∈ ℚ → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (1↑2)) |
| 3 | qnumcl 12696 | . . . 4 ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ) | |
| 4 | qdencl 12697 | . . . . 5 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ) | |
| 5 | 4 | nnzd 9556 | . . . 4 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℤ) |
| 6 | zgcdsq 12709 | . . . 4 ⊢ (((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℤ) → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2))) | |
| 7 | 3, 5, 6 | syl2anc 411 | . . 3 ⊢ (𝐴 ∈ ℚ → (((numer‘𝐴) gcd (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2))) |
| 8 | sq1 10842 | . . . 4 ⊢ (1↑2) = 1 | |
| 9 | 8 | a1i 9 | . . 3 ⊢ (𝐴 ∈ ℚ → (1↑2) = 1) |
| 10 | 2, 7, 9 | 3eqtr3d 2270 | . 2 ⊢ (𝐴 ∈ ℚ → (((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1) |
| 11 | qeqnumdivden 12702 | . . . 4 ⊢ (𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) | |
| 12 | 11 | oveq1d 6009 | . . 3 ⊢ (𝐴 ∈ ℚ → (𝐴↑2) = (((numer‘𝐴) / (denom‘𝐴))↑2)) |
| 13 | 3 | zcnd 9558 | . . . 4 ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℂ) |
| 14 | 4 | nncnd 9112 | . . . 4 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℂ) |
| 15 | 4 | nnap0d 9144 | . . . 4 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) # 0) |
| 16 | 13, 14, 15 | sqdivapd 10895 | . . 3 ⊢ (𝐴 ∈ ℚ → (((numer‘𝐴) / (denom‘𝐴))↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) |
| 17 | 12, 16 | eqtrd 2262 | . 2 ⊢ (𝐴 ∈ ℚ → (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) |
| 18 | qsqcl 10820 | . . 3 ⊢ (𝐴 ∈ ℚ → (𝐴↑2) ∈ ℚ) | |
| 19 | zsqcl 10819 | . . . 4 ⊢ ((numer‘𝐴) ∈ ℤ → ((numer‘𝐴)↑2) ∈ ℤ) | |
| 20 | 3, 19 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴)↑2) ∈ ℤ) |
| 21 | 4 | nnsqcld 10903 | . . 3 ⊢ (𝐴 ∈ ℚ → ((denom‘𝐴)↑2) ∈ ℕ) |
| 22 | qnumdenbi 12700 | . . 3 ⊢ (((𝐴↑2) ∈ ℚ ∧ ((numer‘𝐴)↑2) ∈ ℤ ∧ ((denom‘𝐴)↑2) ∈ ℕ) → (((((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1 ∧ (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) ↔ ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2)))) | |
| 23 | 18, 20, 21, 22 | syl3anc 1271 | . 2 ⊢ (𝐴 ∈ ℚ → (((((numer‘𝐴)↑2) gcd ((denom‘𝐴)↑2)) = 1 ∧ (𝐴↑2) = (((numer‘𝐴)↑2) / ((denom‘𝐴)↑2))) ↔ ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2)))) |
| 24 | 10, 17, 23 | mpbi2and 949 | 1 ⊢ (𝐴 ∈ ℚ → ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ‘cfv 5314 (class class class)co 5994 1c1 7988 / cdiv 8807 ℕcn 9098 2c2 9149 ℤcz 9434 ℚcq 9802 ↑cexp 10747 gcd cgcd 12460 numercnumer 12689 denomcdenom 12690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-sup 7139 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-fz 10193 df-fzo 10327 df-fl 10477 df-mod 10532 df-seqfrec 10657 df-exp 10748 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-dvds 12285 df-gcd 12461 df-numer 12691 df-denom 12692 |
| This theorem is referenced by: numsq 12711 densq 12712 |
| Copyright terms: Public domain | W3C validator |